2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS 2024)

Chicago, Illinois, USA 27-30 October 2024

Pages 1-805

IEEE Catalog Number: ISBN: CFP24053-POD 979-8-3315-1675-8

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP24053-POD
979-8-3315-1675-8
979-8-3315-1674-1
1523-8288

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS) **FOCS 2024**

Table of Contents

Welcome Message	xix
Program Committee	xx
Reviewers	xxi

Session 1A

Cycles of Well-Linked Sets and an Elementary Bound for the Directed Grid Theorem
 First-Order Model Checking on Monadically Stable Graph Classes
Obstructions to Erdőos-Pósa Dualities for Minors
Minor Containment and Disjoint Paths in Almost-Linear Time
Computing the 3-Edge-Connected Components of Directed Graphs in Linear Time
Three-Edge-Coloring Projective Planar Cubic Graphs: A Generalization of the Four Color 86 Yuta Inoue (The University of Tokyo, Japan), Ken-ichi Kawarabayashi 86 (The University of Tokyo, Japan), Atsuyuki Miyashita (The University of Tokyo, Japan), Atsuyuki Miyashita (The University of Tokyo, Japan), Bojan Mohar (Simon Fraser University, Canada), and
Tomohiro Sonobe (The University of Tokyo, Japan)

Session 1B

O(1) Insertion for Random Walk d-ary Cuckoo Hashing up to the Load Threshold Tolson Bell (Carnegie Mellon University, USA) and Alan Frieze (Carnegie Mellon University, USA)	106
Fast Mixing in Sparse Random Ising Models	120
A Sampling Lovász Local Lemma for Large Domain Sizes	129
 Sampling, Counting, and Large Deviations for Triangle-free Graphs Near the Critical Density	151
Computational Dynamical Systems	166
Locally Stationary Distributions: A Framework for Analyzing Slow-Mixing Markov Chains Kuikui Liu (MIT, USA), Sidhanth Mohanty (MIT, USA), Prasad Raghavendra (UC Berkeley, USA), Amit Rajaraman (MIT, USA), and David X. Wu (UC Berkeley, USA)	203

Session 1C

 Fully Dynamic k-Clustering with Fast Update Time and Small Recourse	216
On Approximate Fully-Dynamic Matching and Online Matrix-Vector Multiplication	228
Predict to Minimize Swap Regret for All Payoff-Bounded Tasks	244
A Lossless Deamortization for Dynamic Greedy Set Cover	264
The Online Submodular Assignment Problem	291

Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs	314
Soheil Behnezhad (Northeastern University, USA) and Alma Ghafari	
(Northeastern University, USA)	

Session 2A

Fast List Decoding of Univariate Multiplicity and Folded Reed-Solomon Codes Rohan Goyal (Massachusetts Institute of Technology, USA), Prahladh Harsha (Tata Institute of Fundamental Research, India), Mrinal Kumar (Tata Institute of Fundamental Research, India), and Ashutosh Shankar (Tata Institute of Fundamental Research, India)	328
Decoding Quasi-Cyclic Quantum LDPC Codes	344
Optimal Coding for Randomized Kolmogorov Complexity and Its Applications Shuichi Hirahara (National Institute of Informatics, Japan), Zhenjian Lu (University of Warwick, UK), and Mikito Nanashima (Tokyo Institute of Technology, Japan)	369
 Expansion of High-Dimensional Cubical Complexes with Application to Quantum Locally Testable Codes	379

Session 2B

Communication Separations for Truthful Auctions: Breaking the Two-Player Barrier Shiri Ron (Weizmann Institute of Science, Israel), Clayton Thomas (Microsoft Research, USA), S. Matthew Weinberg (Princeton University, USA), and Qianfan Zhang (Princeton University, USA)	386
On Pigeonhole Principles and Ramsey in TFNP Siddhartha Jain (The University of Texas at Austin, USA), Jiawei Li (The University of Texas at Austin, USA), Robert Robere (McGill University, Canada), and Zhiyang Xun (The University of Texas at Austin, USA)	. 406
An XOR Lemma for Deterministic Communication Complexity Siddharth Iyer (University of Washington, USA) and Anup Rao (University of Washington, USA)	. 429
The Communication Complexity of Approximating Matrix Rank	. 433

