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ABSTRACT

Decentralized energy systems, pivotal in transitioning towards a sustainable energy future, require

intelligent dispatch strategies for the operation of flexible components in order to integrate inflexible

renewable energy sources economically. Conventional rule-based dispatch strategies often fail to optimally

exploit the capabilities of flexible system components, while optimal dispatch models, based on the

assumption of perfect forecasting, tend to overestimate their performance. This paper investigates the

effectiveness of artificial neural networks (ANNs) as a dynamic dispatch strategy for distributed energy

systems (DES), evaluating their performance in operational scenarios with a predefined system layout and

during the system design optimization phase.

Our analysis shows that ANN-based dispatch strategies outperform conventional rule-based methods by

up to 8.19% in operational efficiency according to training datasets and by 3.19% in validation datasets.

However, they fall short of optimal dispatch strategies by 4.52% and 1.59% in training and validation

datasets, respectively. When applied to system design optimization, ANN-based strategies outperform

rule-based approaches by 5.80-9.19% but underperform against optimal dispatch designs by 10.63%.

Crucially, the study highlights that dispatch strategies not only influence overall system costs but also

significantly impact the sizing and configuration of individual system components. This underlines the

importance of incorporating intelligent dispatch strategies like ANNs early in the design process to ensure

a balanced and cost-effective system architecture.

1 INTRODUCTION

The subject of the present paper is to address the design and dispatch of Decentralized Energy System (DES)

using Artificial Neural Networks (ANN). The global energy supply paradigm shift toward a more

sustainable and renewable depends on DES. These systems are essential for increasing efficiency, lowering

dependency on traditional energy infrastructures, and locally integrating renewable energy sources.

Therefore, DES need dispatchable energy converters, storage units, or consumers to incorporate inflexible

renewable energies as locally and effectively as possible (Reynolds et al., 2019). The full potential of

these sophisticated and expensive systems is often not realized with conventional dispatch strategies, such

as predetermined priority order lists, and is often overestimated by optimal dispatch. This highlights

the necessity of more innovative approaches, such as ANN or model-predictive control, for the best

possible system operation. Because system design and operation are highly interdependent, these novel

dispatch strategies must be considered from the outset of the design process to account for dispatchable

and renewable components properly (Perera et al., 2020).

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND

ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE – 4 JULY, 2024, RHODES, GREECE

23192307 https://doi.org/10.52202/077185-0198



Paper ID: 388, Page 2

In the past, rule-based dispatch strategies have been widely used in DES, especially those that rely on

conventional power supply and where flexibility is less important. The range of rule-based dispatch systems

includes basic priority order lists (e.g. Wilke, 2020), more complicated rule sets like load-following

strategies (e.g. Urbanucci and Testi, 2018), and fuzzy logic approaches (e.g. Perera et al., 2019).

Rule-based dispatch strategies have the benefit of being able to be employed in real-time operations

and being frequently simple to build. However, a unique set of rules based on expert knowledge must

be developed for every energy system individually. In the design phase, when the system layout and

component design have to be chosen, this can be challenging and may result in sub-optimal operation and

system designs.

Conversely, mathematical dispatch optimization offer theoretical optimal solutions but are generally

constrained to offline applications due to their reliance on perfect forecasts. Recent studies have proposed

various optimization models, from linear programming (e.g. Murray et al., 2019) to more complex

mixed-integer nonlinear programming solutions (e.g. Schmeling et al., 2022), aimed at unifying the design

and operational aspects of DES. Because these approaches assume perfect prediction, they overestimate

the behavior of flexible components, which can lead to sub-optimal sizing. Model predictive control

offers the possibility of optimal operation and, simultaneously, the possibility of real-time application due

to the consideration of limited forecast knowledge. For example, Stadler et al. (2016) presents a two-stage,

multi-criteria optimization approach for dimensioning thermal and electrical energy systems, considering

optimal operation based on a model predictive structure.

