2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops 2024)

Kobe, Japan 24-27 September 2024

IEEE Catalog Number: CFP2487K-POD **ISBN:**

979-8-3503-8346-1

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP2487K-POD
ISBN (Print-On-Demand):	979-8-3503-8346-1
ISBN (Online):	979-8-3503-8345-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops) CLUSTERW 2024

Table of Contents

Welcome Message from the IEEE CLUSTER 2024 General Co-Chairs	xi
Welcome Message from the IEEE CLUSTER 2024 Workshop Chair	. xii
Welcome Message from Sustainable HPC SOP Workshop	. xiii
Welcome Message from REX-IO Workshop	. xiv
Welcome Message from LLMxHPC Workshop	xv
Welcome Message from the IEEE CLUSTER 2024 Posters Chair	. xvi
CLUSTER 2024 Committees	xvii

Sustainable HPC SOP 2024 Workshop Papers

PowerSched - managing power consumption in overprovisioned systems
 "How-to" Guide for Transitioning from Air to Liquid-cooled High Performance Computing Systems
Optimizing Idle Power of HPC Systems: Practical Insights and Methods
 Calculating User-Centric Carbon Footprints for HPC

 Evolving Large Scale HPC Monitoring & Analysis to Track Modern Dynamic Environments
Microgrid Integration with High Performance Computing Systems for Microreactor Operation 44 Matthew Anderson (Idaho National Laboratory) and Matthew Sgambati (Idaho National Laboratory)
Power-Efficiency Variation on A64FX Supercomputers and its Application to System Operation55 Tomoya Kusaba (The University of Electro-Communications), Awaki Yusuke (The University of Electro-Communications), Kohei Yoshida (The University of Electro-Communications), Shinobu Miwa (The University of Electro-Communications), Hayato Yamaki (The University of Electro-Communications), Tonoshiro Hanawa (The University of Tokyo), and Hiroki Honda (The University of Electro-Communications)
Towards Improving Resource Allocation for Multi-Tenant HPC Systems: An Exploratory HPC Cluster Utilization Case Study
 16 Years of SPEC Power: An Analysis of x86 Energy Efficiency Trends
Advanced Visualization of Power, Temperature, and Energy Metrics in HPE Cray EX Systems 81

Lavanya L (Hewlett Packard Enterprise, India) and Stefan Ceballos (Hewlett Packard Enterprise, USA)

REX-IO 2024 Workshop Papers

Enabling High-Throughput Parallel I/O in Particle-in-Cell Monte Carlo Simulations with	
openPMD and Darshan 1/O Monitoring	
Jeremy Johnathan Williams (KTH Royal Institute of Technology, Sweden),	
Daniel Medeiros (KTH Royal Institute of Technology, Sweden), Stefan	
Costea (LeCAD, University of Ljubljana, Slovenia), David Tskhakaya	
(Institute of Plasma Physics of the CAS, Czech Republic), Franz	
Poeschel (Helmholtz-Zentrum Dresden-Rossendorf, Germany), René Widera	
(Helmholtz-Zentrum Dresden-Rossendorf, Germany), Axel Huebl (Lawrence	
Berkeley National Laboratory, USA), Scott Klasky (Öak Ridge National	
Laborałory, USA), Norbert Podhorszki (Oak Ridge National Laboratory,	
USA), Leon Kos (LeCAD, University of Ljubljana, Slovenia), Ales	
Podolnik (Institute of Plasma Physics of the CAS, Czech Republic),	
Jakub Hromadka (Institute of Plasma Physics of the CAS, Czech	
Republic), Tapish Narwal (Helmholtz-Zentrum Dresden-Rossendorf,	
Germany), Klaus Steiniger (Helmholtz-Zentrum Dresden-Rossendorf,	
Germany), Michael Bussmann (Helmholtz-Zentrum Dresden-Rossendorf,	
Germany), Erwin Laure (Max Planck Computing and Data Facility,	
Germany), and Stefano Markidis (KTH Royal Institute of Technology,	
Sweden	

