2024 International Symposium on **Secure and Private Execution Environment Design (SEED 2024)**

Orlando, Florida, USA 16-17 May 2024

IEEE Catalog Number: CFP24Z58-POD ISBN: 979-8-3315-0566-0

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24Z58-POD

 ISBN (Print-On-Demand):
 979-8-3315-0566-0

 ISBN (Online):
 979-8-3315-0565-3

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 International Symposium on Secure and Private Execution Environment Design (SEED) SEED 2024

Table of Contents

Message from the General Chairs Message from the Program Chairs Organizing Committee Program Committee Steering Committee	ix xi
Session 1: Side Channel Attacks	
Extending FPGA Information Leaks with Trojan Phantom Circuits Anthony Etim (Yale University, USA), Shanquan Tian (Yale University, USA), and Jakub Szefer (Yale University, USA)	1
Tail Victims in Termination Timing Channel Defenses Beyond Cryptog Shijia Wei (The University of Texas at Austin, United States), Austin Harris (The University of Texas at Austin, United States), Yongye Zhu (University of California, Berkeley, United States), Prakash Ramrakhyani (ARM, United States), Calvin Lin (The University of Texas at Austin, United States), and Mohit Tiwari (The University of Texas at Austin, United States)	•
Channelizer: Explainable ML Inference for Validating Side-Channel Re Donayam Benti (University of Michigan, USA) and Todd Austin (University of Michigan, USA)	sistant Systems
Beyond the Bridge: Contention-Based Covert and Side Channel Attacks Interconnect	s on Multi-GPU 35

Session 2: Hardware-Based Defenses

NTERFACE: An Indirect, Partitioned, Random, Fully-Associative Cache to Avoid Shared
Last-Level Cache Attacks
MAYA: Hardware Enhanced Customizable Defenses at the User-Kernel Interface
A First Exploration of Fine-Grain Coherence for Integrity Metadata
Extending and Defending Attacks on Reset Operations in Quantum Computers
Session 3: Secure Execution Environments
SSE: Security Service Engines to Scale Enclave Parallelism for System Interactive Applications
Trusted Execution Environments in Embedded and IoT Systems: A CactiLab Perspective
SoK: A Comparison Study of Arm TrustZone and CCA
Session 4: Crypto Hardware and Accelerations
CiFHER: A Chiplet-Based FHE Accelerator with a Resizable Structure
LOaPP: Improving the Performance of Persistent Memory Objects via Low-Overhead at-Rest PMO Protection

SoK: Opportunities for Accelerating Multi-Party Computation via Trusted Hardware
Tong Liu (Southern University of Science and Technology, China), Zhen
Huang (Shanghai Jiao Tong University, China), Jiaao Li (Tsinghua
University, China), Jianyu Niu (Southern University of Science and
Technology, China), Guoxing Chen (Shanghai Jiao Tong University,
China), and Yinqian Zhang (Southern University of Science and
Technology, China)
Aggregate Encryption Individual Decryption for FPGA Bitstream Protection on Cloud
Author Index