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Abstract

In Germany, the energy demand for space heating and hot water preparation in the building sector 
accounts for a substantial part of the total final energy consumption. The energy transition and 
decarbonization of the building sector are therefore crucial for achieving climate protection goals. 
District heating is a practical and sustainable technical solution to meet the heat demand of consumers 
and to reduce greenhouse gas emissions.

The research project SubWW investigates how a future-oriented, decarbonized heat supply can be 
implemented in suburban areas using the existing suburban area of Leeste near Bremen (Germany) as 
an example. To evaluate the potential of a district heating system (DHS) to utilize local renewable 
energy resources and to combine different possible heat generation technologies, the Open Energy 
Modelling Framework (oemof) was used to model the heat generation system of the DHS and to 
optimize the heat dispatch process. The model was kept as simple as possible and as complex as 
necessary. The locally available renewable energy, the weather conditions, and the possible funding 
sources and their requirements were defined as boundary conditions and constraints and taken into 
account in the optimization process.

The optimization results with the oemof tool were evaluated by simulating three nonlinear programming 
optimization methods under identical conditions. The optimization potential and various advantages 
and disadvantages of the methods applied are compared and discussed.

1 Introduction

District heating is a practical and sustainable solution for improving resource and energy management 
and reducing costs and greenhouse gas emissions [1-3]. In addition, such systems are also important 
solutions for integrating or expanding the use of renewable energies in the building sector [4]. Within 
the research project SubWW [5], the district of Leeste near Bremen (Germany) is used as an example 
to investigate how a future-oriented, decarbonized heat supply in suburban areas can be implemented 
by means of a district heating network. After a thorough analysis of potential local renewable energy
sources, a heat plant was designed to optimize the use of renewable energy. The plant consists of a 
biomass boiler, a natural gas combined heat and power generation (CHP) system, a natural gas 
condensing boiler, an air source heat pump (ASHP), a wastewater source heat pump (WWSHP), a 
ground source heat pump (GSHP), a power-to-heat (P2H) system and a photovoltaic (PV) system. The 
complex structure of the heat generation system presents a challenge for system control and operational 
optimization. 

Mixed-integer linear programming (MILP) is one of the most commonly used optimization techniques
for the design, operation and optimization of complex energy systems, as it combines a relatively 
accurate system description with a reasonable degree of computational complexity [4,6,7]. Various 
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decision support tools and frameworks for the control and optimization of multi-generator energy 
systems have also been developed based on MILP, e.g. [8-15]. This study presents the application of
the MILP-based framework Open Energy Modelling Framework (oemof) [16] for the dispatch 
optimization of the multi-generator system designed in the SubWW project. The open source
framework oemof was implemented in Python with an object-oriented programming method, which 
enables a universal representation of multi-sector energy systems and ensures flexibility in 
customization to meet various project-specific requirements.

The behavior of real technical systems often exhibits non-linearities that require linearization for 
representation in MILP formulations. However, the linearization of system attributes and constraints,
such as generator efficiencies, may introduce slight deviations in the optimization problems [7,17]. To 
investigate the effects of such linearization in the researched system, the optimization results obtained 
using the oemof tool were compared with results of three non-linear programming (NLP) methods:
- Sequential Least SQuares Programming (SLSQP) [18],
- Constrained Optimization BY Linear Approximation (COBYLA) [19], and
- trust-region algorithm for constrained optimization (Trust-Constr) [20].
Further details on the implementation of these three NLP methods can be found in [21].

2 Methodology

2.1 Modeling of the system in oemof
The multi-generator heating system was modelled with the open source model library oemof.solph [22]
on the basis of a linear equation system. The optimization of the target values was carried out using 
pyomo [23] to define the minimization problem and the open source solver cbc [24], which is suitable 
for linear programming and MILP problems.

Figure 1: Schematic and simplified representation of the energy system model in oemof

Figure 1 shows the structure of the generator park model. The generators, energy sources and carriers 
as well as grids are defined using the basic components - transformers, sources and sinks - of 
oemof.solph. Each component in the system represents a "node" with input and output flows for which 
balance equations are calculated over all time steps. The flows between the various components can be 
chemical, thermal, or electrical. The connections between the components are described by another 
fundamental component of oemof.solph, bus, which links the balance equations of each individual 
component. Table 1 presents the generator capacities, technically required minimum loads and 
efficiencies. The efficiencies of CHP and P2H plants are simplified and assumed to be constant. For 
biomass and natural gas condensing boilers, the efficiencies are linearized over the operation load range. 
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The Coefficient of Performance (COP) values for heat pumps are assumed to be 50 % of the efficiency
in ideal Carnot case, which can be calculated using equation (1), where and are 

the flow and source temperatures of the heat pumps in Kelvin. Partial load effects of the heat pumps are 
neglected.

