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ABSTRACT

In this paper, multi-layer feed forward neural networks are used to predict the chemical exergy, 
hydrogen mole fraction, carbon monoxide mole fraction, and methane mole fraction during gasification 
of Brazilian wastes biomasses during gasification in a bubbling fluidized bed reactor. These artificial 
neural networks (ANNs) with different architectures are trained using the Adam back-propagation 
algorithm and a cross validation is also performed to ensure that the results generalize to other unseen 
datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of 
neurons in the hidden layer and activation function in a network. Ten input and four output parameters 
are used to train and test various neural network architectures in single output prediction paradigms 
using the available experimental datasets. The model selection procedure is carried out to ascertain the 
best network architecture in terms of predictive accuracy. The simulation results show that the ANN 
based methodology is a viable alternative which can be used to predict the performance of a bubbling 
fluidized bed gasifier.

1 INTRODUCTION

Biomass is a significant source of sustainable energy, holding the potential to reduce dependence on 
fossil fuels and cut down CO2 emissions. In Brazil, biomass plays a vital role, contributing 25.5% to 
the nation's internal energy supply (Thraen and Shaubach, 2017; Habib et al., 2023). The abundant 
biomass resources in Brazil provide an opportunity to convert biomass wastes into valuable energy 
commodities like hydrogen, ammonia, and power, offering a way to decrease greenhouse gas emissions, 
energy consumption, waste disposal costs, and environmental impacts. Diverse materials such as 
sugarcane bagasse, orange bagasse, corn, and coffee residues are available for bioenergy production. 
Thermochemical routes, particularly the synergy between air separation and biomass gasification 
techniques, have been explored to harness biomass conversion and valorization technologies (Sapali S, 
2013).
Vargas, Flórez-Orrego and de Oliveira Junior, 2023 argue the shift towards renewable energies in 
chemical sectors to reduce fossil fuel dependency. This paper emphasizes the potential of residual 
biomass, like sugar cane and sewage sludge, for environmentally friendly fuel production. The study 
optimizes biomass-based biochemical routes, aiming for negative emissions and increased circular 
economy efficiency. Achieving an overall negative emission balance, the hydrogen and ammonia 
production routes remove substantial CO2 from the atmosphere.
Recent developments have explored alternative modeling techniques to optimize biomass conversion 
processes, with ANNs being widely employed. ANNs offer shorter processing times for system output 
prediction and optimization, effectively capturing non-linear relationships between input and output 
parameters. Several studies have utilized ANNs to predict gasification parameters, such as Mikulandric 
et al. (Mikulandrić et al., 2014) and Serrano et al. (Serrano, Golpour and Sánchez-Delgado, 2020),
showcasing robust correlations with experimental studies.
Vargas and Oliveira Jr, 2023 developed an ANN prediction model for a green electric energy generation 
process through the gasification of Brazilian biomass residues. Utilizing various biomass sources, 
including sugarcane and orange bagasse, sewage sludge, corn residues, coffee residues, eucalyptus 
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residues, and municipal waste. The three-layer feed-forward neural network demonstrated high 
accuracy (R² > 0.993).
In light of this information, the objective of this study is to use Brazilian waste biomass for prediction 
of chemical exergy and H2, CO, and CH4 mole fractions, particularly in gasification plants. Aspen Plus®

simulator (ASPENTECH, 2011) replicated the bubbling fluidized bed gasifier, providing data on 
gasification. This information was used to formulate a comprehensive ANN model, introducing an 
innovative approach to evaluating properties through machine learning techniques on simulation data 
and computing pivotal parameters as performance indicators. In this research, computational 
frameworks originating from methods of artificial intelligence are utilized to comprehend the non-linear 
mapping challenge. These varieties of frameworks have the capability to forecast the efficiency of 
intricate systems (encompassing gasification). As a result, this investigation is concentrated on 
leveraging the potential of the ANN methodology to assess the performance of Brazilian biomass waste 
gasification in a fluidized bed reactor.

2 Material and Methods

2.1 Biomass characterization

Evaluating biomass samples significantly improves gasification system efficiency and enhances 
synthesis gas quality. Biomass characteristics, including fixed carbon (FC), ash content, volatile matter 
(VM), and moisture (M), are determined through Proximate and Ultimate analyses measuring carbon 
(C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) levels. In this study, ten biomass samples 
from existing literature (see Table 1) were chosen as primary raw materials, with results summarized in 
Table 1.

Table 1: Proximate (%) and Ultimate (%) analysis results of selected biomass samples for training of 
the ANN model.

