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ABSTRACT

This study evaluates the crucial role of energy storage in aligning electricity supply with demand. We 
compare 25 storage alternatives through the lens of sustainability. We use Data Envelopment Analysis 
(DEA), a linear programming method that allows assessing the relative performance of a set of options 
considering multiple indicators. Separate analyses are performed for medium and long-term options. In 
the former, we examine nine battery types and, in the latter, 16 power-to-hydrogen/ammonia routes. 
The evaluation spans economic, environmental, and social dimensions, encompassing key indicators 
like the levelized cost of energy, energy, and water usage, global warming potential, and employment 
opportunities. Implicitly, DEA assumes equal importance among all the indicators considered. Hence, 
we provide an additional analysis prioritizing environmental aspects. In our results, nickel-cadmium 
batteries with median performance score of 1.5 stand out in the medium-term cluster, while green 
hydrogen and ammonia powered by renewable sources take the lead in the long-term, even in the
analysis favoring environmental indicators. Quantitative improvement targets are also provided for less 
efficient options, with implementation potential contingent upon their Technology Readiness Levels.
For instance, redox flow batteries need at least 80% reduction in their input parameters to be efficient. 
The results offer valuable insights for policymakers, investors, and energy planners to integrate efficient 
and sustainable options, fostering cleaner and more resilient energy portfolios.

1 INTRODUCTION

Electricity is a crucial foundation supporting most economic activities and influencing human living 
conditions. The complex electricity systems connect generators with consumers through transmission 
and distribution grids. Historically, the focus of designing secure electricity systems revolved around 
technical parameters such as stability, flexibility, resilience, adequacy, and robustness (Blanco & Faaij, 
2018). As a result, dispatchable technologies, primarily rooted in fossil fuels or nuclear energy, were 
used to ensure a dependable energy supply.

Growing environmental concerns have recently prompted the adoption of clean and renewable 
electricity production technologies. However, the inherent intermittency, long-term unpredictability, 
and short-term uncertainty of renewable sources like solar and wind pose challenges in aligning energy 
supply with fluctuating demand. Energy storage emerges as a crucial solution to address this disparity, 
converting electricity into storable forms for release into the network when needed. Beyond ensuring 
reliability, efficiency, safety, security, and grid stability (Ming et al., 2019; Mostafa et al., 2020), energy 
storage minimizes the cost of electricity supply by reducing interruptions (IRENA, 2020).

In the context of a projected shift in global power generation with renewable to 86% by 2050, up from 
25% in 2020 (IRENA, 2020), energy storage becomes essential for the energy sector's decarbonization.
Storage alternatives, although various, differ in function, duration, and stored energy form. Hence, 
diverse energy storage technologies with varied characteristics are crucial to cater to diverse 
applications. Acknowledging that there is no “one-fits-all” solution, meeting economic, environmental, 
and technical targets is imperative to facilitate the development and deployment of energy storage 
technologies.
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While previous works have compared energy storage technologies based on economic, technical, or 
environmental aspects, a comprehensive assessment should include economic, environmental, and 
social perspectives concurrently. Some studies examined only life cycle costs, highlighting the impact 
of power conversion components (Zakeri & Syri, 2015), others evaluated storage technologies based 
on energy density, cycle efficiency, and lifetime (Akram et al., 2020), while others shifted the attention 
to environmental concerns through a life cycle assessment method (Fernandez-Marchante et al., 2020).

This contribution aims to bridge this gap by evaluating a wide range of energy storage technologies 
using six key performance indicators. These indicators cover sustainability dimensions 
comprehensively, allowing for a holistic comparison of nine medium-term and 16 long-term storage 
options. Notably, this assessment includes an analysis of ammonia as an energy storage material and 
incorporates the operational phase of storage technologies.

To compare options considering multiple sustainability indicators, this study employs Data 
Envelopment Analysis (DEA). DEA combines various indicators into a single score, commonly known 
as performance score (Rostami et al., 2022), classifying technologies as either efficient or inefficient.
DEA is already applied as a multi-criteria decision-making tool in the context of energy (Cabrera-
Jiménez et al., 2022). It also expands on previous efforts by providing quantified improvement targets 
for inefficient technologies that, if attained, would make them efficient. These targets offer valuable 
insights for researchers and technology developers, pointing on the direction of change for their designs.
In addition, acknowledging that implementing improvements targets is challenging for mature 
technologies, we discuss the results obtained in the context of the Technology Readiness Level (TRL). 

