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Lately low-cost carbon-based supports like activated carbon and carbon nanotubes are gaining interest 
thanks to their chemical stability and surface chemical reactivity (Cam et al., 2019) (Feng et al., 
2016)(Wang et al., 2014)(Wang et al., 2019)(Antoniak-Jurak et al., 2015)(Antoniak-Jurak et al., 
2016). Carbon materials such as activated carbon or biochar are indeed characterized by a high ability 
of Ni recovering by combustion after the use of char-supported catalysts that cannot be made with 
conventional support materials (Mei et al., 2023)(Swalus et al., 2012)(Yue et al., 2021)(Luo et al., 
2021). Biochar is an aromatic carbon-rich solid generated via thermochemical processes from biomass 
under oxygen-free or oxygen-limited conditions (Avagyan, 2020)(Manyà, 2012), which compared to 
other carbon supports is cheap and versatile (Wang et al., 2014). It can be produced from a wide range 
of waste materials, which encompass wood or crop residues, as well as livestock and food processing 
waste (Avagyan, 2020). The physicochemical properties of biochar are significantly influenced by the 
temperature, heating rate and holding time at which it is produced (Dudek et al., 2019). Such a kind of 
scaffold offers the chance to lower the price of catalysts and at the same time enhance circular 
economy by pyrolyzing a waste or a by-product to obtain char instead of buying raw materials such as 
Al2O3.  
 
Physical activation involves the use of a gaseous activating agent, usually steam or CO2 which are 
delivered to the solid material once the pyrolysis process has ended. Generally activation takes place 
at a temperature between 700°C and 1000°C. During this process the carbon atoms with a higher 
reactivity are removed in the form of CO, leading to an increase in the porosity and surface area of the 
solid material. 
 
The drawback of biochar and activated carbon production is usually related to a high energy 
consumption and the elevated microporosity of their structure can be a limitation for the diffusion of 
reactants and products, which occurs more likely in the presence of mesopores that are usually formed 
during the activation processes of carbon as consequence of collapses in the porous structure (Di Stasi 
et al., 2021)(Kumar and Sinha, 2020). In addition, reactive matrixes such as biochar are often 
susceptible to mass loss of the support and modifications of catalyst behaviour caused by the 
gasification reaction occurring on char, which is favoured by the heat released during methanation and 
leads to the formation of structural defects on the carrier and to the destruction of the existing Ni-C 
bondages (Wang et al., 2014)(Mei et al., 2023). This phenomenon considerably reduces the service of 
life of the catalyst and is the main parameter that needs to be refined by further studies. 
 
This work tackles the assessment of a biochar-nickel based catalyst for the methanation reaction. A 
complete study is presented, including the production of biochar support, the preparation and 
characterization of the samples, the testing in a pilot-scale reactor and a kinetic model adjusted with 
the experimental data. 
 

2 METHODOLOGY
 
2.1 Biochar production process  
The catalyst support in the present work consists of activated biochar particles of 1 mm diameter. The 
starting biomass employed for biochar production is a largely available olive milling waste, namely olive 
kernel, which is pyrolyzed and physically activated using steam at 750 °C. The details of the preparation 
of the material are presented below. 
 
2.1.1.Biochar production: The olive kernel biochar was obtained through batch pyrolysis conducted at 
Seslab (Sustainable Energy systems Laboratory) - Department of Engineering, University of Perugia. 
The pyrolysis batch reactor is a stainless steel cylindrical bin with an internal diameter of 15 cm and a 
height of 30 cm, heated with an electric heater composed of two semi-cylindrical ceramic shells 
(Figure 1).
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2.2 Biochar-based catalyst preparation  
For the synthesis of the supported Ni catalyst, 33 g of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) were 
dissolved in 72 mL of deionized water. Subsequently, 60 g of biochar were introduced into the solution, 
and the resulting mixture underwent agitation for 1 hour to facilitate homogenous distribution. Following 
dissolution, the solvent was removed through vacuum-assisted evaporation utilizing a rotary evaporator 
set at 80°C during 4 hours.  
 
The resultant solid product underwent desiccation at 105°C for 12 hours to ensure complete elimination 
of residual moisture. The dried material was calcined at 450°C, employing a heating rate of 1°C per 
minute over a period of 30 minutes.  
 
2.3 Experimental facility and planning  
The methanation experiments were performed in a fixed-bed reactor integrated in the facility shown in 
Figure 2. It includes a ceramic preheater to increase the temperature of the H2/CO2 mixture fed from 
bottles up to 225-245 °C. Two mass flow controllers allow regulating the Gas Hourly Space Velocity 
(GHSV, Eq.(1)) and the H2/CO2 molar ratio. The gas composition is measured at the inlet and the outlet 
of the reactor with a gas analyser for H2, CO2, CO and CH4. After the methanation stage, the water 
produced is condensed before the measurement of the final gas composition with the gas analyser. The 
outlet gas mixture is finally burnt. For cleaning and heating purposes, the facility also includes a N2 entry 
before the electrical heater. 
 