Biomass M FCdb VMdb Ashdb C H N S Cl O REF.
Sugar cane bagasse 50.00 14.32 83.54 2.14 46.70 6.02 0.17 0.02 0 44.95 (Ardila et al., 2012)
Sewage sludge 18.40 7.60 64.90 27.50 33.90 6.30 5.88 0.67 0.21 25.50 (Languer et al., 2020)
Sugar cane straw 
waste 31.30 12.80 20.60 13.00 49.00 5.60 0.80 0.30 0 44.00 (Franco Jacome, 

2014)

Coffee waste 8.88 14.48 75.85 0.79 49.33 5.86 0.66 0.04 0 43.24 (Manrique et al.,
2020)

Eucalyptus waste 7.73 16.38 74.91 0.98 48.65 6.16 0.28 0 0 44.91 (Guerrero et al.,
2005)

Urban municipal 
waste 49.16 13.94 71.83 14.23 42.04 5.90 0.66 0.10 0 29.87 (Gutierrez-Gomez et 

al., 2021)
Orange bagasse 9.23 13.20 30.60 6.20 46.40 5.54 1.70 0 0 40.15 (Alves et al., 2020)

Corn waste 60.29 12.62 84.22 0 47.54 6.33 1.32 0.08 0 42.22 (Pan-In and Sukasem, 
2017)

Banana stem 12.56 9.96 80.27 8.00 39.00 7.30 0.82 0 0 54.84 (Rambo, Schmidt and 
Ferreira, 2015)

Coconut shell 15.98 19.40 72.90 0.80 46.60 7.10 0.32 0 0 41.80 (Akogun and 
Waheed, 2019)

M, moisture content; VM, volatile matter content; FC, fixed carbon content; db, dry basis.

2.2 Modeling and simulation of the gasification systems

Figure 1 presents the configurations for biomass waste gasification, as based on (Flórez-Orrego, 
Maréchal and de Oliveira Junior, 2019; Domingos et al., 2021; Vargas, Flórez-Orrego and de Oliveira 
Junior, 2023). The simulations are conducted using Aspen Plus® software (ASPENTECH, 2011), with 
the equation of state being the Peng-Robinson EoS with Boston-Mathias modifications. The model for 
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waste biomass gasification employs the Battelle Columbus Laboratory (BCL) indirect gasifier, which 
operates at atmospheric pressure with steam serving as the gasification medium. This arrangement 
prevents nitrogen dilution in the produced syngas by using a separate double-column system for the 
combustion and gasification processes (Kinchin and Bain, 2009). Subsequent to the gasifier, thermal 
catalytic cracking of the produced tar takes place. For more detailed information on the model and 
simulation see (Vargas, Flórez-Orrego and de Oliveira Junior, 2023).

Figure 1: Syngas production from biomass gasification—process modeling approach for ANN 
analysis.

2.3 Artificial neural network design

The ANN mimics biological processes, simulating the human brain's behavior and learning. As univer-
sal approximators, ANNs make predictions based on existing data, finding use in data-driven research 
where predictive accuracy is vital. Despite widespread application, there is limited literature on using 
ANNs for Brazilian biomass gasification modeling. The multilayer feed-forward neural network in Fig-
ure 1 illustrates its structure with multiple inputs and one output variable. It uses non-linear transfer 
functions and the Adam enhancement algorithm for optimization (Kingma and Ba, 2014). This algo-
rithm combines RMSProp and Momentum, managing both adaptable learning rates and momentum 
effectively. Adam is computationally efficient, requiring minimal memory, crucial for extensive-scale 
scenarios. It remains unaffected by diagonal rescaling of gradients, addressing challenges like saddle 
points or meager gradients. Adam has shown commendable outcomes in diverse neural network sce-
narios. The ANN model incorporates ten process parameters: carbon, hydrogen, nitrogen, sulfur, oxy-
gen, moisture content, ash, fixed carbon, volatile materials, and gasifier temperature. To manipulate the 
data it was used the library Pandas (Team, 2020), and the TensorFlow package available within the 
Python environment was employed (Abadi et al., 2022). This package facilitates the training of an Ar-
tificial Neural Network by estimating the weights between neurons in consecutive layers, effectively 
simulating synapses.
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Figure 2: Architecture of Feedforward Neural Network employed in this work.

2.4 Proposed approach of ANN based methodology and optimization of the model 
parameters

The methodology in Figure 3 proposes an optimal neural network architecture by varying hidden layers, 
transfer functions, neuron quantities, and learning rates. Each configuration undergoes 50 runs to 
minimize training error and avoid local minima during weight/bias tuning. Model performance is 
assessed using metrics like mean absolute error (MAE) and root mean squared error (RMSE). Mean 
squared error (MSE), a common metric for training ANNs, represents the average squared difference 
between predicted and experimental values.

