
PROCEEDINGS OF THE PERSONAL ARMOUR SYSTEMS SYMPOSIUM 2020 
 

Techniques to assess the quality of armor performance 
measurement 

D. Bourget, M. Bolduc 

Defence Research and Development Canada – Valcartier Research Center, 2459 Pie-XI Blvd 
North  
Québec (Québec) G3J 1X5, Canada, Daniel.Bourget@drdc-rddc.gc.ca 

Abstract: Ballistic limit and proofing velocity tests are used for decades to assess the performance of armors in 
general.  Many papers discussing the subject have been presented in the preceding PASS conferences concerning 
both: methods to efficiently execute testing and methods to calculate the ballistic limit and proofing velocity.  This 
paper discusses about the later.  Recent important changes in this field include the introduction of fitting techniques 
to calculate the ballistic limit using either Logit (NIJ 0101.06) or Probit (NATO STANAG 2920) link functions and 
the calculation of the uncertainties of the ballistic limit values.  Different link functions and techniques to assess 
their Goodness of Fit towards the experimental data are discussed in this paper.  In particular, the Wald test, the 
Likelihood Ratio test, the Anderson-Darling test, the Sensitivity/Specificity Analysis and the Information Criteria 
are discussed. 

1. INTRODUCTION  

Armour performance, against specific threats can be evaluated using ballistic limit (BL or V50) and 
proofing velocity (Vproof) tests.  While the Vproof test is used to assess if the armour actually protects 
against a threat and does not consider the residual capacity of the armour, the BL test enables the 
assessment of the absolute resistance of an armour against a threat and therefore, enables the ranking of 
armour performance.  For this reason BL tests are specified in most ballistic standard along with Vproof 
tests.  Up until recently, BL value was calculated based on the simple average of the impact velocity of 
3 (or 5) partial and 3 (or 5) complete perforations of the armour within a specific velocity spread.  
Discussions within the different Standard committees showed that this simple way of calculating the BL 
value does not provide the full picture of the armour capability and that more information can be drawn 
out of the raw data.  Amongst them, the estimation of the impact velocity corresponding to low 
probability of perforation (e.g. V05 for 5% probability of penetration and V01 for 1% probability of 
penetration) is of interest as these values are highly related to the protection capability of the armour and 
the Vproof test results. In addition, the uncertainty related to the V50, V05 and V01 estimations are needed 
for further armour performance comparison purposes. To assess the parameters mentioned above, 
techniques consisting of fitting probabilistic curves through the pass/fail BL test data point were put 
forward and consequently, made their way to ballistic standards.  Not a simple calculation anymore, BL 
test data exploitation necessitates techniques that need to be programmed to enable a robust and 
trustworthy evaluation.  In close relation with the estimate of the V50, V05, V01 values and their 
uncertainties, the statistical significance and the goodness of fit of the model to estimate these values 
need to be assessed.  This enables the analyst to determine how well the fitted model used in the fitting 
process corresponds to the reality of the experimental data.  
 
To fulfill these needs, the BLC (Ballistic Limit Calculator), a MS Excel VBA program was created to: 

a. Calculate the BL and Vproof related values, 
b. Calculate the errors on these values, and  
c. Assess the goodness of fit of the model, be it Logit, Probit or others, to the experimental data.   

 
This paper describes the statistical aspect of the BLC and the different probabilistic models that are used 
within the software.  It also provides examples of how to use the software for ballistic data analysis. 
 
2. BALLISTIC AND STATISTICAL BACKGROUND 
 
2.1 General 
 
The Ballistic Limit is the velocity at which the probability of perforation of an armour is 50% and it is 
defined for a specific armour against a specific threat.  It is calculated based on a series of shots fired at 
an armour following a pre-defined impact pattern for a range of impact velocity above and below the 
estimated BL value.  The sequence of impact velocity follows the up and down procedure.  It is well 
described in NATO STANAG 2920 (Edition 3) [1] and [2] and in the NIJ 0101.06 [3] documents.  The 
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up and down procedure is used to minimize the number of shots necessary to determine the 50% 
probability value.  For each firing, the dichotomous impact status (either a perforation (1) or a non-
perforation (0)) is recorded.  
 