ANNs offer the possibility of mapping mathematical functions of any kind (Cybenko, 1989). For this

reason, they are already being used in various areas of energy system analysis, e.g., in weather and load

forecasting (e.g. Reynolds et al., 2019), fault and defect detection (e.g. Rahman Fahim et al., 2020),

surrogate modeling (e.g. Geyer and Singaravel, 2018), and in building control (e.g. Wang and Hong,

2020). However, they are used to dispatch DES directly as well. Domínguez-Barbero et al. (2020) uses

a deep Q-Network, an ANN with discrete action spaces, to dispatch a microgrid with a lithium-ion

battery and hydrogen storage. Jin et al. (2022) and Qiu et al. (2023) employed a deep deterministic

policy to dispatch renewable-based energy systems. These studies have shown that ANN-based dispatch

strategies are competitive with alternative approaches. Perera et al. (2019) explored the possibility of

using ANN-based dispatch in the system design process. The ANN-based design improved goal values

by 60–80% compared to a presented fuzzy logic approach.

The exploration of ANNs for the dispatch of DES marks a significant leap forward, showcasing the

potential of this technology in enhancing system efficiency and adaptability. However, the majority of

existing research focuses on the operational aspect, leaving a gap in integrating ANN-based dispatch

strategies during the system design optimization. The present study investigates the influence of dispatch

strategy on the operation and optimal design of DES, focusing on the dispatch with ANNs. For this

purpose, different dispatch strategy approaches, including two rule-based, an optimal dispatch and an

ANN-based approach, are first introduced and compared in a case study using an already designed system.

The different dispatch strategy approaches are then applied to the system optimization, and the influence

of the dispatch strategy on the system design is investigated.

The present paper is organized as follows: Section 2 provides an overview of the system optimization

model under consideration. Section 3 introduces the training framework for the ANN-based dispatch

strategy. Section 4 presents a comparative analysis of ANN-based strategies against conventional

approaches through a case study examining fixed and optimized system designs. Finally, section 5 offers

concluding remarks, summarizing our research’s key findings.

2 MODEL DESCRIPTION

This section provides an overview of the energy system under consideration, including the optimization

problem, the component models, and the benchmark dispatch strategies.

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND

ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE – 4 JULY, 2024, RHODES, GREECE

23202308https://doi.org/10.52202/077185-0198



Paper ID: 388, Page 3

2.1 System optimization problem
The structure of the system optimization problem is depicted in Figure 1. System optimization aims to

minimize Total Annual Cost 𝐽 (TAC) by optimizing the design xdesign of the components: A Photovoltaic

system (PV), a Li-ion Battery storage (B), a Heat Storage (HS), a Heat Pump (HP) and an Electric

Boiler (EB). A dispatch strategy is required to operate the various system components. This may include

additional optimization variables xdispatch to be determined during system optimization. Since storage units

are included in the energy system, the initial State of Energy (SOE) levels xstart must also be optimized.

Energy system

Dispatch strategy

System optimization

Figure 1: Structure of the system optimization problem considering an energy system with a photovoltaic

system 𝑃PV, a Li-ion battery 𝑃B and an electrical grid connection 𝑃EG for electrical supply,
and a heat pump �𝑄h,HP, an electric boiler �𝑄h,EB and a heat storage �𝑄h,HS for heat supply.