Figure 3: Flowchart of the proposed methodology.
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In the scenario, four ANNs cater to chemical exergy, and the mole fractions of H2, CO, and CH4. An 
exploration of internal network parameters, including hidden layer characteristics, neuron quantity, and 
transfer function, is conducted. Determining the optimal number of neurons in the hidden layer is 
crucial, impacting the balance between predictive accuracy on training data and generalization to
untrained data. This study challenges the traditional trial-and-error method, employing a rigorous cross-
validated accuracy check. Addressing inconsistencies and premature convergence during weight and 
bias optimization, the study adopts multiple randomizations of the optimizer and data shuffling in 
training, validation, and testing sets. This ensures accurate error estimates and aids in determining the 
best-suited ANN architecture. The balance challenge between predictive accuracy and generalization 
capability is carefully considered.
In summary, the study explores training ANNs for biomass gasification modeling complexities and 
advances the traditional supervised learning data analysis workflow. The approach in Figure 3 serves 
as a guideline for deciding optimal hidden layers, neuron quantities, and activation functions in ANN-
based models. Multiple runs and robust error estimation contribute to the reliability and accuracy, 
marking a significant advancement in this field.

3 RESULTS AND DISCUSSIONS

The models were trained and tested using a combination of the non-linear sigmoid and linear ReLu 
activation functions in the hidden layer. The dataset used to develop the ANN model contains 12,000 
records of which 70% are used for training, 15% for testing, and 15% for validating the ANN model. 
Additionally, the input datasets are normalized by maximum and minimum values, and they are 
randomized for each iteration, meaning that for each step of the optimization of the hidden layer, 10-
fold cross-validation was employed.
The networks are trained with various numbers of hidden neurons in a hidden layer with different 
combinations of transfer functions. The performance of the network is evaluated based on MSE. The 
ANN architecture with the lowest MSE indicates a better model (the best model is represented in the 
figures below by a red 'x' for different by-products and properties) in terms of predictive accuracy.
The graphs in Figure 4 provide a three-dimensional view of the best prediction accuracy for the double-
layer model. These graphs are useful for identifying optimal combinations when tuning an ANN 
regression model. They serve as a graphical visualization as the number of neurons in the layers varies. 
The color of the point, determined by MSE, is presented on the side scale axis, where the x and y axes 
represent the number of neurons in hidden layer (HL) 1 and 2, respectively, while the z axis presents 
the model's learning rate (LR). The optimal number of neurons in the hidden layers for the models is 
shown in Table 2 based on the reported minimum MSE, in percent.
Thus, the models that exhibit better predictive accuracy when the sigmoid transfer function are used in 
both layers. However, it is noteworthy that the model for predicting the mass fraction of carbon 
monoxide showed very close MSE values for the combination of sigmoid/sigmoid activation functions 
(HL1 = 19 and HL2 = 6 with LR = 0.01) and ReLu/sigmoid (HL1 = 19 and HL2 = 9 with LR = 0.001) 
with MSE equal to 0.0124% and 0.0128%, respectively.
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Figure 4: Combination plot of MSE for double layer models (a) Chemical Exergy, (b) y_CH4, (c) y_CO 
and (d) y_H2.

Figure 5 displays training graphs for different products. The ANN model's accuracy for chemical exergy 
conversion in the training set has a high R² value of 99.81%, indicating a great match. The mean square 
error (MSE) is low, 0.0112%, attributing to the effective ANN weight estimation using 70% of the 
dataset for training. The residues histogram in Figure 5b supports the agreement between observed and 
predicted values, displaying an average near zero. For carbon monoxide modeling (Figure 5e), the R² 
value is lower at 99.12%, but still considered excellent. The corresponding histogram (Figure 5f) shows 
values close to zero, reinforcing the model's reliability.
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Table 2: Training performance of the best ANN configuration.

Property Activator MSE (%) Hidden 
Layer 1

Hidden 
Layer 2

Learning 
Rate

Exergy Sigmoid/Sigmoida 0.0112 20 4 0.01
Exergy Relu/Sigmoid 0.0320 19 9 0.001
Exergy Sigmoid/Relu 0.0408 17 9 0.001
y_CH4 Sigmoid/Sigmoida 0.0436 16 8 0.01
y_CH4 Relu/Sigmoid 0.1036 20 4 0.01
y_CH4 Sigmoid/Relu 0.6953 17 5 0.01
y_CO Sigmoid/Sigmoida 0.0124 19 6 0.01
y_CO Relu/Sigmoid 0.0128 19 9 0.001
y_CO Sigmoid/Relu 0.0287 20 8 0.01
y_H2 Sigmoid/Sigmoida 0.0268 17 9 0.01
y_H2 Relu/Sigmoid 0.0850 20 10 0.001
y_H2 Sigmoid/Relu 0.3187 18 2 0.01
aCorresponds to the optimum NN model for the prediction of gasifier performance.
y: molar fraction