Understanding Highly Configurable Storage for Diverse Workloads Olga Kogiou (Florida State University), Hariharan Devarajan (Lawrence Livermore National Laboratory), Chen Wang (Lawrence Livermore National Laboratory), Weikuan Yu (Florida State University), and Kathryn Mohror (Lawrence Livermore National Laboratory)	96
 Object-Centric Data Management in HPC Workflows - A Case Study Chen Wang (Lawrence Livermore National Laboratory), Houjun Tang (Lawrence Berkeley National Laboratory), Jean Luca Bez (Lawrence Berkeley National Laboratory), and Suren Byna (The Ohio State University) 	104
Studying the Effects of Asynchronous I/O on HPC I/O Patterns Arnav Gupta (BITS Pilani, K. K. Birla Goa Campus, India), Druva Dhakshinamoorthy (BITS Pilani, K. K. Birla Goa Campus, India), and Arnab K. Paul (BITS Pilani, K. K. Birla Goa Campus, India)	109
Challenges in Understanding Metadata Performance: A Case of Metadata Analysis Using Score-P Boris Kosmynin (RWTH Aachen University) and Radita Liem (RWTH Aachen University, IT Center)	113

LLMxHPC 2024 Workshop Papers

RAPID: A Rapid Automatic Parallelizer for Immense Deep Neural Networks Chong Li (Huawei Technologies France S.A.S.U), Thibaut Tachon (Huawei Technologies France S.A.S.U), and Haoran Wang (Huawei Technologies Co., Ltd.)	118
Automatic Parallelization with CodeT5+: A Model for Generating OpenMP Directives Soratouch Pornmaneerattanatri (Division of Information Science, Nara Institute of Science and Technology), Keichi Takahashi (Cyberscience Center, Tohoku University), Yutaro Kashiwa (Division of Information Science, Nara Institute of Science and Technology), Kohei Ichikawa (Division of Information Science, Nara Institute of Science and Technology), and Hajimu Iida (Division of Information Science, Nara Institute of Science and Technology)	127
LASSI: An LLM-based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes	136
Matthew Dearing (University of Illinois Chicago, USA), Yiheng Tao (University of Illinois Chicago, USA), Xingfu Wu (Argonne National Laboratory, USA), Zhiling Lan (University of Illinois Chicago, USA), and Valerie Taylor (Argonne National Laboratory, USA)	

Posters

An optimization pass for training speed-up and strategy search in 3D parallelism Ryubu Hosoki (Tokyo Institute of Technology, Japan), Kento Sato (RIKEN Center for Computational Science, Japan), Toshio Endo (Tokyo Institute of Technology, Japan), Julien Bigot (CEA, France), and Edouard Audit (CEA, France)	146
 Beyond Training: A Zero-Shot Framework to Neural Architecture and Accelerator Co-Exploration Wei Fu (University of Science and Technology of China), Wenqi Lou (University of Science and Technology of China), Lei Gong (University of Science and Technology of China), Chao Wang (University of Science and Technology of China), and Xuehai Zhou (University of Science and Technology of China) 	148
 Implementing Fast Modal Filtering of SCALE-DG Xuanzhengbo Ren (Nagoya University, Graduate School of Informatics, Japan), Yuta Kawai (RIKEN Center for Computational Science, Japan), Hirofumi Tomita (RIKEN Center for Computational Science, Japan), Seiya Nishizawa (RIKEN Center for Computational Science, Japan), Takahiro Katagiri (Nagoya University, Information Technology Center, Japan), Masatoshi Kawai (Nagoya University, Information Technology Center, Japan), Tetsuya Hoshino (Nagoya University, Information Technology Center, Japan), and Toru Nagai (Nagoya University, Information Technology Center, Japan) 	150
Enhancing Large Scale Brain Simulation with Optimized Parallel Algorithms on Fugaku Supercomputer Zhe Sun (Juntendo University), Mitsuhisa Sato (Juntendo University), Shigeki Aoki (Juntendo University), Ryutaro Himeno (Juntendo University), and Tianxiang Lyu (Juntendo University)	152
Innovative Computational Science by Integration of Simulation/Data/Learning on Heterogeneous Supercomputers Kengo Nakajima (The University of Tokyo), Takashi Furumura (The University of Tokyo), France Boillod-Cerneux (CEA), Edoardo Di Napoli (Forschungszentrum Jülich GmbH), Estela Suarez (Forschungszentrum Jülich GmbH), Takashi Arakawa (CliMTech/University of Tokyo), Shinji Sumimoto (The University of Tokyo), and Hisashi Yashiro (NIES)	154
Neko: A Modern, Portable, and Scalable Framework for Extreme-Scale Computational Fluid Dynamics	156
vBoost: A Lock-free Distributed Index based on vEB Tree for Disaggregated Memory Yuting Li (University of Science and Technology of China, China), Yun Xu (University of Science and Technology of China, China), Pengcheng Wang (Huawei, China), Yonghui Xu (Huawei, China), and Weiguang Wang (Huawei, China)	158