The detailed description of the system optimization problem is given below:

minimize
xdesign,xdispatch,xstart

𝐽 (1)

subject to 0 = −𝑃ED + 𝑃EG + 𝑃PV − 𝑃HP − 𝑃EB − 𝑃B, (2)

0 = − �𝑄h,HD + �𝑄h,HP + �𝑄h,EB − �𝑄h,HS, (3)

𝐹B,end ≥ 𝐹B,start, (4)

𝑇HS,end ≥ 𝐹HS,start, (5)

eqs. (6) - (20)

The TAC is calculated by considering the following parts: The annual capital and maintenance cost 𝐽c,m,
and the annual operating cost 𝐽o:

𝐽 = 𝐽c,m + 𝐽o (6)

The annuity method is used to calculate the annual capital and maintenance cost of the components:

𝐽c,m =
∑

𝑗∈{PV, B, HP, EB, HS}

𝐼 𝑗 · 𝑎 𝑗 · (1 + 𝑐m, 𝑗), (7)

where 𝐼 𝑗 is the total acquisition cost, 𝑐m, 𝑗 is the specific maintenance cost, and 𝑎 𝑗 is the annuity payment
factor. The annuity payment factor can be calculated using the component life span 𝑇𝑗 and the imputed
interest rate (assumed to be 3.5%). The total acquisition cost

𝐼 𝑗 = 𝑥design, 𝑗 · 𝑐acq,var, 𝑗 +

{
𝑐acq,fix, 𝑗 if 𝑥design, 𝑗 > 𝑥

min
design, 𝑗

0 else
(8)
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are split into the specific acquisition cost 𝑐acq,var, 𝑗 dependent on the sizing variable 𝑥design, 𝑗 and fixed
acquisition cost 𝑐acq,fix, 𝑗 for installing a component with the minimum size 𝑥min

design, 𝑗 . For the annual

operating costs of the system, only the income from the feed-in tariff and the costs from grid procurement

are considered:

𝐽o =
∫
𝑝energy · 𝑃EG · 𝐻 (𝑃EG)︸�����������������������︷︷�����������������������︸

Energy import cost

+ 𝑝feed−in · 𝑃EG · 𝐻 (−𝑃EG)︸���������������������������︷︷���������������������������︸
Feed-in revenue

d𝑡, (9)

where 𝑝energy is the grid purchase price, 𝑝feed−in is the feed-in tariff and 𝐻 is the Heaviside function.

According to the German market regulation, the feed-in tariff is assumed to be 5.83 ct/kWh (Federal

Government Germany, 2016), and the grid purchase price is assumed to be 48.12 ct/kWh (Bundesverband

der Energie- und Wasserwirtschaft, 2023). The electrical grid power 𝑃EG results directly from the

electrical power balance (cf. eq. 2). In addition to the electrical power balance, the optimization is also

constrained by the heat power balance (cf. eq. 3), the cyclic boundary condition for the storage units’ SOE

(cf. eqs. 4 and 5), and the subsequent system of equations for the component models and the considered

dispatch strategy. The mathematical model is implemented in the equation-based modeling language

Table 1: Component-specific economic parameters used in the case study.
Parameter Photovoltaic Battery Heat pump Electric boiler Heat storage

𝑐acq,var 1075 EUR/kW1 500EUR/kWh1 629 EUR/kW2 253EUR/kW2 850EUR/m32

𝑐acq,fix 0 EUR1 0EUR1 5661 EUR2 760 EUR2 2125 EUR2

𝑐m 0.021 0.021 0.0152 0.012 0.0132

𝑇life 30 a1 15 a1 18 a2 30 a2 17.5 a2

1: Kost (2021)

2: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg (2023)

Modelica using the open-source software framework Open Modelica (Open Source Modelica Consortium,
2022) and the optimization is performed using the particle swarm optimization algorithm from pygmo
(python parallel optimization library) (Biscani and Izzo, 2010).

2.2 System component models
The mathematical equations for the system components are introduced in the following section. The

associated component parameters for the case study can be found in Table 2.

2.2.1 Energy source and demand: The photovoltaic system is modeled as an inflexible energy source.

The normalized power 𝑢PV is calculated in advance using the method of Pfenninger and Staffell (2016)
and scaled by the rated power 𝑃rated

PV
, which serves as the design variable of the PV system:

𝑃PV = 𝑢PV · 𝑃
rated
PV . (10)

The district’s energy needs consist of electricity and heat for hot water and heating. The method of

McKenna and Thomson (2016) is used to calculate the consumption of around 15 households. In the

following analyses, Kotzur et al. (2018) method is used to calculate six independent typical periods from

the year-round profiles to reduce the calculation time. Figure 2 shows the pre-calculated typical period

profiles for the normalized photovoltaic power, the ambient temperature, and the electrical and thermal

demand. In addition to the original year-round profile, a test data set is created using the abovementioned

methods.