Using the impact velocity as independent variable and the impact status as the dependent variable, the 
probability of perforation versus impact velocity is modelled using specific probabilistic “link functions” 
for dichotomous data.  Amongst the large number of possible link function, the Probit and Logit 
cumulative distributions are the most often specified, [1] to [3].   The model parameters are defined using 
a curve fitting technique that uses Maximum Likelihood estimation (ML). Both, NIJ and NATO 
STANAG suggest using ML estimation and have described the general procedure ([1] and [3]).  For 
research purposes the current version of BLC includes 3 other link functions: the Gompit distribution, 
the Scobit distribution and the Weibull distribution.  As part of the BL and its variance estimation, it is 
necessary to assess how well the data are modelled by the different model functions.  This assessment 
can be done using typical goodness-of-fit tests available for dichotomous dependent variables.   
 
2.2 Link functions 
 
The Probit link function, also called the cumulative normal distribution (Φ), has a mean μ and a variance 
σ2.    The Logit link function also has two parameters, α and β.  Both link function probability of 
perforation distribution (Pp) equation for an impact velocity (VS) can be found in  
Table 1, 2nd column.  Those link functions are symmetrical around their means (i.e their skewness is 
null) and they have very similar shape as can be seen in Figure 1.  The Probit link density probability 
function is steeper in the middle and more quickly approaches zero on the left and on the right compared 
to the Logit link function [4].  

Figure 1 – Density probability (left) and cumulative probability (right) distribution curves for the 
Probit, Logit, Gompit, Scobit and Weibull distributions.  For the Scobit and the Weibull distributions, 
curves for 2 different shape parameter values are shown (δ = 0.5 and δ = 2.0).  Notice the difference 
in the slope around Z = 0 for the different cumulative probability distributions. 

 
The Gompit link function is also called the cumulative complementary log-log (CLogLog) distribution.  
It has two parameters: α is the location parameter and β is the scale parameter ( 
Table 1). That link function is not symmetrical and has a fixed negative skewness of -1.1396 (skewed 
to the left).  This means that its cumulative probability function is S-shaped and that it approaches 0 
slowly but approaches 1 much more sharply. The Scobit link function [4] is also called the Burr-10 
distribution or a Type I skewed-logit function.  It has tree parameters: α is the location parameter, β is 
the scale parameter and δ is the shape parameter ( 
Table 1).  The Logit distribution is a special case of the Scobit distribution: for δ = 1, the Scobit and 
Logit distributions are equivalent.  The Scobit link function is not symmetrical, except when δ = 1.  
Contrary to the Probit, Logit and Gompit distributions, it does not have limitations in the amount of 
skewness it can model. The Weibull link function has tree parameters: α is the location parameter, β is 
the scale parameter and δ is the shape parameter ( 
Table 1).  Like for the Scobit distribution, the Weibull distribution is not symmetric and does not have a 
fixed skewness value. The typical curve shapes for the different link functions presented above are shown 
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in Figure 1. The Scobit and Weibull distributions are presenting a variety of shapes and skewness 
depending on the shape parameter (δ) value. As concluded by Mauchant in [6] relative to the analysis of 
ballistic data using the Probit, Logit and Gompit link functions: “This work shows that the choice of link 
function, between the Logit, the Probit and the complementary log-log link functions, is not the most 
important issue in V50 ballistic limit performance estimation, since the different GLMs (Generalized 
Linear Model) examined all gave similar results”. This might have been the case because the Probit, 
Logit and Gompit link functions have a constant shape parameter and a fixed skewness, which is not the 
case for the Weibull and the Scobit link functions. 
 

 
Table 1 presents a summary of the information related to the different link functions presented above. 
For all link functions, the standard deviation σ of the distribution is equal to 1/ .  The V50 value can be 
calculated directly from the estimated α, β and δ values following the formulas shown in the last column. 
 