On the other hand, Figure 6 illustrates testing graphs, with Figure 6c showcasing the ANN model's 
accuracy for hydrogen mole fraction prediction on the training set, displaying a remarkable fit with a 
high R² of 99.31% and a low MSE of 0.0256%. The testing set, representing 15% of the dataset, was 
used for ANN weight estimation. The residual histogram in Figure 6b supports the strong agreement 
between observed and predicted values, with an average close to zero. Again, despite the lowest R² at 
98.92% for carbon monoxide (Figure 6e), the model is still considered excellent, confirmed by the 
close-to-zero values in its residual histogram (Figure 6f).

Figure 5: Comparison between training set for: (a) predicted and observed chemical exergy (b), 
histogram of residues for the chemical exergy, (c) predicted and observed hydrogen mole fraction 

(d), histogram of residues for the hydrogen mole fraction, (e) predicted and observed carbon 
monoxide mole fraction, (f) histogram of residues for the carbon monoxide mole fraction, (g) 
predicted and observed methane mole fraction and (h) histogram of residues for methane mole 

fraction.

Finally, Figure 7 presents graphs illustrating the validation phase of the ANN model. In Figure 7c, 
focusing on predicting hydrogen mole fraction, the model exhibits an exceptional fit with a high R² of 
99.11% and a low MSE of 0.0476. This testing set, representing 15% of the dataset, played a crucial 
role in estimating ANN weights, providing insights into the model's generalization. The residual 
histogram (Figure 7b) supports robust agreement between observed and predicted values.
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The analysis extends to predicting carbon monoxide levels (Figure 7e), registering the lowest R² during 
testing at 98.58%, still within the excellent range. The residual histogram (Figure 7f) underscores the 
model's consistency in producing residuals close to zero, affirming its reliability in predicting carbon 
monoxide concentrations.

Figure 6: Comparison between tasting set for: (a) predicted and observed chemical exergy (b), 
histogram of residues for the chemical exergy, (c) predicted and observed hydrogen mole fraction 

(d), histogram of residues for the hydrogen mole fraction, (e) predicted and observed carbon 
monoxide mole fraction, (f) histogram of residues for the carbon monoxide mole fraction, (g) 
predicted and observed methane mole fraction and (h) histogram of residues for methane mole 

fraction.

Figure 7: Comparison between validation set for: (a) predicted and observed chemical exergy (b), 
histogram of residues for the chemical exergy, (c) predicted and observed hydrogen mole fraction 

(d), histogram of residues for the hydrogen mole fraction, (e) predicted and observed carbon 
monoxide mole fraction, (f) histogram of residues for the carbon monoxide mole fraction, (g) 
predicted and observed methane mole fraction and (h) histogram of residues for methane mole 

fraction.

As illustrated in Figure 8, the training and validation curves exhibit consistent patterns, attaining their 
lowest error values at different epochs. The ANN model underwent specific iterations for each target 
variable, with chemical exergy reaching 100 epochs in Figure 8a, hydrogen at 110 epochs in Figure 8b, 
carbon monoxide at 200 epochs in Figure c, and methane at 290 epochs in Figure d. Throughout these 
iterations, the MSE consistently decreased, ultimately converging to a minimum plateau. This visual 
representation not only aligns with previous findings in literature (Yoru, Karakoc and Hepbasli, 2009; 
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Ozonoh et al., 2020) but also indicates the absence of overfitting in the well-trained model. Thus, the 
ANN model demonstrates robust generalization capabilities.
It is noteworthy that, during the validation phase, methane exhibited higher instability in MSE compared 
to other variables, signifying potential challenges in accurately predicting methane concentrations.

Figure 8. Mean square error value during the training and validation of ANN model: (a) chemical 
exergy model, (b) H2 Model, (c) CO Model and (d) CH4 Model.