2.2.2 Energy converter: Both energy converters - an air-source heat pump and an electric boiler - are

modeled using a performance model to calculate the input/output behavior

�𝑄h, 𝑗 = 𝜂 𝑗 · 𝑃 𝑗 (11)
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Figure 2: The imputed time series for a) electric demand 𝑃ED, b) heat demand �𝑄h,HD, c) normalized

photovoltaic power 𝑢PV, and d) ambient temperature 𝑇amb.

and a component management system to consider the operating limits:

�𝑄h, 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�𝑄set
h, 𝑗

if𝑇amb > 𝑇
cut−off
𝑗 ∧ 0 ≤ �𝑄set

h, 𝑗
< �𝑄rated

h, 𝑗

�𝑄rated
h, 𝑗

if𝑇amb > 𝑇
cut−off
𝑗 ∧ �𝑄set

h, 𝑗
≥ �𝑄rated

h, 𝑗

0 otherwise.

(12)

The efficiency of the electric boiler 𝜂EB is assumed to be constant, and operation is only limited by the rated
power �𝑄rated

h,EB
, which serves as the design variable of the component. In contrast, a temperature-dependent

efficiency - often referred to as the coefficient of performance (COP) - is used for the air-source heat

pump. The COP is calculated using the inverse Carnot efficiency dependent on the ambient and supply

cycle temperatures (𝑇amb, 𝑇supply) and a performance factor 𝜖HP. In addition to the rated power, the cut-off
temperature 𝑇cut−off

HP
limits the heat pump’s operation. The respective dispatch strategy determines the

components’ set-point power �𝑄set
h, 𝑗
.

2.2.3 Energy storage: Both energy storage systems - battery and heat storage - are modeled according to

the same modeling principle. This concept is explained below using the example of the battery storage.

The following energy balance determines the SOE:

𝐶ratedB ·
d𝐹B
d𝑡

= −𝑘sdB · 𝐹B · 𝐶
rated
B︸���������������︷︷���������������︸

self-discharge losses

+ 𝑃B ·

{
𝜂B if 𝑃B ≥ 0

1/𝜂B if 𝑃B < 0︸������������������������︷︷������������������������︸
charging/discharging

(13)

where 𝐹B is the SOE, 𝑘
sd
B
is the self-discharge rate, and 𝜂B is the respective charging and discharging

efficiency. The self-discharge losses of the battery are determined via the constant self-discharge rate. For

heat storage, on the other hand, the self-discharge losses are calculated using the temperature losses to the

environment:
�𝑄h,loss = 𝑈loss,HS · 𝐴HS · (𝑇HS − 𝑇amb) , (14)

where 𝑈HS is the heat loss coefficient, 𝐴HS is the surface of the storage tank and 𝑇HS is the uniform
temperature in the storage tank. The rated energy capacity for the battery storage system 𝐶rated

B
and the

tank volume for the heat storage system 𝑉HS are used as design variables. The thermal capacity of the heat
storage 𝐶rated

HS
can be determined directly via the tank volume, the water’s specific heat capacity 𝑐p,w, and
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the water’s density 𝜌w. According to the operating limits for the SOE and the power, the battery power
can be calculated as follows:

𝑃B =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑃max
B

if 0 < 𝐹B < 1 ∧ 𝑃set
B
> 𝑃max

B

𝑃set
B

if 0 < 𝐹B < 1 ∧ −𝑃
max
B

≤ 𝑃set
B
≤ 𝑃max

B

−𝑃max
B

if 0 < 𝐹B < 1 ∧ 𝑃set
B
< −𝑃max

B

0 otherwise.