Table 1 – Summary of link function characteristics and V50 formula 

Link 
function Pp (at velocity VS) Pp scaling (

 VS (for probability Pp) V50 value 

Probit 
2π/

e-12
2

VS

-∞

dx Φ-1(Pp) (Φ-1(Pp)- )/  - /  

Logit     - /  

Gompit     (-0.3665 - )/  

Scobit   
 

Weibull   
 

 
2.3 Curve fitting process 
 
The fitting process consists of finding the estimates of the different distribution parameters (α, β and δ) 
that maximise the likelihood that the fitted curve corresponds to the experimental data (Maximum 
Likelihood Estimation, ML).  For curve fitting purpose, the ML techniques should be equivalent to the 
Minimum Least Square (LS) method if the error distribution between the regressed curve and the 
experimental data points follows a normal distribution. For dichotomous dependent data, the error 
distribution is not normal and therefore both techniques are not equivalent, ML technique being optimal.  
The search for the optimal distribution parameters is done using an optimisation algorithms:  the 
Downhill Simplex algorithm.  It was published by Nelder and Mead [7] and uses a single-objective 
optimization approach (in our case, maximising likelihood) for searching the space of p-dimensional real 
vectors.  The p dimensions correspond to the number of parameters in the link function.  It only uses the 
values of the objective functions without any derivative information and therefore, it falls into the general 
class of direct search methods.  It is therefore suitable for problems with non-smooth functions and 
discontinuous functions which occur frequently in statistics and experimental mathematics. 
 
2.3.1 Maximum likelihood estimation 
 
Briefly, the log-likelihood equation (LL) is the log of the likelihood equation (L) for M Bernoulli trials 
(dichotomous, i.e.  0 or 1 response, value 1 representing a success) with success probability PP(VS).  It 
can be written as follows: 
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 (1) 

Where X are the experimental data points composed of Respi (the perforation status, either 0 or 1) and 
the impact velocity . Note that PP(Vs) in equation (1) is any of the link functions presented above.  

The desirable properties of consistency, normality and efficiency of the ML estimators are asymptotic, 
i.e. these properties have been proven to hold as the sample size approaches infinity. This has 
consequences when considering small samples [8]: 

i. The small sample behavior of ML estimators is largely unknown. There are no hard and fast 
rules for selecting sample size.  It is risky to use ML with samples smaller than 100, while 
samples over 500 seem adequate. 

ii. While the standard advice is that with small samples larger p-values should be accepted as 
evidence against the null hypothesis, given that the degree to which ML estimates are normally 
distributed in small samples is unknown, it is more reasonable to require smaller p-values in 
small samples. 

 
3. TESTS TO ASSESS GOODNESS-OF-FIT OF MODELS 
 
To assess the Goodness-of-fit of the models is at least as important as fitting the model itself as it provides 
an indication of how well the model describes the data.  Some of the test presented below require an 
estimation of the Standard Error (SE) of the model parameters.  Estimation of the SE of the parameters 
is also important for the determination of the error bounds of the different parameters.  The SE of the 
parameters are never mentioned when BL values are published, although they should be, at least for 
quick Goodness-of-fit assessment purpose and error estimation purposes. 

3.1 Standard error of the model parameters 
 

Standard errors (SE) of the model parameters are calculated based on the estimated variance (Var, with 
 ) and covariance of the fitted parameters.  The variance of a model with N parameters (β i, i 

= 1 to N, in our case N = 3, α, β and δ) is given by equation (2).  In BLC, once the best fit parameters 
for a link functions are defined using the ML technique, a numerical double derivative of the Log-
Likelihood function (LL) is calculated for each parameters to define the variance/covariance matrix. For 
the V50 and σ values, which are function of α, β and δ as shown in  
Table 1, the SE is calculated based on the arithmetic of error propagation described in [9], Section 1.4 
as well as [10], [11] and [12]. 

 

 (2) 

3.2 The Wald test 
 
The Wald test is obtained by comparing the ML estimate of the parameter (say ) to its standard error 
(SE( )).  The resulting ratio (W) follows a normal distribution under the assumption that β = 0 [13].    

  (3) 

If p-value ≤ αlim then we can reject the null hypothesis that . The Wald test was found to behave in 
an aberrant manner often failing to reject the null hypothesis when the test was significant.  It is therefore 
a conservative test to assess if the parameters are significant or not. 