One of the strengths in DEA is the ability to combine multiple indicators in the absence of predefined 
weights. In practice, this is equivalent to assuming equal importance among the indicators considered. 
However, in practice, stakeholders may prioritize certain facets of sustainability when making their 
decisions. Recognizing this, we present an additional analysis using DEA but assigning greater 
importance to environmental indicators, thus prioritizing cleaner technologies for a sustainable energy 
transition. Overall, our analysis builds upon DEA's proven utility in benchmarking various engineering 
systems in the energy sector.

The following section delves into the methodology applied for the multicriteria assessment of energy 
storage technologies, while the third section presents and discusses the results obtained. Finally, the 
fourth section examines how these findings can guide effective policymaking.

2 METHODS 

This section presents the methodology used to assess and compare the performance of different energy 
storage technologies from the economic, environmental, and social perspectives. Initially, we introduce 
the concept of DEA methodology, followed by the introduction of the specific indicators used and their 
uncertainty analysis approach. Subsequently, we present the DEA model chosen. Lastly, we described 
the alternative DEA model employed to explore the effect of emphasizing environmental indicators.

2.1 DEA Overview
DEA is a linear programming method used to measure the relative performance of the so-called 
Decision-Making Units (DMUs) in transforming inputs into outputs. Our application of DEA focuses 
on energy storage technologies. In this context, we model energy storage technologies as DMUs, and 
the sustainability metrics as their inputs and outputs. To account for the diverse nature of storage 
technologies, these are grouped into medium-term and long-term options based on their duration and 
frequency of power supply. Table 1 presents this classification and the items considered. Long-term 
options are further subdivided into three categories based on the type of power source used in the 
production route (green, blue, and grey). Notably, large scale mechanical energy storage options and 
thermal alternatives are excluded do to data limitation. 
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Table 1: Energy storage alternatives and their classifications.

Medium-term Long-term
Alternatives Symbol Alternatives AlternativesLead acid LA
Lithium-ion Li-ion H2, Hydropowergr NH3, WSCL3, b

Lithium iron phosphate LiFePh H2, Solargr H2, CG4, g

Lithium nickel manganese cobalt LiNiMnCo H2, Windgr H2, Grid mixg

Nickel-cadmium NiCd NH3, Hydropowergr H2, SMR4, g

Sodium nickel chloride NaNiCl NH3, Solargr H2, WSCL3, g

Sodium sulphide NaS NH3, Windgr H2, CG-CCS2, 4, g

Vanadium redox flow battery VRFB H2, SMR-CCS1, 2, b NH3, Grid mixg

Zinc bromine flow battery ZBFB NH3, SMR-CCS1, 2, b NH3, SMR4, g

1: Steam methane reforming, 2: Carbon capture and storage, 3: Water splitting by chemical looping, 4: Coal gasification.
gr: Green, renewable energies as energy source; b: Blue, fossil fuels combined with carbon capture and storage as energy 
source; g: Grey, fossil fuels (or the grid, sometimes referred to as yellow) as energy source.

2.2 Inputs and outputs
We have chosen six performance indicators to encompass economic, environmental, and social 
dimensions, outlined as follows. Note that these can be classified either as inputs, desired outputs, or 
undesired outputs of the DMUs. In DEA, lower levels of inputs and undesirable outputs are preferable,
while options with higher levels of outputs are sought.

Electricity consumption [GJ] (Input): This metric is associated with emissions and serves as an 
environmental indicator (Mukelabai et al., 2021).
Energy density [GJ/kg] (Input): This provides insights into material requirements and technology 
size. It is employed for medium-term alternatives. Note that we use its inverse term (1/energy 
density) as an input to be minimized (Zakeri & Syri, 2015).
Employment [FTEJ] (Desired output): Reflecting the creation of full-time equivalent jobs necessary 
for the development of options within each group, this indicator functions as a social measure 
(Rostami et al., 2022).
Global Warming Potential, GWP [CO2-eq Emissions] (Undesired output): As an environmental 
indicator, resulted by the electricity from non-renewable sources used to produce the storage options, 
mirrors the greenhouse gas emissions resulting from the development of storage alternatives
(Siddiqui & Dincer, 2019).
Levelized Cost of Storage, LCOS [€/GJ] (Input): For medium-term options, this metric encompasses 
initial, variable, and end-of-life costs (Zakeri & Syri, 2015). In the case of long-term options, it 
represents the cost of producing one kilogram of hydrogen or ammonia (Thengane et al., 2014).
Water usage [m3] (Input): Functioning as an environmental indicator, it represents the water used in 
the development of each medium-term option or one kilogram of H2 or NH3 (Chisalita et al., 2020).

