2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE 2024)

Raleigh, North Carolina, USA 3-4 October 2024

IEEE Catalog Number: CFP24MCD-POD **ISBN:**

979-8-3503-7803-0

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24MCD-POD
ISBN (Print-On-Demand):	979-8-3503-7803-0
ISBN (Online):	979-8-3503-7802-3
ISSN:	1936-9492

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE) **MEMOCODE**

Table of Contents

Welcome Message from the Chairs viii
Memocode 1: Formal Verification and Monitoring
Fast Robust Monitoring for Signal Temporal Logic with Value Freezing Operators (STL*)
Modelling and proving pipeline monotonicity in Coq
Safety and Progress Proofs of a Reactive Autonomous Racing Algorithm

Memocode 2: Learning-based Systems

Model-free PAC Time-Optimal Control Synthesis with Reinforcement Learning	4
Exploring Compositional Neural Networks for Real-Time Systems	6
Sobhan Chatterjee (University of Auckland, New Zealand), Nathan Allen	
(University of Auckland, New Zealand), Nitish Patel (University of	
Auckland, New Zealand), and Partha Roop (University of Auckland, New	
Zealand)	

MaLT: Machine-Learning-Guided Test Case Design and Fault Localization of Complex Software	
Systems	58
Yi Ji (DOE & Reliability, JMP Statistical Discovery LLC), Simon Mak	
(Department of Statistical Science, Duke University), Ryan Lekivetz	
(DOE & Reliability, JMP Statistical Discovery LLC), and Joseph Morgan	
(DOE & Reliability, JMP Statistical Discovery LLC)	

Memocode 3: Invited Session

Logical Synchrony Plus Functional Processes Entail Observable Determinacy	63
 Self-Powering Dataflow Networks – Concepts and Implementation	69
Neuro-symbolic Generative AI Assistant for System Design	75

Memocode 4: Hardware/CPS Verification

Formal Fault Injection in Digital Blocks with Mined Assertions
Higher-order Hardware: Implementation and Evaluation of The Cephalopode Graph Reduction Processor 87 Jeremy Pope (Chalmers University of Technology, Sweden), Carl-Johan 87 Seger (Chalmers University of Technology, Sweden), and Henrik Valter 87 (Chalmers University of Technology, Sweden), and Henrik Valter 87
Physics-Aware Mixed-Criticality Systems Design via End-to-End Verification of CPS
Configuring Safe Spiking Neural Controllers for Cyber-Physical Systems through Formal Verification 103 Arkaprava Gupta (Ericsson India), Sumana Ghosh (Indian Statistical Institute), Ansuman Banerjee (Indian Statistical Institute), and Swarup Kumar Mohalik (Ericsson India)

Memocode 5: WiP - Distributed systems, Sensor fusion, Statecharts

 Safety Assurance for Autonomous Systems with Multiple Sensor Modalities	108
Efficient Coordination for Distributed Discrete-Event Systems	14
Pragmatic Action Charts	119
Perception-based Runtime Monitoring and Verification for Human-Robot Construction Systems 1 Apala Pramanik (University of Nebraska Lincoln, USA), Sung Woo Choi (University of Nebraska Lincoln, USA), Yuntao Li (University of Nebraska Lincoln, USA), Luan Viet Nguyen (University of Dayton, USA), Kyungki Kim (University of Nebraska Lincoln, USA), and Hoang-Dung Tran (University of Nebraska Lincoln, USA)	24

Author Index	 	 	 135