3.3 Likelihood Ratio test 
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This test consist of comparing the model likelihood with all its parameters ( ) to the model 
without one of its parameters ( ). For the purpose of comparing the models with and without the 
independent variable, the values of the Likelihood functions are compared using equation (4).  

 (4) 

 

The test statistic G is called the Likelihood Ratio.  Under the hypothesis that  = 0, the G statistic 
asymptotically follows a χ2 distribution with 1 degree of freedom. When the sample size is small, the χ2 
distribution has to be corrected.  Many different corrections exists, and reference [14] examined 5 of 
them in terms for Type I and Type II errors.  The authors recommends the Bartlett correction.  It is 
implemented in BLC and its details can be found in [15]. 

3.4 Anderson-Darling Test 
 
The Anderson-Darling (AD) Test [16] enables the comparison between an assumed cumulative 
distribution function (a link function with its fitted parameters, F(x,θ)) and the empirical distribution 
function (EDF, Fn(x)) based on the experimental data points. θ is a vector of the parameters ( ).  
F(x,θ) is compared to Fn(x) using the AD statistic [16].  The AD test can be used to detect the goodness-
of-fit for the Probit, Logit, Weibull and exponential distributions.  Due to its weight function, the AD 
test usually makes a more powerful test statistic by emphasizing the tail differences between the 
empirical distribution function and the assumed cumulative distribution function. 

References [17] and [18] compared the power of different tests to the AD tests for small and large 
samples.  They found that: a) the AD test results in excellent power levels compared to the other tests or 
it is marginally close to the best test, b) sample sizes above 50 can reach power levels above 80% and c) 
the increase of the allowable Type I error level results in higher power level for the same sample size.  It 
is therefore advisable to accept higher Type I error (15 to 20%) in order to reach acceptable Type II error 
rates for the typical types of sample size used in ballistic studies. 

3.5  Sensitivity, Specificity and Area Under the Curve (AUC) 
 
The use of Sensitivity, Specificity and AUC tries to answer the following question:  How good a job the 
model does of predicting outcomes? Or said another way: What percent of the observations the model 
correctly predicts?  Can my model discriminates between positive and negative outcomes (between 
complete and partial perforations)? 

These questions can be answered by measuring how good the model is to measure true positive and true 
negative answers while minimizing the number of false positive and false negative.  All of these are 
calculated by comparing the model outcome to the sample measured outcome. First, here are some 
definitions: 

a) Sensitivity (or true positive rate) is the proportion of positives (complete perforation) correctly 
identified by the model.  This value has to be has high as possible. 

b) Specificity (or true negative rate) is the proportion of negative (partial perforation) correctly 
identified by the model.  This value has to be has high as possible.  On contrary the value of 1-
Specificity is the false negative rate, and it has to be as small as possible 

c) ROC: Receivers Operating Characteristics.  It is a plot of the model sensitivity versus the model 
false negative rate (1-specificity)  

d) The AUC is a measure of how well a variable (in our case, impact velocity) can distinguish between 
two diagnostic groups (complete perforation/partial perforation).  AUC is the area under the ROC 
curve. 

Without getting into the details of how the sensitivity, specificity and AUC are calculated we can say 
that the AUC is at minimum 0.50 (model equivalent to chance) and at maximum 1.0.  The higher the 
AUC between those two limits, the better the model is in predicting the outcome. Theoretically, the AUC 
is the probability that a randomly selected complete perforation velocity has a higher value (higher 
impact velocity) than a randomly selected partial perforation velocity. 

3.6 The Information Criterion 
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The Log-Likelihood Ratio cannot be used to compare non nested models.  In that case, the Information 
Criterion (IC) has to be used [19].  It is based on the information theory using the Kullback-Leibler 
information equation that measures the 'information' lost when approximating reality using a function.  
The IC accounts for how well the model fits the data and also accounts for the complexity of the model.  
Model complexity is its ability to fit any data set and can be approximated as the number of parameters 
in the model [19].  It is well known that some models can be so complex that they can fit any data set 
[19].  Details on the development of the IC can be found in [20], [21], [22] and [23].  The IC, called the 
AIC (Akaike Information Criterion [23]) can be calculated using the following:

. 
 