 (1) 

 
In the fixed-bed reactor with a double-pipe design of parallel flows (Figure 3), reactants flow downward 
inside the inner tube (620 mm length and 30 mm inner diameter) undergoing the heterogeneous 
methanation reaction getting in contact with the solid catalyst. The heat released in this exothermic 
reaction may be removed through the injection of a parallel cooling air flow in the outer tube (outer 
diameter of 100 mm) to control the temperature of the reactor, avoiding the formation of hot spots. The 
heating up of the reactor during the start-up of the facility is achieved with electrical resistances of 900 
W, installed around the double-pipe reactor.  
 
A total of nine K-type thermocouples (T1-T9) are uniformly distributed along the reactor length (50 mm 
of separation). These are in contact with the wall of the inner tube to indirectly measure the temperature 
of the fixed bed. In addition, a multipoint thermocouple probe measures the temperature in five points of 
the fixed-bed axis (L5-L1), being located at the same level of thermocouples T2-T6 for comparison 
purposes. 
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Each experiment includes three stages: pre-heating, activation and methanation. In the pre-heating stage, 
N2 previously heated up in the ceramic furnace is passed through the fixed bed reactor. Additionally, the 
electrical resistances preheat the reactor from the outside. When the average temperature of the reactor 
reaches 250 ºC, the catalyst activation is performed during 60 min. During the activation stage, a mass 
flow of 20 g/h of pre-heated pure H2 is continuously fed to the reactor. After pre-heating and activation 
stages, the electrical resistances are turned off and different stationary states are searched. Methanation 
tests start with the injection of reactants at proper conditions to reach constant carbon conversion and 
temperatures, paying special attention to the region of the reactor where methanation reaction is more 
intense. The timeframe established to achieve each stationary state is 5-6 min. Carbon conversion (Eq. 
(2)) and selectivity to methane (Eq. (3)) are easily calculated through the inlet flows and the information 
provided by the gas analyser before and after methanation stage. Specifically,  is the mole flow of 
component  at the inlet, and  at the outlet.  
 
Table 1 summarizes the ranges in which the operating parameters vary during the experiments 
 

 (2) 

 (3) 

 
 

Table 1:  Parameters varied in the experimental tests 
 

Parameter Minimum Maximum 
Temperature (ºC) 200 500 
H2/CO2 3.5 5.5 
GHSV (h-1) 2000 80000 
Catalyst mass (g) 5 40 

 
2.4 Kinetic model development  
A kinetic model was developed for the Ni-biochar catalyst, considering the two main reactions (eq. (4) 
and. (5)):  
 

 (4) 
 (5) 

  
The reaction rates follow Eq.(6) and (7), respectively, according to the model proposed by Xu and 
Froment (Xu and Froment, 1989). 

 (6) 

 (7) 

 
where  are the partial pressures of the components,  is the rate coefficient (Eq.(8), Arrhenius 
equation),  is the equilibrium constant (Eq.(9)-(10)), and  are the adsorption constants of each 
component (Eq.(11)). 
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4. CONCLUSIONS 
 
This paper has presented a preliminary study about the viability of using biochar as support for 
methanation catalysts. The samples of Ni-biochar catalyst were produced through batch pyrolysis of olive 
kernel and physically activated using steam at 750 °C.  The Ni/biochar catalyst, prepared through wet 
impregnation, displayed a promising high surface area suitable for catalysis. However, the catalyst's 
incomplete reduction to its active metallic phase, evidenced by the persistence of residual NiO species 
even at a reduction temperature of 400 ºC after in-situ reduction in the methanation reactor and operation, 
highlights a notable aspect for further consideration and optimization in its application. 
 
High conversion and selectivity has been obtained for the methanation process of CO2 and H2 in the 
fixed-beds containing 40 g of Ni-biochar catalyst. Nevertheless, the figures reached are below than that 
obtained for commercial catalysts with Al2O3 support. Notwithstanding, the results are promising and 
may serve as the starting point to improve the preparation process and to select the proper operation 
conditions with the aim of enhancing the performance of the biochar-based catalysts.  
 
Finally, a kinetic model implemented in Aspen Plus has been adjusted and validated to potentially be 
used in integrated application models based in power to gas concepts. The kinetic model developed 
provides a good agreement with experimental test, valid for 1 bar, 200 – 500 ºC, H2:CO2 ratio of 3.5 – 
5.5, and GHSV 2000 - 10000 h 1. Further research will be done to improve the prediction at low 
conversion rates.  
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