We employ uncertainty distributions to manage data variability. Specifically, we use three types of 
distributions in our analysis, including uniform distributions for parameters with a single literature 
value, and triangular distributions for parameters with a range of values. For GWP, a life cycle indicator, 
uncertainties are characterized following guidelines from the Ecoinvent database, i.e., employing 
individual lognormal distributions based on the so-called Pedigree Matrix. The details of the Pedigree 
Matrix are introduced elsewhere (Barnosell & Pozo, 2024). After establishing uncertain distributions 
for various parameters, Monte Carlo sampling is employed to discretize these distributions (Frutiger et 
al., 2018), generating 100 independent scenarios for each indicator. Subsequently, a DEA model is 
solved for each scenario of each DMU, resulting in 100 distinct performance scores for each DMU. 

2.3 DEA Model 
Without loss of generality, we employ the non-oriented undesired output slack-based model for 
evaluating the performance scores of DMUs (H. Li et al., 2013). This model is presented in equations 
(1)-(6). DMUs achieving a performance score of one are considered efficient and form the so-called 
efficient frontier. Meanwhile, DMUs with a score ranging from 0 to 1 are deemed inefficient. 
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One well-known drawback of traditional DEA models is that all the efficient DMUs get a score of one, 
which prevents further ranking between them. To address this challenge, the slack-based super-
efficiency DEA model for undesired outputs allows to distinguish the performance of efficient DMUs.
In DEA super-efficiency models, the DMU under evaluation is excluded from the pool of candidate 
DMUs forming the efficient frontier, which allows the DMU to achieve efficient scores above one. This 
allows to rank efficient DMUs, providing further insights into the potential enhancements of efficient 
options. The specifics of the super-efficiency model are not presented here, but can be found elsewhere
(Fang et al., 2013).
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The performance score of a DMU under assessment is denoted by τ*. The Charnes-Cooper linear 
transformation coefficient (variable t) is introduced to convert the original nonlinear slack-based model 
for undesired outputs into a linear format (as already presented here). In this framework, m, s1, and s2

represent the numbers of inputs, desired outputs, and undesired outputs, respectively, for the DMUs 
assessed. Subscript i refers to inputs, while subscript r relates to outputs. Slack variables Si

−, Sr
g, and 

Sr
b quantify the distance from each DMU to the efficient frontier in inputs, desired outputs, and 

undesired outputs, respectively. For efficient DMUs, these values will be zero; for inefficient ones, they 
indicate the improvements necessary for the DMU to achieve an efficient status. Parameters xio, yro

g,
and yro

b refer to the values of input, desired output, and undesired output of DMU o, respectively. X is 
the inputs matrix, while Yg and Yb are the corresponding matrices for desired and undesired outputs.
The weight Λ combines efficient DMUs to create the so-called virtual DMU, an efficient version of the 
evaluated DMU evaluated, achieved by projecting the inefficient DMU onto the efficient frontier. The 
virtual DMU is used as reference by the model to compute the improvement targets. Notably, as 
presented by equation 6, variables should be positive since a negative value is meaningless. 

There are some important remarks that need to be considered at this point. As aforementioned, DMUs 
are classified into two different clusters. Hence, the previous model needs to be applied to each DMU, 
considering only the energy storage options within the corresponding cluster. In addition, parameters 
xio, yro

g, and yro
b will present different values in each of the 100 scenarios generated. Hence, each 

analysis needs to be carried out multiple times, one for each scenario. This will result in a distribution 
of performance scores (rather than a single value) for each of the DMUs analyzed.