Session 2C

Efficient Approximate Unitary Designs from Random Pauli Rotations	:63
 Efficient Unitary Designs from Random Sums and Permutations	:76
Simple Constructions of Linear-Depth t-Designs and Pseudorandom Unitaries	:85
Gapped Clique Homology on Weighted Graphs is QMA1-Hard and Contained in QMA	93
Session 3A	

Reverse Mathematics of Complexity Lower Bounds 505 Lijie Chen (UC Berkeley, USA), Jiatu Li (MIT, USA), and Igor Carboni 505 Oliveira (University of Warwick, UK) 528 Interactive Proofs for General Distribution Properties 528 Tal Herman (Weizmann Institute of Science, Israel) and Guy Rothblum 529 (Apple) 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute of Mathematical Sciences, Chennai Mathematical 539 V. Arvind (Institute, India), Abhranil Chatterjee (Indian Statistical Institute, India), and Partha Mukhopadhyay (Chennai Mathematical Institute, India) 560 VPi_2^P vs PSpace Dichotomy for the Quantified Constraint Satisfaction Problem 560 Dmitriy Zhuk (Charles University, Czech Republic) 573 Jump

Session 3B

Optimal Bounds for Open Addressing Without Reordering	594
Martín Farach-Colton (New York University, USA), Andrew Krapivin	
(Cambridge University, UK), and William Kuszmaul (Carnegie Mellon	
University, USA)	
Tight Analyses of Ordered and Unordered Linear Probing	606
Mark Braverman (Princeton University, USA) and William Kuszmaul	
(Carnegie Mellon University, USA)	

Tight Bounds for Classical Open Addressing Michael A. Bender (Stony Brook University and RelationalAI, USA), William Kuszmaul (Carnegie Mellon University, USA), and Renfei Zhou (Carnegie Mellon University, USA)	636
Instance-Optimality in I/O-Efficient Sampling and Sequential Estimation Shyam Narayanan (MIT), Václav Rozhoň (University of Sofia "St. Kliment Ohridski"), Jakub Tětek (University of Sofia "St. Kliment Ohridski"), and Mikkel Thorup (University of Copenhagen)	658
An Optimal Algorithm for Sorting Pattern-Avoiding Sequences	689
Session 3C	
Deterministic Algorithm and Faster Algorithm for Submodular Maximization Subject to a Matroid Constraint Niv Buchbinder (Tel-Aviv University, Israel) and Moran Feldman (University of Haifa, Israel)	700
On Approximating Cutwidth and Pathwidth Nikhil Bansal (University of Michigan, USA), Dor Katzelnick (Technion - Israel Institute of Technology, Israel), and Roy Schwartz (Technion - Israel Institute of Technology, Israel)	713

The Bidirected Cut Relaxation for Steiner Tree has Integrality Gap Smaller than 2 Jarosław Byrka (University of Wrocław, Poland), Fabrizio Grandoni (USI-SUPSI, Switzerland), and Vera Traub (University of Bonn, Germany)	730
Efficient Approximation of Fractional Hypertree Width Viktoriia Korchemna (TU Wien, Austria), Daniel Lokshtanov (University of California Santa Barbara, USA), Saket Saurabh (University of Bergen, Norway; Institute of Mathematical Sciences, India), Vaishali Surianarayanan (University of California Santa Barbara, USA), and Jie Xue (New York University Shanghai, China)	754

Canonical Forms for Matrix Tuples in Polynomial Time	780
Youming Qiao (University of Technology Sydney, Australia) and Xiaorui	
Sun (University of Illinois at Chicago, USA)	

Session 4A

Polynomial Calculus Sizes Over the Boolean and Fourier Bases are Incomparable Sasank Mouli (Department of Computer Science and Engineering, Indian Institute of Technology Indore, India)	. 790
A Dense Model Theorem for the Boolean Slice Gil Kalai (Hebrew University of Jerusalem and Reichman University, Israel), Noam Lifshitz (Hebrew University of Jerusalem, Israel), Dor Minzer (Massachusetts Institute of Technology, USA), and Tamar Ziegler (Hebrew University of Jerusalem, Israel)	. 797