(15)

The power set-point 𝑃set
B
is determined by the dispatch strategy, and the maximum power 𝑃max

B
is calculated

according to the technology-specific power factor ΠB.

Table 2: Technology-specific physical and operating parameters.
Battery Heat pump Electric boiler Heat storage

𝜂B = 0.9487 𝜖HP = 0.3 𝜂EB = 1 𝜂HS = 0.96
𝑘sd
B
= 0.1%/d - - 𝑈loss,HS = 0.354W/Km2

ΠB = 1 kW/kWh 𝑇cutt−off
HP

= 268.15K - ΠB = 1 kW/kWh

2.3 Benchmark dispatch strategies
As shown in Figure 1, a dispatch strategy is used to determine the power set-point of the dispatchable

components. Therefore, in the following section two rule-based dispatch strategies and an optimization

problem to determine the optimal dispatch are presented.

2.3.1 Simple rule-based dispatch: A straightforward approach to dispatch flexible components is the

use of priority order lists. Therefore, the electrical and heating components are categorized in separate

priority order lists. Only the battery power set-point must be determined in the electrical supply system.

For reasons of efficiency, the heat-supplying components are activated in the following sequence: 1. Heat

pump, 2. electric boiler, and 3. heat storage:

𝑃setB = −𝑃ED+𝑃PV −𝑃HP −𝑃EB, (16)

�𝑄set
h,HP = �𝑄h,HD, (17)

�𝑄set
h,EB = �𝑄h,HD − �𝑄h,HP, (18)

�𝑄set
h,HS =− �𝑄h,HD + �𝑄h,HP+ �𝑄h,EB. (19)

2.3.2 Advanced rule-based dispatch: The advanced rule-based dispatch strategy employs a state-machine

framework to optimize the utilization of components, focusing on heat-driven components. The battery

power set-point is calculated using the priority order list mentioned above (cf. eq. 16).

The strategy defines a state variable 𝑍 𝑗 for each dispatchable component, determined by the temperature

limits 𝑇on𝑗 and 𝑇off𝑗 . In state 𝑍 𝑗 = 0, the component is turned off; in state 𝑍 𝑗 = 0.5, the component is
driven in part-load, and in state 𝑍 𝑗 = 1, the component is driven in full load. The power set-point is then
calculated as follows:

�𝑄set
h, 𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�𝑄max
h, 𝑗

if 𝑍 𝑗 = 1

�𝑄max
h, 𝑗

·

(
1 − 0.5 ·

𝑇HS−𝑇
on
𝑗

𝑇off
𝑗 −𝑇on

𝑗

)
if 𝑍 𝑗 = 0.5

0 if 𝑍 𝑗 = 0

∀ 𝑗 ∈ {HP, EB} (20)

The power set-point of the heat storage is calculated according to eq. (17). Within this dispatch strategy,

the temperature limits 𝑇on𝑗 and 𝑇off𝑗 are defined as additional optimization variables xdispatch and solved by
the presented system optimization problem (cf. eq. 1).
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2.3.3 Optimal dispatch: In addition to the use of rule-based dispatch strategies, the optimal power

trajectory of the components can be determined directly via the optimal dispatch problem:

minimize
𝑃B, �𝑄h,HP, �𝑄h,EB, �𝑄h,HS

𝐽o (21)

subject to 0 ≤ 𝐹B ≤ 1, (22)

𝑇minHS ≤ 𝑇HS ≤ 𝑇maxHS , (23)

𝑃minB ≤ 𝑃B ≤ 𝑃maxB , (24)

�𝑄min
h, 𝑗 ≤

�𝑄h, 𝑗 ≤ �𝑄max
h, 𝑗 ∀ 𝑗 ∈ {HP,EB,HS}, (25)

0 ≤ �𝑄h,HP ·
(
𝑇amb − 𝑇coHP

)
, (26)

eqs. (2) -(11) ∧ (13) - (14).