Variable p is the number of parameters in the model and  is the Log-Likelihood value of the 
model (equation (1)) for the p estimated parameters ( ). For comparison between models, the AIC value 
as to be as small as possible.  AIC is true asymptotically, i.e. when the number of data point is large.  
The rule of thumb from [19] is that for cases where sample sizes are small (n < 100) or where the number 
of free parameters is large (p > 5), the AIC value is biased and therefore it has to be corrected. For the 
for Logit and Probit link functions, a small sample empirical estimation is used [24].  For the Gompit, 
Scobit and Weibull link functions the Bootstrap method is used (section 8.3 of [21]).   
 
4. HOW TO USE ALL THESE STATISTICS? (SO WHAT?) 
 
The various outputs of BLC can be used to calculate the following: 

1. Statistics for a sample (mean, standard deviation, median, 1st quartile, 3rd quartile, zone of mixed 
results, skewness, kurtosis, lowest complete and highest partial perforation) 

2. Values and uncertainties of the V50 and the standard deviation (σ) of an armour for a specific 
confidence level 

3. Based on the calculated uncertainty on the V50 and σ values, should more shots be done? 
4. Extreme values of V50 and σ related to the NATO STANAG 2920 and the NIJ 0101.06 

procedures as well as other error distributions 
5. Values and uncertainties related to any probability of perforation (e.g. V01, V05, V95, V99) as 

well as for the Vproof value based on normal error and binomial error distributions 
6. Identification of the model that most accurately represents the experimental data or: Is the 

selected model valid? 

 

 

 
4.1 Sample statistics 
 
Sample statistics are found under the heading “Sample Statistics” in BLC (Figure 2, part A) and in the 
“Box Plot” page (Figure 3). 
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Figure 2 – Example of BLC output

4.2 Values and uncertainties of V50 and σ (are more shots necessary?)

Those statistics can be found for each model under the heading “Curve Fit Statistics”, Figure 2, part B 
(Weibull and Gompit models are omitted for clarity). Clearly, the 3 models show similar V50 values 
while the value of σ varies significantly and the standard error also varies significantly.  This difference 
is due to the varying shape and slope of the link functions as seen above (Figure 1).  If unsatisfied with 
the V50 standard error obtained, another shot can be done and statistics recalculated to provide another 
estimate of V50 and σ with their SE.

4.3 Extreme values of V50 and σ

V50 and σ values as calculated using the NATO STANAG 2920 procedure can be found under the 
heading “Curve Fit Statistics” (Figure 2 Part C, data highlighted in green) for a specific confidence level 
(e.g. 95%).  Maximum and minimum V50 values assuming a normal and a binomial error distribution 
can also be found.  The difference between the STANAG 2920 and the normal distribution error as well 
as the description of other variables are presented graphically in Figure 4.  It shows the fitted curve (e.g. 
Logit) in red along with its upper (light green) and lower (magenta) 95% percentile error curves based 
on normal distribution of the error.  The confidence interval lengths, as defined in the STANAG 2920 
are shown in blue, based on STANAG 2920 procedure and in yellow, based on the normal error curves.  

Sample median (m/s) =
Sample mean (m/s) =

Sample σ (m/s) =
Spread (m/s) =

ZMR (m/s) =
LC (m/s) =
HP (m/s) =

Skewness =
Kurtosis =

Number of data points =

MONOBIT test p-value for sample randomness =
RUN test p-value for sample randomness =

Cumulative Sum test p-value for sample randomness =

V50 ± SE (m/s) = 515.25 ± 3.8825 515.20 ± 3.8295 517.24 ± 0.7923
σ ± SE (m/s) = 6.6496 ± 3.3908 10.9791 ± 5.3795 0.0841 ± 0.0001
α ± SE (m/s) = -77.4866 ± 24.5426 -46.9257 ± 19.3767 -6260.7103 ± 9.4536
β ± SE (m/s) = 0.1504 ± 0.0478 0.0911 ± 0.0378 11.8953 ± 0.0179
δ ± SE (m/s) = 0.0064 ± 0.0022