In Table 3, the predicted and calculated values of synthesis gas properties from gasification are listed 
with the relative error (%) for selected biomass samples used in the validation set.
As observed in Table 3, the developed ANN model in this study exhibited high proficiency in estimating 
the values of synthesis gas properties at the point with the best architectures suggested by the 
optimization process. The error values were found to be between 23% and 2.6% for biomass samples 
used in the training, testing, and validation sections of the ANN model.
The gasification temperature is another critical parameter influencing the composition of synthesis gas, 
particularly the H2 content (AlNouss et al., 2020). Due to the complex interplay of exothermic and 
endothermic reactions, the chemical equilibrium state is directly influenced by the gasification 
temperature. Higher temperatures favor the chemical equilibrium towards the reactant side for 
exothermic reactions, while endothermic reactions shift towards the product side following Le 
Chatelier's principle. 
The error values indicate that the ANN model accurately predicted the values of properties in synthesis 
gas originating from gasification for biomass samples in both training and additional validation studies. 
Even for biomass with different physicochemical characteristics, such as orange bagasse and sugar cane 
bagasse, the error values are very small. These results support the validity of the model, emphasizing 
that there is no overfitting in the ANN model.  
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Table 3: The relative error value (%) in syngas and exergy for different gasification temperature 
(biomass samples for training).

Biomass
Gasification 
Temperature

(°C)
bch Calc. 
(MJ/kg)

bch Pred.
(MJ/kg) Error (%)

Sugar cane bagasse 850 19.43 20.23 4.2
Sewage sludge 900 18.13 17.02 6.1
Coffee waste 870 15.46 17.21 10.1
Eucalyptus waste 850 15.76 16.35 3.7
Urban municipal waste 970 17.34 18.87 8.8
Orange bagasse 820 15.54 17.26 11.1
Banana stem 830 16.13 18.21 12.8

Biomass
Gasification 
Temperature

(°C)
y_CO Calc. 

(M.F)

y_CO 
Pred.
(M.F)

Error (%)

Sugar cane bagasse 850 0.2543 0.2343 7.8
Sewage sludge 900 0.2243 0.1743 22.2
Coffee waste 870 0.2165 0.2665 23.0
Eucalyptus waste 850 0.2398 0.2188 8.7
Urban municipal waste 970 0.2476 0.2616 5.6
Orange bagasse 820 0.2387 0.2044 14.3
Banana stem 830 0.2287 0.2687 17.4

Biomass
Gasification 
Temperature

(°C)
y_H2 Calc. 

(M.F)

y_H2

Pred.
(M.F)

Error (%)

Sugar cane bagasse 850 0.5598 0.5398 3.5
Sewage sludge 900 0.5972 0.5472 8.3
Coffee waste 870 0.5238 0.5738 9.5
Eucalyptus waste 950 0.5786 0.5576 3.6
Urban municipal waste 870 0.5196 0.5336 2.6
Orange bagasse 820 0.5458 0.5115 6.2
Banana stem 830 0.5519 0.6319 14.4

Biomass
Gasification 
Temperature

(°C)
y_CH4 Calc. 

(M.F)

y_CH4

Ped.
(M.F)

Error (%)

Sugar cane bagasse 850 0.0254 0.0234 7.8
Sewage sludge 900 0.0328 0.0278 15.2
Coffee waste 870 0.0298 0.0348 16.8
Eucalyptus waste 850 0.0197 0.0176 10.6
Urban municipal waste 970 0.0222 0.0236 6.2
Orange bagasse 820 0.0265 0.0231 12.9
Banana stem 830 0.0231 0.0271 17.2

bch : specific chemical exergy (MJ/kg)

4 CONCLUSIONS
This study presents a neural network (ANN) model trained using the Adam algorithm, incorporating a 
combination of activation functions such as Sigmoid and ReLU. This model was utilized to predict the 
exergy yield and molar fractions of H2, CH4, and CO. The input data comprised residues from Brazilian 
biomass utilized in a double-column BCL gasifier, encompassing process parameters and elemental 
composition. Furthermore, it introduces an optimization method for selecting the hyperparameters of 
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the ANN. The obtained results demonstrate that the predictive performance of the explored ANN 
models aligns well with simulated datasets, suggesting that ANNs can serve as an alternative method 
for modeling complex thermochemical processes. The trained ANN models exhibited high precision
and performance, achieving R2 values above 98% in all cases, with the MSE considered sufficiently 
low. While the initial application of this new approach provided valuable insights into equilibrium 
modeling, it is advisable to calibrate the ANN model with more data due to its self-adaptive nature and 
reliance on data, without significant prior assumptions about the model's structure. The trained ANN 
model can effectively predict the performance of similar gasifiers operating under comparable 
experimental conditions. However, it is crucial to retrain the model if there are changes in the physical 
parameters at the input of the regression problem. Additionally, caution is warranted when applying the 
same ANN prediction model to heterogeneous data originating partially or entirely from different 
experimental protocols. This may necessitate dividing the prediction problem into smaller subproblems, 
sharing common points to enhance prediction accuracy.
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