2.4 Weighted model 
As explained in the introduction, the previous DEA model implicitly assumes that all indicators are 
equally important. This might not be in agreement with an environmentally conscious stakeholder. To 
explore such a scenario, we next allocate 80% of the total weight to environmental aspects and distribute 
the remaining 20% evenly between economic and social indicators. This weight distribution is applied 
equally across indicators within each sustainability dimension. For medium-term technologies, each of 
the four environmental indicators receives a weight of 20% (80 divided by 4 equals 20). In the case of 
long-term alternatives, the three environmental indicators are assigned a weight of 26.67% each (80 
divided by 3). Both clusters allocate 10% weight to LCOS and employment, the only indicators in the 
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economic and social categories, respectively. Subsequently, we modify the undesired output slack-
based model (i.e., the model introduced in the previous section) to incorporate these weights as 
parameters: for inputs, for desired (good) outputs, and for undesired (bad) outputs. This 
revised model (see Equations (7)-(16)) is a weighted slack-based model as detailed in Tone (2011),
where all other parameters and variables remain consistent with the previous model. Again, an 
equivalent (weighted) super-efficiency model is used to rank efficient DMUs. These weighted models
are also executed for each DMU in each cluster, across the 100 scenarios.
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3 RESULTS AND DISCUSSION

Section 3.1 delves into the interpretation of DEA results within the framework of the TRL across 
different technologies and alternatives. Then, section 3.2 provides improvement targets for DMUs
identified inefficient, offering actionable guidelines for technology developers. Lastly, section 3.3 
presents the effect of increasing the weights assigned to environmental indicators.

3.1 Identifying efficiencies and development potentials 
Figure 1 illustrates the distribution of performance scores for the medium-term cluster across 100 
scenarios, represented using a violin plot. Wider sections of the violins indicate performance scores 
with a higher probability of occurrence. 

NiCd, Li-ion, and NaS batteries rank among the top three medium-term alternatives, with median 
performance scores of 1.61, 1.36, and 1.32, respectively. Conversely, ZBFB and VRFB exhibit notably 
low median performance scores (i.e., below 0.07 and 0.03), respectively, making them the least efficient 
technologies.

Despite being the preferred option here, the production of NiCd batteries could be limited by cadmium 
availability. This element is mostly obtained as a byproduct of zinc production processes, which poses
concerns about its potential supply volume, in addition to human health hazards (Van den Bossche et 
al., 2006). Conversely, sodium batteries capitalize on sodium's cost-effectiveness, non-toxicity, and 
high recyclability potential, positioning them as promising contenders for high-power applications
(Kumar et al., 2021; Van den Bossche et al., 2006). Still technical enhancements are necessitated to 
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address challenges such as low conductivity, cathode volume expansion, and anode corrosion by 
electrolytes (Zhang et al., 2020). Further, Li-ion battery variants (e.g., Li-Fe-Ph or Li-Ni-Mn-Co) are 
efficient in some scenarios. However, there are other scenarios where their performance may drop to 
0.34 and 0.31, respectively. Despite challenges, lithium batteries, widely used in electric vehicles, 
demonstrate satisfactory performance across the sustainability indicators examined, with median 
performance scores ranging from 0.99 to 1.36. Li-ion achieves a higher median performance score (1.36 
vs. 1.32) and a higher maximum performance score (1.53 vs. 1.43), suggesting that Li-ion can perform 
bet- ter than Na-S batteries in the most optimistic scenarios. A risk-taker pol- icy/investor may be 
inclined towards Li-ion batteries, capable of achiev- ing better performance. In contrast, a risk-averse 
policy/investor will bet on Na-S, as there is “no risk ”of it being a non-competitive technology.

While a technology may appear favorable based on selected indicators, not all energy storage 
technologies successfully penetrate the market. The TRL, graded on a scale of 1 to 9, provides insights 
into the maturity and expected future developments of a technology. Technologies below TRL 4 are 
typically in research or conceptual testing phases, with TRL 4 to 6 indicating demonstration or technical 
development stages. TRLs above 7 denote specific certification tests or market readiness, nearing a 
TRL of 9 (GIA, 2022). Technologies at lower TRLs, while potentially promising for further 
development, face uncertainties regarding market penetration. On the other hand, the development 
potential of a technology declines as it matures (Ntavarinos et al., 2019). For instance, NiCd, Li-ion, 
Li-Fe-Ph, and potentially Li-Ni-Mn-Co batteries, are efficient options. However, as they are already 
marketable, they are not expected to have much room for improvement at this point. On the other hand,
LA batteries show low performance scores despite being an already mature technology. Hence, 
achieving the improvement targets outlined in the subsequent section may prove challenging for this 
option. Technologies like Na-Ni-Cl, ZBFB, and VRFB, neither efficient nor marketable, require 
significant improvement before attaining efficiency. Nonetheless, their potential transition to the 
"efficient and marketable" category remains possible, considering the still possess a high development 
potential.

