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Abstract 

Summer temperature extremes, particularly when accompanied by high humidity, drive 
peaks in power demand that can strain or even lead to failure of power grids. Here, I 
use meteorological reanalysis products to show regions where solar and wind 
availability were positively correlated with heat during summer 2023 to identify the 
potential of renewable energy to meet demand peaks and support energy resilience 
during heat waves. 
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Introduction 

Resilience of the electric grid during climate extremes is of increasing concern. 
Intermittent renewable sources, mainly solar and wind, are an increasing contributor to 
our electricity supply, so their reliability under extreme conditions is critical. Xu et al. 
(2024) provide a recent overview of the potential of distributed renewables for climate 
resilience, particularly as related to power outages associated with tropical cyclones, 
and highlight the need to study the interdependent "risks from escalating climate 
extremes and large-scale renewable integration."  

Heat waves rank as a leading climate disaster category, and one which is steadily 
worsening due to global warming. In 2023, the USA recorded its largest-ever number of 
billion-dollar weather and climate disasters (as compiled by the NOAA National Centers 
for Environmental Information). Of these, the costliest and most deadly was the 
Southern/ Midwestern summer drought and heat wave. Texas, along with the world, 
recorded its hottest year on record, and also set a new record for deaths attributable to 
heat.  

The Electric Reliability Council of Texas (ERCOT), which manages electricity supply for 
most of the state, recorded by far its highest electricity demand on record that summer. 
This demand was met without major power outages with the help of rapidly rising solar-
generating capacity, which generally provided 10-16% of peak-hour demand, along with 
surging battery capacity. As of 2023, Texas had the most wind generation capacity of 
any state, and the second-highest solar generation and battery storage capacities, 
behind California. Nevertheless, many brief price spikes occurred in the ERCOT real-
time electricity market, suggesting the need for additional clean power along with better 
grid management to improve summer grid reliability and reduce customer costs. 

To better understand the availability of solar and wind resources during heat waves at 
different locations, I extracted hourly weather data for June–September 2023 from the 
fifth-generation European atmospheric reanalysis (ERA5), a global product informed by 
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extensive station and satellite data along with a state-of-the-art weather-forecast model 
(Hersbach et al., 2018; ERA, 2024). 

Temperature-Solar Correlation 

First, I examined the correlation between the daily mean surface (2m height) 
temperature and the daily mean surface downward short-wave radiation flux (Figure 
1a). A positive correlation would mean that hot summer days tend to also be more 
sunny, providing an ample solar resource that can be tapped to meet peak power 
demands. These correlations were, in fact, strongly positive for most land areas, 
including the southern, western, and central U.S. generally.  

Correlations were more weakly positive for much of the Northeast and upper Mississippi 
Basin and were negative for many ocean areas. Inspection of daily power demand and 
solar energy output by state from the U.S. Energy Information Administration's Hourly 
Grid Electric Monitor for the same period showed patterns consistent with these ERA5 
results, with strongly positive correlations between power demand and solar production 
in California and Texas, but only weakly positive ones in New York. 

Temperature-Wind Correlation 

I also computed correlations between daily mean temperature and 100-m height wind 

speed (the wind speed was averaged from hourly values as  to better represent 
the proportionality of wind power to windspeed cubed) (Figure 1b). This correlation was 
near zero over many land and ocean areas, but was strongly positive for a large region 
that included the Great Plains, Texas, and eastern Mexico, for which hot days also 
tended to be windy. Indeed, in Texas, wind power made important contributions to 
evening power generation on many of the hottest days of summer 2023. 

Correlations with Humid Heat 

Peak power demand depends not only on temperatures but also on humidity levels, with 
air at higher wet bulb temperature (WBT) requiring more energy to cool (Guan et al., 
2017). Therefore, I computed hourly WBT from ERA5 2-m temperature, 2-m dew point, 
and surface pressure fields, using formulas from Sadeghi et al. (2013). Correlations of 
daily mean WBT with solar and wind resources, shown in Figure 2, tended to be less 
positive than those for temperature, but were still positive in Texas.  

Discussion 

While preliminary (and needing to be confirmed by looking at more years and station 
data), these findings support the potential of solar and wind deployment, along with 
storage, to mitigate the impact of demand peaks during heat waves on grid reliability. 
This positive impact on resilience could be quantified for individual power grids, such as 
ERCOT, in more detailed follow-up modeling studies. 
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To comprehensively assess challenges to energy resilience during heat waves, a variety 
of other challenges and opportunities for grid resilience also need to be considered. 
Heavy air pollution, much of which is due to burning fossil fuels, reduces the solar 
resource substantially (Yang et al., 2022). Further, smoke from massive wildfires, which 
covered large parts of eastern North America for much of summer 2023, reduces solar 
generation, although also likely reducing the intensity of heatwaves in affected areas 
(Gilletly et al., 2023).  

Contrarily, the recent implementation of low-sulfur fuel standards for global shipping has 
presumably increased solar resource availability, particularly close to shipping lanes, 
even while contributing to the acceleration of global warming (Ji et al., 2020). The ability 
of reanalysis products such as ERA5 to fully capture air pollution and smoke distribution 
as they impact solar resources needs to be validated. There are also other natural 
hazards whose co-occurrence with heatwaves should be prepared for.  

Tropical cyclones can cause widespread destruction of power generation and 
transmission facilities, leaving people vulnerable to subsequent heatwaves (Matthews et 
al, 2019; Feng et al., 2020). Hailstorms, floods, and droughts are also increasingly likely 
to co-occur with heat waves and stress power grids by damaging generation and 
transmission facilities (Su et al., 2020; Stone et al., 2021; Yin et al., 2022; Gu et al., 
2022). Resilient design of energy systems could include a diversity of sources and 
storage mediums as well as an emphasis on distributed generation (such as household-
scale solar generation and neighborhood microgrids) and capacity for grid-independent 
operation during emergencies (Abdin et al., 2019; Bracken et al., 2023; Remund et al., 
2023). 

Conclusion 

In summary, recent operator experiences and meteorological data support the potential 
of renewable energy sources to provide power generation during heat waves. Additional 
work is needed to integrate renewables with power storage and transmission 
infrastructure for resilience during increasingly frequent and intense climate extremes. 
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Figure 1. Correlation with daily-mean temperature for June-September 2023 of daily-mean (a [top]) solar 
irradiance and (b [bottom]) wind speed. Positive correlations generally indicate that hot days were likely to 
feature above-average solar and/or wind resources. 
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Figure 2. Same as Figure 1, but for daily-mean wet-bulb temperature instead of (dry-bulb) temperature. 
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