Standard Error of Estimate at V50 =

Wald test p-value on α =

Wald test p-value on β =

Wald test p-value on δ =

Likelihood Ratio test p-value =

Osius-Rojek Goodness-of-Fit test p-value =

Anderson-Darling Goodness-of-Fit test p-value =

Stukel test for fit of distribution tails p-value =

ROC AUC =
Model Sensitivity (Proportion of complete perforation correctly 

identified by the model)
Model Specificity (Proportion of partial perforation correctly 

identified by the model)
Threshold probability =

Deviance =
Pearson X2 =

Nagelkerke pseudo R2 =
Tjur pseudo R2 =
Log Likelihood =

Least square =
Small Sample Corrected Information Criterion Bias =

Small Sample Corrected IC ± SD (m/s) = 23.5451 ± 0.0000 23.0840 ± 0.0000 24.1046 ± 2.6762
V50 (m/s) CI length from STANAG 2920 method =

V50 max (m/s) from STANAG 2920 method =
V50 min (m/s) from STANAG 2920 method =

Sigma max (m/s) from STANAG 2920 method =
Sigma min (m/s) from STANAG 2920 method =

V50 (m/s) CI length from Normal CI curves =
V50 max (m/s) from Normal CI curves =
V50 min (m/s) from Normal CI curves =

Vproof (m/s) =
Max prob of perforation (%) =
Min prob of perforation (%) =

Vproof max value (m/s) =
Vproof min value (m/s) =

V5% and Cl = 95% Normal error distribution

0.7778

0.4400
18.2416
15.8247
0.4968
0.3830
-9.121

2.932

3.74

534.10
7.78

0.20
0.082.07

19.29

83.44
3.99

532.95
26.92

VPROOF STATISTICS

507.98
50.97

-506.03506.83
526.13

Logit
495.67

504.76
-

506.21
-

0.67
2199.77
502.90

0.14
27.85
0.72

487.07

SAMPLE STATISTICS

CURVE FIT STATISTICS for Cl = 95%

513.45

38.24

-9.320

2.409

Cannot reject that data sample is random  (p = 1.185)

Reject that α is null (p = 0.001)

Reject that β is null (p = 0.000)

Reject that distribution is Scobit (p = 0.000)

Reject that α is null (p = 0.000)

Reject that α, β and δ are null (p = 0.004)

Cannot reject that distribution is Probit (p = 
0.222)

Reject that α and β are null (p = 0.005)

Reject that β is null (p = 0.001)

Cannot reject that distribution is Logit (p = 
0.382)

Logit model tails do not fit the data (p = 
0.001)

Reject that α and β are null (p = 0.005)

0.9091

Reject that δ is null (p = 0.002)

Scobit

513.53
513.53
17.13
84.00
16.60
505.30
521.90
-0.32
2.86
20

Cannot reject that data sample is random  (p = 0.824)

Logit (NIJ 0101.06)

0.4202

Reject that α is null (p = 0.008)

Reject that β is null (p = 0.008)

0.4205

Probit (STANAG 2920)

Cannot reject that data sample is random  (p = 0.918)

0.8586

2.223

517.20

1.8566E-01

15.06
523.04

1.7683E-01

0.8586

0.7778

0.9091

0.5100

1.7656E-01

0.7778

0.9091

0.5100
18.7279
16.3956
0.4761
0.3636
-9.364

497.14
ScobitProbit

18.6390

0.4309

0.8586

16.2809
0.4799
0.3669

37.49

14.46
522.54
508.09

A

B

C

D

E

3.74

0.20
0.08

513.45
517.20

± 3.8825 515.20 ± 3
± 3.3908 10.9791 ± 5
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As they are calculated in different ways using different distributions, the confidence interval lengths 
(CI), the maximum V50 values and the minimum V50 values are all different.  Although not explicitly 
written, the V50 and σ values and their SE calculated using the NIJ 0101.06 procedure are highlighted in 
yellow in Figure 2 Part B.