In this case, the power of the components is used directly as optimization variables. The operating limits

of the individual components are not taken into account via the rule-based equations (cf. eqs. 12, 15) but

are integrated directly as constraints (cf. eqs. 22 - 26). Equations (22) and (23) are used to limit the SOE

of the storage units. Equations (24) and (25) are used to consider the power limits of the components,

and eq. (26) considers the cut-off temperature of the air-source heat pump. In addition, as in the system

design optimization above, the power balances, the cyclical SOE constraints, and the component models

must also be considered.

In the other dispatch strategies, the dispatch variables are optimized directly in the system design

optimization stage. Using the optimal dispatch approach, the system is optimized in two stages. The

system design (xdesign) and the initial values (xstart) are optimized on the first level using the heuristic
algorithm presented in subsection 2.1. The optimal dispatch problem is solved in the underlying stage

using the gradient-based interior point optimization (IPOPT) algorithm (Wächter and Biegler, 2006).

3 DISPATCH STRATEGY USING ARTIFICIAL NEURAL NETWORKS

This section introduces the dispatch using ANN. First, the operating method using ANN is explained.

Then, the training method is presented.

3.1 Operating method
The ANN-based dispatch strategy comprises two control elements: The actual ANN and a clearing rule.

The battery system and the heat pump are directly controlled by the set-point power determined by the

ANN, denoted as aANN. A clearing rule-based set-point power, aCR is established for the electric boiler
and the heat storage to ensure a reliable energy supply:

�𝑄set
h,HS =− �𝑄h,HD + �𝑄h,HP, (27)

�𝑄set
h,EB = �𝑄h,HD− �𝑄h,HP − �𝑄h,HS. (28)

This dual-component strategy facilitates efficient and reliable energy dispatch within the system.

3.2 Training method
The three-stage training framework for the neural networks is depicted in Figure 3. The optimal

dispatch problem is initially solved to obtain the optimal trajectory of the actions aOD and corresponding
observations oOD. In the second step, the ANN is then trained to predict the optimal actions aOD based on
the previously calculated observations oOD. The deviation between the predicted action from the ANN

aANN and the optimal action serves as a training reward in this step:

𝑟 =
∑

𝑗∈{HP, B}

��𝑎OD, 𝑗 − 𝑎ANN, 𝑗 ��
𝑎max𝑗 − 𝑎min𝑗

. (29)
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This training step can be done quickly, but it does not evaluate the direct impact of the dispatch strategy on

the energy system or the resulting costs. Therefore, it serves only as an initial solution xANN,0 for the third
step. In this advanced stage, the ANN directly sets actions for dispatchable components in the energy

system model and receives the corresponding observations by simulating the energy system model. Since

system operation is simulated during training, the resulting annual operating cost can be used directly as a

reward for the training algorithm. The heuristic algorithm NeuroEvolution of Augmenting Topologies is
used as the training algorithm (McIntyre et al., 2023).

1. Solve Optimal
Dispatch Problem

Energy System
Model

Optimal Dispatch

Heuristic
Optimization

Algorithm

2. Training using
Optimal Trajectory

Optimal
Trajectory

Artificial Neural
Network

Heuristic
Training

Algorithm

3. Training using
Energy System Model

Energy System
Model

Artificial Neural
Network

Heuristic
Training

Algorithm

Figure 3: Schematic representation of the three-stage training framework for an ANN-based dispatch
strategy. Step 1: Solve the optimal dispatch problem to calculate the optimal trajectory for

action aOD and observation oOD. Step 2: Train the ANN to predict the optimal action. Step 3:

Train the ANN by simulating the observations and reward using the solution of step 2 as an

initial solution xANN,0.