Figure 1: Distribution of performance scores for medium-term energy storage technologies under 
uncertainty. The horizontal axis presents the maturity of technologies as based on their TRL.

Figure 2 displays the performance scores for long-term energy storage alternatives. Green ammonia 
from solar energy is the only consistently efficient long-term option, attaining a median performance of 
1.26. Green hydrogen from solar energy and then wind energy follow closely, boasting median 
performance scores of 1.09 and 1.08, respectively. The former capitalizes on low energy consumption, 
while the latter presents significant employment opportunities. Green ammonia derived from 
hydropower and wind energy rank fourth and fifth, with median efficiencies of 1.07 and 1.02, 
respectively.
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These findings underscore that the top five long-term storage alternatives are aligned to water 
electrolysis using renewable energies, namely green hydrogen, and green ammonia. Also, options such 
as green hydrogen using hydropower, ammonia produced through water electrolysis using grid mix 
energy, and ammonia generated via chemical looping processes still have a chance of achieving 
efficiency despite exhibiting median efficiencies below one: 0.53, 0.44, and 0.39, respectively.

Figure 2: Distribution of performance scores for long-term energy storage alternatives under 
uncertainty. The horizontal axis presents the maturity of technologies as based on their TRL.
Alternatives in increasing order of their median performance score: a: H2, CG – b: H2, SMR – c: H2,
WSCL – d: NH3, SMR – e: H2, Grid mix – f: NH3, WSCL – g: NH3, Grid mix – h: H2, SMR-CCS – i:
H2, CG-CCS – j: NH3, SMR-CCS – k: H2, Hydropower – l: NH3, Wind – m: NH3, Hydropower – n: H2,
Wind – o: H2, Solar – p: NH3, Solar. 

Transitioning to any of the remaining eight long-term storage alternatives significantly drops median 
performance scores, all falling below 0.33. This indicates their inferiority compared to the top eight 
options across the sustainability indicators considered. Furthermore, their GWP and substantial energy 
and water consumption further exacerbate their competitiveness, necessitating significant
enhancements.

Reliable and explicit reporting of TRL for many long-term storage options is lacking in the literature. 
However, TRL for grey processes typically ranges from 8 to 9, exceeding that of blue processes, which 
usually range from 6 to 8. Lastly, green processes, with TRLs of 1-3 (THE ROYAL SOCIETY, 2018),
have considerable progress ahead of them. Despite their current high costs compared to grey and even 
blue alternatives, future cost reductions in renewable energy sources are anticipated to render green 
alternatives the most economical options (Newborough & Cooley, 2020).

3.2 Identifying inefficiencies and development potentials 
This section focuses on inefficient technologies, where improvement targets indicate the minimum 
reduction needed to render them efficient. Figure 3 illustrates the average improvement targets for 
inefficient medium-term technologies across the 100 scenarios. VRFB and ZBFB necessitate 
approximately a 90% reduction in their input and in GWP to attain efficiency. Given that these batteries 
are still in the demonstration stages of development (TRL of 6 out of 9), such improvement may be 
achievable. Two other technologies require substantial improvements to achieve the efficient status.
The first is LA, with improvement targets exceeding 40% for LCOS, energy consumption, and energy 
density, and surpassing 90% for water usage and GWP. The second is Na-Ni-Cl, requiring targets of 
around 20% for LCOS and energy density, 40% for energy consumption, and over 70% for water usage 
and GWP. Conversely, Li-Fe-Ph and Li-Ni-Mn-Co, with average improvement targets of 8% and 14%, 
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respectively, show a promising potential for efficiency. To achieve this, they should primarily reduce 
their GWP by 23% and 35%, respectively. Additionally, the LCOS of these batteries requires 
improvements exceeding 5% for Li-Fe-Ph and over 9% for Li-Ni-Mn-Co. The cost reductions are well 
within reach given the extensive research on these batteries. Lastly, Li-ion technology demonstrates 
near-consistent efficiency, resulting in minimal improvement targets (consistently below 6%).