Necessary model inputs for the optimization are prices and emission factors of the energy sources, 
demand profile, solar radiation, supply and source temperatures of the heat pumps and the amount of 
wastewater. The energy prices and CO2 emission factors used in the simulations are summarized in 
Table 2. The revenues from the feed-in of self-generated electricity from CHP and PV systems and the 
subsidy for self-consumption are presented in Table 3. Further boundary conditions are documented in 
[5] following a detailed analysis of the current situation in the district under investigation. The outputs 
of the optimization are the dispatch of the generators and the flows between the various system 
components. 

Table 1: Generator properties in system model

Generator Capacity Minimum load Efficiency / COP
kW %

Biomass boiler 2594 30 0.80 - 0.85
Condensing boiler 1215 30 0.90 - 0.93
CHP (thermal) 251 50 0.48
CHP (electrical) 214 50 0.41
GSHP 379 20 0.5
WWSHP 1045 20 0.5
ASHP 1466 20 0.5
P2H 1105 5 0.99

Table 2: Prices and CO2 emission factors of energy carriers

Energy source CO2 emission Price
g/kWh ct/kWh

Biomass 0.024 [25] 2.78 1

Natural gas 0.201 [26] 6.68 [27]
Grid power (regular) 0.366 [26] 32.63 [27]
Grid power (Heat pump tariff) 0.366 [26] 23.80 [28]

Table 3: Revenues from self-generated electricity

Generator Self-consumption Feed-in
ct/kWh ct/kWh

CHP 0.00 2 15.66 3

PV 0.00 18.39 4

1 Average price for wood chips in Germany with 20 % water content in 2021 according to [29].
2 CHP surcharge for CHP plants > 100 kWel and ≤ 250 kWel according to Combined Heat and Power Act (KWKG)
3 Sum of the CHP surcharge for CHP plants > 100 kWel and ≤ 250 kWel according to KWKG and the CHP index (average 
value of the six quarters IV/2020 to I/2022) published by European Energy Exchange AG (EEX)
4 Average market value from Nov. 2021 to Apr. 2022 according to Federal Network Agency (BNetzA)
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2.2 Mathematical formulation of the optimization problem
For optimization based on the variable cost of the system, the objective function is formulated as (2). 
The total variable costs for each time step are calculated as the sum of the fuel, electricity, operating,
and maintenance costs subtracted by the revenues and savings from the electricity generation through 
PV and CHP. To simplify the function, the operating and maintenance costs are included in the
consumption-related fuel and electricity cost factors and (see Table 2). The heat and
electricity generation and , the efficiency and the electricity consumption of the
generators are functions of the load signals . While all partial load efficiencies of the generators
are linearized over the operating range for oemof with the MILP solver, those of the condensing boiler 
and the CHP are defined as nonlinear functions for NLP methods, as described in [30]. Additionally, 
the COP values of the ASHP is calculated according to the performance map in DIN EN 15316-4-2 for 
NLP methods to account for the efficiency loss due to defrosting at low ambient temperatures. Further
boundary conditions and parameters required for the calculation of the efficiencies, such as desired flow 
temperature and source temperatures of the heat pumps, are documented in [5]. The electricity 
generation is divided into a self-consumption part and a feed-in part into
public grid, the proportions of which are determined by the optimization algorithms in such a way that 
the highest revenues and cost savings are achieved.

min (2)

In the case of optimizing according to CO2 emissions, the objective function is formulated as (3). With 
self-generated electricity from CHP and PV plants, the consumption of grid electricity can be reduced 
and a corresponding amount of CO2 emissions can thus be avoided. The avoided amounts are deducted 
when calculating the total emissions.

min (3)

Constraints (4) to (7) are applied for both cost and CO2 emission optimization approaches. Constraint 
(4) ensures that the heat production must be sufficient to cover the total heat demand of the users.
Constraint (5) states that the proportions of self-consumed and grid-fed electricity produced by the
system should add up to 100%. Constraint (6) limits the operating range of the generators. Constraint
(7) indicates that the maximum heat extraction capacity of the source sides of the heat pumps is limited
due to the available wastewater volume and the geothermal probe properties and the maximum load
signals for the heat pumps are therefore also limited.

s.t.
(4)

(5)

(6)

(7)

The multi-generator heating system is simulated and optimized with oemof and the NLP methods under 
identical conditions for one year in hourly resolution. 