4 CASE STUDY

The following section presents the results of the case study. As depicted in Figure 4, the case study

consist out of two parts. In the first part, subsection 4.1, the different dispatch strategies are compared

using a fixed system design xdesign,0. In the second part, subsection 4.2, the impact of the different
dispatch strategies on the optimal system design is analyzed. Note that in the ANN-based approach, the

optimization is performed iteratively - dispatch training with fixed design and design optimization with

fixed ANN-based dispatch.

Part 2: Design optimizationPart 1: Dispatch optimization

Artificial neural network-based Artificial neural
network-based

Optimal dispatchOptimal dispatch
Simple rule-basedSimple rule-based

Advanced rule-based Advanced rule-based

Figure 4: Graphical representation of the two-step analysis procedure: First, the comparison of different
dispatch strategies using a fixed design xdesign,0, and second, the comparison of the design
optimization results using the different dispatch strategies.
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4.1 Analysis Part 1: Dispatch optimization with fixed component design
For the first part of the analysis, the comparison of the dispatch strategies with predefined system design,

only an overview is provided. Details of the analysis can be found in our ongoing research (Koenemann

et al., 2024). Table 3 shows the predefined component design. In Figure 5, the resulting annual operating

costs of the different dispatch strategies as a deviation from the annual operating costs using the optimal

dispatch (Δ𝐽o,𝑖) are presented: On the left-hand side for the training data set and on the right-hand side
for the test data set. The ANN-based dispatch strategy is significantly better than the two rule-based

dispatch strategies for both data sets. The main reason for this is that more renewable energy is used for

heat consumption via the heat pump with the help of the ANN-based dispatch strategy compared to the

rule-based approaches. At the same time, the heat pump is also used more efficiently (higher ambient

temperatures). However, it is essential to emphasize that the training time for learning the ANN-based

dispatch strategy is significant, with around 9085 hours of computing time. Optimizing the advanced

rule-based dispatch strategy requires only 28 hours of computing time. However, since the training can be

parallelized on a high-performance cluster with approximately hundred cores in parallel, a total training

of approx. 90.85 hours can be achieved. In addition, the training only needs to be carried out once. The

network can then be evaluated instantly during operation.

Table 3: Predefined system design for part one of the case study.

Photovoltaic Battery Heat pump Electric boiler Heat storage

𝑃rated
PV

𝐶rated
B

�𝑄rated
h,HP

�𝑄rated
h,EB

𝑉HS
100 kW 30 kWh 40 kW 120 kW 11.51m3

0 %

5 %

10 %

15 %
Jo,i

Training data Test data

12.73 %
11.27 %

4.20 % 4.56 % 5.44 %

1.59 %

Simple rule-based

Advanced rule-based

ANN-based

Figure 5: Comparison of the resulting annual operating costs as deviation from the optimal dispatch

Δ𝐽o,𝑖 applying the different dispatch strategies on the training and test dataset.

4.2 Analysis Part 2: Design optimization
In the following section, the results of the system design optimization using the different dispatch strategies

are presented. As shown in Figure 4, system optimization with the ANN-based dispatch strategy is carried

out iteratively, i.e. training with fixed design and design optimization with fixed dispatch strategy are

each carried out alternately in each case. The results of the individual steps can be seen on the left-hand

side of Figure 6. The right-hand side shows the resulting system costs of the system optimization with

the benchmark dispatch strategies. The lighter shade reflects the operating cost 𝐽o, and the darker shade
reflects the operating independent costs 𝐽c,m. The corresponding optimum component design applying

the different dispatch strategies can be seen in Figure 7. Despite a comparatively poor initial design (about

15.87% worse than the optimal system cost with the simple rule-based design), the optimal ANN-based

design outperforms the simple design by 9.19% and the advanced rule-based design by 5.80%. The main

reasons for this are similar to those in the first part of the analysis. The ANN-based dispatch improves

the utilization of the PV system by using the excess power with the heat pump and intermediate storage
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Iterative  Design Optimization with ANN-based dispatch
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Figure 6: Resulting annual operating cost 𝐽o and annual capital and maintenance cost 𝐽c,m of the system

design optimization using the different dispatch strategies. On the left are the results of

the iterative optimization of training with fixed design and design optimization with fixed