Figure 3: Improvement targets for medium-term technologies under uncertainty. The improvement 
target for each indicator and technology is estimated using the average of the 100 scenarios. 

Improvement targets are then calculated for long-term alternatives observed inefficient in one or several 
scenarios. As depicted in Figure 4, the minimum reduction required in LCOS is below 1%, associated 
with “H2, WE-Wind”, a target that could naturally be achieved with the decreasing costs of wind power. 
Conversely, the maximum reduction in LCOS is 12% for “H2, WE-Grid mix”. The remaining options 
necessitate LCOS reductions within this spectrum, typically lower for ammonia than for hydrogen. 
Notably, the production cost of 1 kg of hydrogen is higher than that of producing 1 kg of ammonia
(Dincer & Bicer, 2018). Additionally, transition to underground gas storage may facilitate cost 
reduction targets if it has the social and political acceptance in the desired region.

Figure 4: Improvement targets for long-term alternatives under uncertainty. The improvement target 
for each indicator and technology is estimated using the average of the 100 scenarios.
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The most significant reduction required in electricity consumption is approximately 90%, primarily 
concerning grey and blue hydrogen, followed by WSCL (water splitting by chemical looping). Current 
pilot projects for Carbon Capture and Storage (CCS) systems consume substantial energy, yet ongoing 
technological advancements promise to reduce energy demands (X. Li et al., 2021). Conversely, for 
green hydrogen and ammonia, the required reduction in electricity consumption is modest, with “H2,
WE-Wind” needing only a 1% reduction, marking it the most favorable option among inefficient 
alternatives in this regard. Notably, heat waste occurs in gas production reactors (Ozturk & Dincer, 
2021), and heat integration can further enhance performance. Regarding water usage, the pattern mirrors 
electricity consumption but with varying degrees, ranging from 1% for “NH3, WE-Hydropower” to 
97% for “H2, SMR”. Nearly all investigated long-term storage options require reductions in their GWP. 
Among inefficient DMUs, required changes begin below 1% for “H2, WE-Wind” and escalate to 97%
for “H2, SMR”. Implementing CCS, despite potentially worsening electricity consumption and LCOS,
is crucial for controlling CO2 emissions. 

3.3 Effect of putting stress on environmental indicators
In this section, we delve into a theoretical case where an environmentally conscious stakeholder 
allocates 80% of the total weight to environmental considerations and the remaining 20% to other 
economic and social factors. We adopt a balanced approach within each sustainability dimension, 
distributing the weights equally among the indicators. Further details are discussed in section 2.4.

Figure 5 compares median performance scores achieved for each technology when 80% weight is 
allocated to environmental indicators (y-axis) with the median performance scores achieved when 
indicators are equally weighted (i.e., the median performance from the original DEA, x-axis). This 
figure is segmented into four quadrants, depending on the combination of efficient/inefficient status 
obtained in each analysis. Additionally, utilizing a diagonal line, technologies are categorized into two 
groups: those reporting higher performance when no predefined weights are assigned to indicators 
(located on the right side of the diagonal), and those benefiting from greater weights on environmental 
indicators (situated on the left side of the diagonal).

Assigning higher weights to environmental indicators leads to notable changes in the performance
scores obtained by medium-term options. Technologies on the right side of the diagonal, namely NiCd, 
Li-ion, NaS, and Li-Fe-Ph, present decreases in performance from 1.61, 1.36, 1.32, and 1.03, 
respectively, to 1.05, 1.04, 1.03, 1.03, and 1. Nevertheless, all these technologies remain efficient in 
this analysis, revealing their robustness and solid environmental performance.

Conversely, technologies on the left side of the diagonal, such as Li-Ni-Mn-Co, Na-Ni-Cl, LA, ZBFB, 
and VRFB, benefit from increased weight on environmental indicators. They improve their median 
performance scores from 0.98, 0.4, 0.24, 0.07, and 0.03, respectively, to 1, 0.84, 0.81, 0.7, and 0.57. 
This improvement is sufficient for Li-Ni-Mn-Co to become efficient. However, despite enhancing their 
median performance scores, the rest remain inefficient, although with improved competitiveness against 
efficient technologies. The relative ranking of the technologies remains unaffected by increasing the 
weights of environmental indicators, indicating consistency with the analysis presented in section 3.1. 