As the tested NLP methods only handle real variables in convex feasible areas, the constraint of the 
minimum loads of the generators is realized by means of NLP-based branch and bound method (NLP-
BB). The first step is to solve the NLP relaxation of the original problem, where the loads of the 
generators can range between 0 and 100%. The solution of the relaxed problem provides a valid lower 
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bound of the results. For each load signal that falls between 0 and the minimum load, which violates 
the constraints for the operational range, the continuous relaxation is divided into new subproblems by 
adding the constraints load = 0 and load > minimum load to the relaxed problem. New lower bounds 
can be obtained by solving the new subproblems. If one of the subproblems provides a solution in which 
all load signals lie within the feasible range, it also provides a valid upper bound. To avoid unnecessary 
computational effort, the subproblems are not solved if the maximum possible heat production is below 
the heat demand, with the load signals of certain generators being limited to 0. If the results of the 
subproblems are infeasible or worse than the upper limit, they are not branched further, since the 
optimum solution cannot be found in this part of the search space. The optimal results of all searched 
branches are returned as final control signals.

3 Results and Discussion

The annual specific CO2 emissions and variable costs of the system in relation to heat production with 
different operational optimization methods are depicted in Figure 2. Table 4 summarizes the differences
in specific emissions and costs between the NLP methods and the MILP method and the simulation 
times of the different methods.

According to the simulation results, the COBYLA method shows the highest potential for reducing the 
target value in terms of both CO2 emissions and cost optimization. The SLSQP and Trust-Constr 
methods achieved relatively high reductions in one scenario, but only modest ones in the other. The 
MILP method is not the optimal method in either scenario, but shows relatively high accuracy in both.
It is noteworthy that optimizing for one target value can also lead to significant differences in the other 
target value when using different methods. While the MILP method is not the most effective at 
improving the current target value, it consistently keeps the other target value low. The COBYLA 
method is able to prioritize a greater reduction in the current target value by sacrificing the other target 
value. Conversely, the SLSQP and Trust-Constr methods both lead to a much higher value for the other 
target, but do not make a significant improvement to the current target value compared to the MILP 
method.

The average simulation time of the NLP methods is much higher than that of the MILP method. The 
SLSQP method requires the calculation of the gradient, while the Trust-Constr method requires both 
the gradient and the Hessian matrix, which leads to an increase in computational complexity and a 
longer runtime. The gradient-free method COBYLA has the highest convergence speed compared to 
the other two NLP methods.

Figure 2: Specific CO2 emission (left) and variable cost (right) with different control algorithms
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Table 4: Differences in specific CO2 emissions and variable costs between NLP methods and the 
MILP method and simulation runtimes

Reduction of 
CO2 emission

Reduction of 
variable cost

Simulation 
runtime 5

% % s
Optimization according to CO2 emission
NLP 1 - SLSQP 5.6 -30.1 24843.52
NLP 2 - COBYLA 6.0 -27.1 8280.96
NLP 3 - Trust-Constr -7.2 -39.4 855454.08
MILP (oemof) 2179.08
Optimization according to variable cost
NLP 1 - SLSQP -32.8 -12.0 17662.72
NLP 2 - COBYLA -13.6 7.2 25911.04
NLP 3 - Trust-Constr -20.8 2.8 1248673.92
MILP (oemof) 840.25

The main difference in the optimization results of the various methods lies in the ability of the methods 
to switch on the heat pumps more often at higher source temperatures with higher COP values and thus 
improve the efficiency of the overall system. The use of more CHP and PV electricity in the heat pumps 
can also partially avoid the consumption of expensive grid electricity. The coverage shares of the 
various heat generators are summarized in table 5. Table 6 shows the annual coefficient of performance 
of the ASHP using different methods. In particular, the NLP methods demonstrated higher efficiency 
and coverage rate of the ASHP, resulting in a more effective heat generation compared to the MILP 
method. In terms of CHP electricity, the COBYLA and MILP methods utilized a greater amount of 
CHP electricity, thereby increasing the income from grid feed-in and the savings in electricity prices 
for the heat pumps.