ANN-based dispatch, on the right for the benchmark dispatch strategies.

in the heat storage to supply heat. This means that less expensive grid power is required, and the PV

system is more economical and, therefore, sized more prominent. In order to make the best possible use

of the temporary peaks of the PV system, the heat pump and the heat storage are also dimensioned larger

than with the rule-based dispatch strategies. At the same time, installing an electric boiler is no longer

required with the ANN-based dispatch. The design of the battery storage system is of a similar order

of magnitude, as all dispatch strategies use the battery storage according to the same logic (temporary

storage of the renewable surplus). With the ANN-based design and the optimal dispatch design, the rated

capacity of the battery storage is slightly lower because, as already mentioned, the heat storage is also

used to store the renewable surplus temporarily. The design with the optimal dispatch is similar to the

ANN-based design, but the system costs are significantly lower. The optimal dispatch is calculated with

the assumption of perfect forecasting. Therefore, the components can be operated even more efficiently.

However, by assuming the perfect forecast, this solution cannot be implemented in real-time applications.

Consequently, while this approach serves as a valuable benchmark, it should be appropriately oversized

when installing the components in this manner.

5 CONCLUSION

In the present paper, a comparative analysis is performed to analyze the impact of dispatch strategy on

the system operation and design optimization of DES. An ANN-based dispatch strategy trained with a

three-stage training process is compared with two rule-based dispatch strategies and the optimal dispatch,

on the one hand, using an already predefined system, and, on the other hand, directly when applied in

system design optimization.

The comparison of dispatch strategies with a fixed design shows that the ANN-based dispatch strategy

performs significantly better than the rule-based approaches (6.78% and 3.79%) and only slightly worse

than the optimal dispatch (4.20 %). In addition, the learned dispatch strategy outperforms the rule-based

dispatch strategies by applying an independent test data set.
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Figure 7: Resulting optimal design of the optimization using the different dispatch strategies.

The results are similar for system design optimization. Although the ANN-based design is carried

out iteratively (training with fixed design and design optimization with fixed dispatch), the ANN-based

design outperforms the simple design by 9.19% and the advanced rule-based design by 5.80%. Since a

perfect forecast is assumed for optimal dispatch, this operation results in the lowest costs (10.63% better

than the ANN-based). However, this solution should only be considered a benchmark since this dispatch

cannot be applied in real-world systems.

The analysis also showed that not only does the optimal system cost depend on the dispatch strategy,

but the optimal design of each component also varies depending on the dispatch strategy applied. For

example, the ANN-based dispatch strategy utilizes the PV system via the heat pump and heat storage

more economically than the rule-based strategies. For this reason, these three components are designed to

be larger than in the rule-based dispatch design. On the other hand, in contrast to the rule-based design,

the inefficient electric boiler is not required in the ANN-based design. The optimal dispatch design is

similar to the ANN-based design.

The study is limited by its reliance on a simplified model for comparison, which may not capture

the complex realities of DES. Future research should include evaluations against alternative dispatch

methods (e.g., MPC), developing more sophisticated models, and validating real-world data to improve

the robustness and applicability of ANN-based dispatch strategies. Furthermore, only iterative design

optimization is considered in this study. In the future, it would be interesting to see whether even better

results can be obtained by coupling design and scheduling optimization with ANN.

NOMENCLATURE

ANN Artificial Neural Networks

B Li-ion Battery storage

DES Decentralized Energy System

EB Electric Boiler

ED Electrical Demand

EG Electrical Grid

HP Heat Pump

HS Heat Storage

HD Heat Demand

PV Photovoltaic system

SOE State of Energy

TAC Total Annual Cost 𝐽
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