Shifting our focus to long-term energy storage alternatives, we represent them with ovals colored 
according to their category to maintain clarity in the figure. Located on the right side of the diagonal, 
green options such as hydrogen derived from water electrolysis fueled by solar (“H2, WE-Solar”) and 
wind energy (“H2, WE-Wind”), as well as ammonia sourced from solar (“NH3, WE-Solar”), wind 
(“NH3, WE-Wind”), and hydropower (“NH3, WE-Hydropower”), exhibit a decline in performance
scores when greater emphasis is placed on environmental indicators. Indeed, allocating more weight to 
the environmental indicators results in a lower weight to employment indicators. Since these 
alternatives are efficient mainly because of their job creation opportunities, in turn, they report a 
decrease in their performance score. Despite this decline, these options maintain performance,
underscoring their reliability for environmentally conscious applications.
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Figure 5: Median performance score obtained of medium-term and long-term energy storage options 
with and without predefined weights for the input and out indicators, under uncertainty.

Conversely, alternatives to the left of the diagonal experience an uptick in median performance
compared to the original DEA results. This includes blue and grey options alongside power-to-hydrogen 
technologies utilizing water electrolysis powered by hydropower energy (“H2, WE-Hydropower”). Note 
that since DEA is a relative comparison, an increase in performance of these alternatives is obtained 
because performance of green alternatives decreases in this analysis (i.e., employment indicator effect).
Therefore, an improvement in their performance score does not mean that they are environmentally 
friendly choices. Furthermore, none achieves performance beyond one. Notably, like medium-term 
options, the variance between the highest and lowest median performance scores under unequal 
weighting is reduced (i.e., 1.02-0.73 vs. 1.26-0.23). In both analyses, “NH3, WE-Solar” attains the 
highest median performance, while “H2, CG” exhibits the lowest median score.

4 CONCLUSIONS

This study used data envelopment analysis to assess energy storage technologies, considering data 
uncertainty through 100 scenarios. NiCd emerged as the most efficient medium-term option, with a 
median performance score of 1.61, followed by NaS and Li-ion batteries suitable for electric vehicles. 
Conversely, VRFB and ZBFB were identified as the most inefficient, prompting the establishment of 
improvement targets for competitiveness. Among long-term alternatives, green options like hydrogen 
and ammonia from renewable sources demonstrated performance, while grey hydrogen from coal 
gasification and SMR processes proved inefficient. Despite the efficacy of green alternatives,
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challenges persist in marketability and practical applications, necessitating comprehensive 
considerations beyond performance scores. Furthermore, efficient options identified in each cluster 
maintained their position by emphasizing attention to environmental indicators. These findings 
underscore the reliability of the evaluation and selected technologies to be used for energy storage. It is 
important to note that even inefficient options may have unique roles in specific applications/locations.
Moreover, ongoing innovation in these technologies suggests potential for performance gains over time.
Improvement targets highlight the need for reductions in indicators like LCOS and energy consumption, 
guiding developers in technology enhancement.

Researchers can leverage these findings to prioritize efforts aimed at enhancing the overall performance
of each energy storage option. Further, policymakers are urged to incentivize the adoption of efficient 
technology and explore hybrid energy storage solutions to meet evolving energy needs effectively.

NOMENCLATURE

Λ Intensity vector that reports the weight of each DMU (–)
Ƭ* Performance of the DMUo (–)
m Number of inputs (–)
s1 Number of desired outputs (–)
s2 Number of undesired outputs (–)
Si

- Slack of inputs in the SBM model (–)
Sr

g Slack of desired outputs in the SBM model (–)
Srb Slack of undesired outputs in the SBM model (–)
t Charnes-Cooper linear transformation coefficient (–)
xio Input i related to the DMUO (–)
X Matrix of inputs (–)
yro

g Desired output r related to the DMUO (–)
yro

b Undesired output r related to the DMUO (–)
Yg Matrix of desired outputs (–)
Yb Matrix of undesired outputs (–)
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