Table 5: Annual coverage shares of the heat demand by individual generators in %

SLSQP COBYLA Trust-Constr MILP
Optimization according to CO2 emission
Biomass boiler 63.84 60.32 62.64 69.54
Condensing boiler 3.35 2.19 4.00 4.71
CHP 11.41 13.49 10.60 14.23
ASHP 13.04 14.56 14.65 5.61
WWSHP 1.67 1.67 1.58 1.40
GSHP 6.64 7.24 6.50 4.07
P2H 0.06 0.52 0.03 0.45
Optimization according to variable cost
Biomass boiler 75.10 74.66 74.27 72.23
Condensing boiler 1.09 0.91 0.83 3.77
CHP 5.39 5.53 5.37 11.99
ASHP 9.40 9.78 11.30 5.95
WWSHP 0.69 0.72 0.66 1.79
GSHP 8.28 8.32 7.55 3.81
P2H 0.03 0.05 0.08 0.46

5 Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz, 8GB RAM, Windows 10
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Table 6: Annual coefficient of performance of ASHP

SLSQP COBYLA Trust-Constr MILP
CO2 optimization 2.724 2.752 2.710 2.206
Cost optimization 4.894 5.176 5.272 4.323

4 Conclusion and future work

In this study, a heating system with multiple generators was modelled and optimized using the open 
source framework oemof and solved using the MILP optimization method. The optimization results 
were compared with those of three NLP methods under identical conditions. The NLP method 
COBYLA shows the highest potential for reducing annual CO2 emissions by 6.0 % and variable costs 
by 7.2 % compared to the MILP method used by oemof. The NLP methods SLSQP and Trust-Constr 
cannot always achieve satisfactory results and require significantly longer calculation times. Although 
the MILP method is not the solution with the highest reduction of the objective functions, it is a 
reasonably accurate alternative with a much shorter computation time.

The system modelled in this study does not incorporate a storage system. As the project is still in the
planning phase, the efficiencies of the generators are only theoretical estimates. The boundary 
conditions and constraints of the optimization problem are limited to an hourly resolution, without 
considering constraints over a longer time period. Additionally, when optimizing for CO2 emissions 
and variable costs, other target values are not taken into consideration by the optimization methods. 
Potential future work could include modelling and coupling of storage systems, replacing generator 
characters by more detailed manufacturer data or measurement data, defining long-term constraints, 
such as funding conditions over one year, and investigating the combination of multiple optimization 
objectives. For the same use case, open-source global solvers with global convergence guarantees can 
also be applied and tested. The most appropriate method for system optimization can be identified by 
simultaneously considering the complexity of defining the system and the optimization problem, the 
capability of algorithms and solvers to search for global minima, the convergence rate and speed, the 
computational requirements, and the potential for future adaptations and generalizations.

Nomenclature

Abrevations
ASHP Air source heat pump
CHP Combined heat and power
COBYLA Constrained Optimization BY Linear Approximation
COP Coefficient of Performance
DHS District heating system
GSHP Ground source heat pump
MILP Mixed-integer linear programming
oemof Open Energy Modelling Framework
PV Photovoltaic
P2H Power-to-heat
SLSQP Sequential Least SQuares Programming
Trust-Constr Trust-region algorithm for constrained optimization
WWSHP Wastewater source heat pump

Symbols
Carbon dioxide emission factor of electricity consumption, g/kWh
Carbon dioxide emission factor of fuel consumption, g/kWh
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Consumption-related electricity cost, ct/kWh
Consumption-related fuel cost, ct/kWh
Revenue from electricity fed into public grid, ct/kWh
Proportion of feed-in to public grid of generated electricity, -
Load signal for generators, -
Proportion of self-consumption of generated electricity, -
Set of generators with heat production
Set of generators that consume electricity
Set of generators with electricity production
Feed-in of electricity into public grid, kWh
Electricity consumption, kWh
Self-consumption of electricity, kWh
Heat production, kWh
Heat demand, kWh
Heat extraction from heat pump source sides, kW
Supply temperature of heat pumps, K
Source temperature of heat pumps, K
Carnot efficiency, -
Thermal efficiency of generators, -
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