Communication Optimization for Distributed GCN Training on ABCI Supercomputer
Optimizing STAR Aligner for High Throughput Computing in the Cloud
A Lossless-Ethernet-based interconnect for FPGA clusters toward FTQC
Post-Route Power Estimation: a Case Study of RIKEN-CGRA
Scalable Connection of Qubits to Quantum Error Correction Systems using Ethernet
 Workload Analytics of LLMs Training on ABCI
Evaluating MPI Performance on SGX and Gramine
Investigating Nvidia GPU Architecture Trends via Microbenchmarks
Leveraging Portals4 Microbenchmarks to Enhance GASPI Performance on BXI Networks
 Evaluation of Vectorization Methods on Arm SVE Using the Exo Language

Introduction of WHEEL: An analysis workflow tool for industrial users and its use case on supercomputer Fugaku
Heterogeneous Application Coupling Library for Center-Wide QC-HPC Hybrid Computing 182 Shinji Sumimoto (The University of Tokyo), Kazuya Yamazaki (The University of Tokyo), Yao Hu (The University of Tokyo), and Kengo Nakajima (The University of Tokyo/RIKEN CCS)
 Preliminary Performance Evaluation of Grace-Hopper GH200
Performance Insights into Supporting Kokkos Views in the Kokkos Comm MPI Library
Toward providing root privilege to flagship HPC users with thin-hypervisor
Cheetah: An Efficient Deterministic Concurrency Control Scheme with Non-visible Write Elimination and Re-designed Garbage Collection
Using SYCLomatic to migrate CUDA code to oneAPI adapting NVIDIA GPU

Preliminary Evaluation of Kyokko for Inter-FPGA Communication Framework CIRCUS
Asynchronous I/O Optimization for X-ray Imaging via GPUDirect Storage
 FDPVirt: Flexible Data Placement SSD Emulator
 Enhanced Simulation and Analysis of Air Pollutants Using Multi-Platform HPC and In-Situ Visualization
On the Building of a Common In-Situ Visualization Environment for Arm A64FX Supercomputers 202 Jorji Nonaka (RIKEN R-CCS, Japan), Daichi Obinata (Fujitsu Limited, Japan), Hiroyuki Ito (Ryoyu Systems, Japan), Shunji Uno (JAXA, Japan), Takanori Haga (JAXA, Japan), Atsushi Toyoda (Intelligent Light, Japan), Naohisa Sakamoto (Kobe University, Japan), Masahiro Nakao (RIKEN R-CCS, Japan), Hitoshi Murai (RIKEN R-CCS, Japan), Keiji Yamamoto (RIKEN R-CCS, Japan), Masaaki Terai (RIKEN R-CCS, Japan), Tomohiro Kawanabe (RIKEN R-CCS, Japan), Toshihiko Kai (RIKEN R-CCS, Japan), Manabu Motokawa (JAXA, Japan), Atsushi Fujino (JAXA, Japan), Naoyuki Fujita (JAXA, Japan), Seiji Tsutsumi (JAXA, Japan), and Fumiyoshi Shoji (RIKEN R-CCS, Japan)
Refining Compaction Offloading I/O Stack for LSM-based Key-Value Stores with SPDK 204 Honghyeon Yoo (Sogang University), Hongsu Byun (Sogang University), and Sungyong Park (Sogang University)