Dot-Product Proofs and Their Applications	306
Low Acceptance Agreement Tests via Bounded-Degree Symplectic HDXs	326
Constant Degree Direct Product Testers with Small Soundness	362
Chernoff Bounds and Reverse Hypercontractivity on HDX	370
Approximation Algorithms for Noncommutative CSPs Eric Culf (University of Waterloo, Canada), Hamoon Mousavi (University of California, USA), and Taro Spirig (University of Copenhagen, Denmark)	∂2 0

Session 4B

Certifying Euclidean Sections and Finding Planted Sparse Vectors Beyond the Sqrt(n) Dimension Threshold Venkatesan Guruswami (Department of EECS, UC Berkeley, USA), Jun-Ting Hsieh (Carnegie Mellon University, USA), and Prasad Raghavendra (Department of EECS, UC Berkeley, USA)	930
Sum-of-Squares Lower Bounds for Non-Gaussian Component Analysis Ilias Diakonikolas (University of Wisconsin-Madison, United States), Sushrut Karmalkar (University of Wisconsin-Madison, United States), Shuo Pang (University of Copenhagen, Denmark), and Aaron Potechin (University of Chicago, United States)	949
Semirandom Planted Clique and the Restricted Isometry Property Jarosław Błasiok (ETH Zurich, Switzerland), Rares-Darius Buhai (ETH Zurich, Switzerland), Pravesh K. Kothari (IAS & Princeton University, USA), and David Steurer (ETH Zurich, Switzerland)	959
Efficient Certificates of Anti-Concentration Beyond Gaussians Ainesh Bakshi (MIT, USA), Pravesh K. Kothari (IAS, USA), Goutham Rajendran (CMU, USA), Madhur Tulsiani (TTIC, USA), and Aravindan Vijayaraghavan (Northwestern, USA)	970
Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians Jane H. Lee (Yale University, U.S.A.), Anay Mehrotra (Yale University, U.S.A.), and Manolis Zampetakis (Yale University, U.S.A.)	988

Tensor Cumulants for Statistical Inference on Invariant Distributions	1007
Dmitriy Kunisky (Johns Hopkins University, USA), Cristopher Moore	
(Santa Fe Institute, USA), and Alexander S. Wein (University of	
California, Davis, USA)	

Session 4C

High-Temperature Gibbs States are Unentangled and Efficiently Preparable	7
Structure Learning of Hamiltonians from Real-Time Evolution	7
Quantum Eigenvalue Processing	1
Quantum Computational Advantage with Constant-Temperature Gibbs Sampling	3
Optimal Tradeoffs for Estimating Pauli Observables	5
A Computational Test of Contextuality and Even Simpler Proofs of Quantumness	5

Session 5: Best Student Papers

Capacity Threshold for the Ising Perceptron Brice Huang (Massachusetts Institute of Technology MA)	1126
Optimal Quantile Estimation: Beyond the Comparison Model	1137
Meghal Gupta (University of California, Berkeley, US), Mihir Singhal	
(University of California, Berkeley, US), and Hongxun Wu (University	
of California, Berkeley, US)	

Session 6A

Proofs of Space with Maximal Hardness	. 1159
Leonid Reyzin (Boston University, USA)	
Commitments are equivalent to Statistically-Verifiable One-way State Generators	1178
Rishabh Batra (National University of Singapore, Singapore) and Rahul	
Jain (National University of Singapore, Singapore)	

Succinct Arguments for QMA from Standard Assumptions via Compiled Nonlocal Games 1193 Tony Metger (ETH Zurich, Switzerland), Anand Natarajan (MIT, USA), and Tina Zhang (MIT, USA)
Certifying Almost all Quantum States with Few Single-Qubit Measurements
How to Simulate Random Oracles with Auxiliary Input