Figure 3 – Box plot page

4.4 Values and uncertainties related to any probability of perforation, including Vproof

Descriptions of the different values calculated by BLC are shown graphically in Figure 5.  For a given 
probability of perforation (e.g. 10%), the associated impact velocity (Vproof), the minimum and maximum 
possible probability of perforation are displayed for either a normal error or a binomial error distribution.  
Similarly, the maximum expected Vproof value, based on the lower confidence limit curve is also 
displayed.  These data can be found under the heading “VPROOF Statistics”, Figure 2 Part D.  Notice that 
values are varying depending on the model used.   Of particular interest in Figure 2 Part D is the error 
on the actual perforation probability.  Although 5% probability is expected, the error of the model can 
result in probabilities of perforation as high as 38% for the Probit model with a 95% confidence level. 
This emphasises the use of Vproof values that corresponds to very low probability of perforation so that 
the maximum probability of perforation expected can be acceptable.

Figure 4 – Illustration of V50 statistics, 
extreme values and CI length

Figure 5 –Illustration of Vproof statistics with 
an example for 10% probability of perforation.

4.5 Identification of the best model or: Is the selected model valid?
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This last assessment is a rather complex issue and necessitates the use of many statistics and tests 
described above.  A flow chart of the process is presented in Figure 6. 

 
Figure 6 - Decision process to determine best model 

 
To assess model validity, the parameter significance and the ROC criteria must be achieved.  To assess 
which model best represents the experimental data, all 3 criteria (parameter significance, ROC and IC) 
must be achieved.   
 
4.5.1 Parameter significance 
The first thing is to verify if the calculated parameters (  and ) are significant. If one of them is null, 
the model is worthless.  To verify that point, the Wald test and Likelihood Ratio results can be analysed. 
Each of the 2 or 3 parameters have to be significant using the Wald Test. This enables to determine if 
each parameter is significant (not null). The Likelihood Ratio test compares the full model to the constant 
only (  parameter only) model.   The comparison enables to determine if the  parameter is significant 
(not null).  The use of the AD test to assess if the experimental data sample is a good fit to the ML fitted 
link function can be done keeping in mind the conclusion relative to the acceptable level in section 3.4. 
 
4.5.2 Goodness-of-fit 
Goodness-of-fit of the model can be verified using the ROC.  The ROC AUC has to be as close as 
possible to 1.0.  A qualitative scale for the ROC AUC value is presented in [9].  Also, [9] recommends 
that the ROC AUC value be above 0.70, which corresponds to at least an acceptable level of 
discrimination.  Because they represent the proportion of complete and partial perforation correctly 
identified by the model, sensitivity and specificity of the model has to be as close as possible to 1. 
 
4.5.3 Information Criteria 
Finally, the lowest the IC value, the best the model is.  Of all the criteria presented in this section, this is 
the only one that can be used directly to compare between the different models.  The variance on the IC 
value can be quite large. Therefore, when compared to each other’s, the difference between the values 
of IC can be not significant. Reduction of the variance on the bias estimate can be achieved by increasing 
the number of experimental data point or by providing a more accurate evaluation of the bias and its 
variance by increasing the total number of Bootstrap samples used to assess variance.  This can only be 
done at the cost of longer execution duration. 
 
4.5.4 Example 
In the present case, the 3 models should be considered valid (Figure 2 Part E).  All the parameters are 
non-null as shown by the Wald and Likelihood ratio tests.  The ROC AUC is 0.86, which means that 
each model presents excellent discrimination [9].  Sensitivity and specificity are also high, which means 
that the number of partial and complete perforation correctly identified by each model is high.   
 
Assessment of the best model is more difficult.  The IC values for the Probit is the lowest of the 3 models.  
On the other hand, the Scobit model have a large standard deviation value and as a result, the observed 
difference in the mean IC values for each model is not significant. 

PARAMETER SIGNIFICANCE (not null)
Wald test (Essential)
Likelihood Ratio test (Essential)
Anderson-Darling – higher rejection level (Desirable)

ROC
Highest AUC – at least 0.70  (Essential)
Highest Sensitivity (Desirable)
Highest Specificity (Desirable)

INFORMATION
CRITERIA

Lowest value (Essential)

MODELS
Logit

Probit
Scobit

Gompit
Weibull

BEST MODEL
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5. CONCLUSIONS 
 
Capabilities of the BLC for the assessment of validity and goodness of fit of different models for V50 
and Vproof assessment is explored.  A variety of tests are discussed, accounting for the effects of small 
sample size. 
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