Session 6B

Online Combinatorial Allocations and Auctions with Few Samples
Benchmark-Tight Approximation Ratio of Simple Mechanism for a Unit-Demand Buyer
Semi-Bandit Learning for Monotone Stochastic Optimization
On Robustness to k-Wise Independence of Optimal Bayesian Mechanisms
Hardness of Approximate Sperner and Applications to Envy-Free Cake Cutting

Session 6C

Hardness of Packing, Covering and Partitioning Simple Polygons with Unit Squares	5
The Orthogonal Vectors Conjecture and Non-Uniform Circuit Lower Bounds	2
Strong vs. Weak Range Avoidance and the Linear Ordering Principle	8
 Faster Isomorphism Testing of p-Groups of Frattini Class 2	8

Session 7A

Boosting Uniformity in Quasirandom Groups: Fast and Simple
The Sample Complexity of Smooth Boosting and the Tightness of the Hardcore Theorem
On the Existence of Seedless Condensers: Exploring the Terrain
Tight Bounds for the Zig-Zag Product 1470 Gil Cohen (Tel Aviv University, Isarel), Itay Cohen (Tel Aviv 1470 University, Isarel), and Gal Maor (Tel Aviv University, Isarel) 1470
Distinguishing, Predicting, and Certifying: On the Long Reach of Partial Notions of Pseudorandomness
Improved Condensers for Chor-Goldreich Sources

Session 7B

Improved Distance (Sensitivity) Oracles with Subguadratic Space	
Davide Bilò (University of L'Áquila), Shiri Chechik (Tel Aviv	
University), Keerti Choudhary (Dep. of CS and Engineering, Indian	
Institute of Technology Delhi), Sarel Cohen (School of Computer	
Science, The Academic College of Tel Aviv-Yaffo), Tóbias Friedrich	
(University of Potsdam), and Martin Schirneck (University of Vienna)	

Sparse Graph Counting and Kelley-Meka Bounds for Binary Systems
Towards Instance-Optimal Euclidean Spanners1579Hung Le (University of Massachusetts Amherst, USA), Shay Solomon (Tel Aviv University, Israel), Cuong Than (University of Massachusetts Amherst, USA), Csaba Tóth (California State University Northridge, USA), and Tianyi Zhang (Tel Aviv University, Israel)
Sensitivity, Proximity and FPT Algorithms for Exact Matroid Problems
Computational Hardness of Detecting Graph Lifts and Certifying Lift-Monotone Properties of Random Regular Graphs
New Structures and Algorithms for Length-Constrained Expander Decompositions

Session 7C

Spectral Guarantees for Adversarial Streaming PCA	
Eric Price (University of Texas at Austin, USA) and Zhiyang Xun	
(University of Texas at Austin, USA)	

Session 8A

A Stronger Bound for Linear 3-LCC
Exponential Lower Bounds for Smooth 3-LCCs and Sharp Bounds for Designs 1802 Pravesh K Kothari (Princeton University and the IAS, USA) and Peter Manohar (Carnegie Mellon University, USA)
Random Gabidulin Codes Achieve List Decoding Capacity in the Rank Metric
Near-Tight Bounds for 3-Query Locally Correctable Binary Linear Codes via Rainbow Cycles 1874 Omar Alrabiah (University of California, Berkeley, USA) and Venkatesan Guruswami (University of California, Berkeley, USA)
An Improved Line-Point Low-Degree Test
Fast Decision Tree Learning Solves Hard Coding-Theoretic Problems 1893 Caleb Koch (Stanford University, United States), Carmen Strassle (Stanford University, United States), and Li-Yang Tan (Stanford University, United States) and Li-Yang Tan (Stanford

Session 8B

Gaussian Approximation of Convex Sets by Intersections of Halfspaces Anindya De (University of Pennsylvania, USA), Shivam Nadimpalli (Department of Mathematics, Massachusetts Institute of Technology, USA), and Rocco Servedio (Columbia University, USA)	1911
Agnostically Learning Multi-Index Models with Queries Ilias Diakonikolas (UW Madison, USA), Daniel M. Kane (UCSD, USA), Vasilis Kontonis (UT Austin, USA), Christos Tzamos (UW Madison & University of Athens, Greece), and Nikos Zarifis (UW-Madison, USA)	1931
Exploration is Harder than Prediction: Cryptographically Separating Reinforcement Learning from Supervised Learning	1953
Revisiting Agnostic PAC Learning Steve Hanneke (Purdue University, USA), Kasper Green Larsen (Aarhus University, Denmark), and Nikita Zhivotovskiy (UC Berkeley, USA)	1968

Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem... 1983 Simone Fioravanti (Department of Computer Science, Gran Sasso Science Institute (GSSI), Italy), Steve Hanneke (Purdue University, USA), Shay Moran (Departments of Mathematics, Computer Science & Data and Decision Sciences, Technion Google Research, Israel), Hilla Schefler (Department of Mathematics, Technion, Israel), and Iska Tsubari (Department of Mathematics, Technion, Israel)

Session 8C

Almost-Linear Time Algorithms for Decremental Graphs: Min-Cost Flow and More via Duality 2 Jan van den Brand (Georgia Tech, USA), Li Chen (Carnegie Mellon University, USA), Rasmus Kyng (ETH Zurich, Switzerland), Yang P. Liu (Institute for Advanced Study, USA), Simon Meierhans (ETH Zurich, Switzerland), Maximilian Probst Gutenberg (ETH Zurich, Switzerland), and Sushant Sachdeva (University of Toronto, Canada)	:010
Dynamic Deterministic Constant-Approximate Distance Oracles with n [{] ε} Worst-Case Update Time	:033
Lempel–Ziv (LZ77) Factorization in Sublinear Time	.045
Maximum Flow by Augmenting Paths in n ^{{2+0(1)} } Time	.056
Near-Optimal (1 + ε)-Approximate Fully-Dynamic All-Pairs Shortest Paths in Planar Graphs 2 Arnold Filtser (Bar-Ilan University, Israel), Gramoz Goranci (University of Vienna, Austria), Neel Patel (University of Southern California, USA), and Maximilian Probst Gutenberg (ETH Zurich, Switzerland)	.078

Session 9: Best Papers

Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps	2099
Bernhard Haeupler (ETH Zurich, Switzerland; University of Sofia,	
Bulgaria), Richard Hladík (ETH Zurich, Switzerland; University of	
Sofia, Bulgaria), Václav Rozhoň (University of Sofia, Bulgaria),	
Robert E. Tarjan (Princeton University, United States), and Jakub	
Tětek (University of Sofia, Bulgaria)	

Session 10A

Verifying Groups in Linear Time
Near-Optimal Deterministic Network Decomposition and Ruling Set, and Improved MIS 214 Mohsen Ghaffari (Massachusetts Institute of Technology) and Christoph Grunau (ETH Zurich)
Power Series Composition in Near-Linear Time
Faster (\Delta + 1)-Edge Coloring: Breaking the m \sqrt{n} Time Barrier
An Improved Pseudopolynomial Time Algorithm for Subset Sum
Naively Sorting Evolving Data is Optimal and Robust
Tight Bounds for Sorting Under Partial Information 224 Ivor van der Hoog (Technical University of Denmark, Denmark) and Daniel Rutschmann (Technical University of Denmark, Denmark)

Session 10B

Nearly Optimal List Labeling
Stochastic Online Correlated Selection
Directed Isoperimetry and Monotonicity Testing: A Dynamical Approach
Efficient and Near-Optimal Noise Generation for Streaming Differential Privacy

Session 10C

The ESPRIT Algorithm Under High Noise: Optimal Error Scaling and Noisy Super-Resolution 2344 Zhiyan Ding (UC Berkeley), Ethan Epperly (Caltech), Lin Lin (UC Berkeley and Lawrence Berkeley National Laboratory), and Ruizhe Zhang (Simons Institute)
Constant-Depth Arithmetic Circuits for Linear Algebra Problems
Gradient Descent for Unbounded Convex Functions on Hadamard Manifolds and its Applications to Scaling Problems
On the Complexity of Avoiding Heavy Elements
Gradient Descent is Pareto-Optimal in the Oracle Complexity and Memory Tradeoff for Feasibility Problems

Author Index