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ABSTRACT 
This paper focuses on the correct assessment of the total cost and sizes of the energy conversion and 
storage units of multi-energy systems operating under uncertain energy market conditions. The 
objectives are to: i) find the best set of representative days of uncertain electricity and natural gas prices, 
global solar irradiance and air temperature, with a special focus on prices, influenced by unpredictable 
socio-economic events; ii) assess the impact of the representative days, including the extreme ones, on 
the optimal total cost and unit sizes of a multi-energy system. An available historical dataset (2010-
2022) of time series is divided by shifting the “present” moment back to 2018 to use the previous period 
as “past” training dataset (2010-2018) and the subsequent period as two (independent) “future” testing 
datasets, featured with different price stability, corresponding to a pre- (2019-2020) and a post- (2021-
2022) Russia-Ukraine war scenario, respectively. The novel methodology consists in comparing the 
“annual” and “seasonal” clustering approaches to obtain, respectively, sets of representative days of 
the uncertain variables in the entire training dataset or in the training dataset divided into seasons, also 
considering different criteria to evaluate the extreme days of electricity price and thermal demand. A 
Mixed-Integer Linear Programming model of the system is used to optimize the sizes and operation of 
its units, minimizing the total investment and operational costs in the training dataset. Subsequently, 
the optimal sizes are fixed to optimize the operation in the two testing datasets. The optimal total cost 
and sizes are compared with “perfect knowledge” solutions obtained considering all the time series 
really occurred in the two testing datasets. Key results highlight that the error of the optimal total cost 
with respect to the “perfect knowledge” solutions is about 2.5-4% with clustering, compared to 9-17% 
with the “state-of-the-art” hourly profiles averaged on months or seasons, respectively. This error is 
higher using seasonal clustering than annual clustering for a number of representative days higher than 
12. Moreover, the extreme days of electricity price do not bring a relevant gain in the solution accuracy 
because they are very similar to the typical ones in the pre-war scenario and their weight is small in the 
post-war scenario, given the higher values of the real prices in the period 2021-2022. In contrast, the 
extreme days of thermal demand are necessary to guarantee a feasible solution. 
 
Keywords: Multi-energy systems, Clustering, Design-operation optimization 

 
1. INTRODUCTION 

1.1 Literature review 
Uncertainty can be defined as “any deviation from the unachievable ideal of completely deterministic 
knowledge of the relevant system” (Walker et al., 2003). Clearly, several aspects of an energy system 
are affected by uncertainty: climatic conditions, prices of energy carriers, energy demand, technical 
performances and investment costs, as suggested by Zhang et al. (2019) and Mavromatidis et al. 
(2018a). Several approaches are developed to deal with the optimization of energy systems under 
uncertainty. Zhang et al. (2019) carried out a sensitivity analysis to study the impact of twelve uncertain 
parameters on the convenience of a Distributed Energy system (DES) with respect to a conventional 
energy system (CES), where the grid is the only energy source. Mavromatidis et al. (2018a) investigated 
which uncertain parameters are the most relevant for the design and operation of Distributed Energy 
Systems (DES), performing global sensitivity analysis by using Morris Sobol methods. Gomes et al. 
(2021) developed a model for management and operation planning of a microgrid, modelling it as a 
two-stage stochastic problem.
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Ghaemi et al. (2021) used a two-stage stochastic programming model to optimize a district energy 
system. Golombek et al. (2022) built a multi-stage stochastic model to see the role of transmission and 
energy storage in Europe in 2050. Chen et al. (2019) used a two-stage robust optimization model to 
optimize an energy hub under uncertainties. Franke et al. (2020) compared deterministic and stochastic 
solutions obtained from a multi-objective optimization of a distributed energy system under uncertainty, 
finding that stochastic solutions are more robust. However, according to Zhou et al. (2013), stochastic 
programming does not lead to significant solution improvements compared to a deterministic 
optimization approach, so a deterministic model for the design is preferred due to the computational 
efficiency. In the previous cases, the complexity of the developed models for the design and operation 
of energy systems is crucial. In fact, computational burdens limit the optimization process, forcing to 
aggregate input data and, consequently, losing quality on the optimal solution (Kotzur et al., 2018). 
Such a solution must be accurate with respect to a reference optimal one, without entailing an 
unaffordable computational time. A way to address this issue is to carry out the optimization based on 
the representative periods (in this paper, these are days) instead of the full-scale optimization, i.e., 
considering all days of the input datasets. As highlighted by Mavromatidis et al. (2018b), solving the 
optimization based on the representative periods corresponds to a deterministic solution approach.  
One of the most common ways to generate such representative days, excluding Monte Carlo simulation 
(Ghaemi et al., 2021) or discrete approximation from probability density functions (Liu et al., 2022), is 
to use clustering techniques, which allow reducing the computational effort by aggregating similar days. 
A perfect clustering process should reduce the computational time by orders of magnitude while 
representing all information of the original dataset (Teichgraeber and Brandt, 2019). Different 
clustering algorithms could be used, as presented by Paparrizos and Gravano (2015), Merrick (2008) or 
Zatti et al. (2019), who developed k-MILP, a clustering approach derived from k-medoids to generate 
typical and a-typical days. However, k-means is one of the most commonly used algorithms: Fazlollahi 
et al. (2014) used k-means in the study of multi-objective optimization of distributed energy systems, 
while De Lima et al. (2021) chose it to generate scenarios for two-stage stochastic models. Despite this, 
the literature lacks a definition of the most appropriate algorithms for the design of energy systems, 
although comparisons are presented in Teichgraeber and Brandt (2019) or Pfenninger et al. (2017). 
Furthermore, authors adopted different approaches to represent the input dataset, including extreme 
scenarios or seasonal clusters (Kotzur et al., 2018), without an exhaustive explanation of why they do 
so. On the other hand, this paper focuses on the design and operation optimization of a multi-energy 
system under the uncertainty of unpredictable variables, highlighting the impact of the different 
clustering approaches on the optimal design, i.e., the sizes of components, of future multi-energy 
systems. 
 
1.2 Goals and novelty 
The following gaps have been identified in the literature: 

 A clear explanation of the benefits of using a specific clustering approach in the optimal design 
of a Multi-Energy System (MES). Often, results do not highlight the need of checking accuracy 
of obtained solutions by using really occurred data.  

 Possible benefits of applying clustering to seasonal datasets, i.e., generating seasonal clusters. 
Indeed, some authors (De Lima et al., 2021) used them without motivating this choice. 

 A clear explanation of the advantages of including extreme days in the set of representative 
days found by clustering.  

This paper aims to fill in the above-mentioned gaps in the design and operation optimization of a local 
MES that meets an aggregated residential energy demand. The goals are to i) find the best set of 
representative daily time series of uncertain electricity and natural gas prices, global solar irradiance 
and air temperature, and ii) assess the impact of these time series, including the extreme ones, on the 
optimal total cost and unit sizes of a MES.  
The methodology is based on splitting an available historical dataset (2010-2022) by shifting the 
“present” moment back to 2018 to use the previous period as “past” training dataset (2010-2018) and 
the subsequent period as two independent “future” testing datasets, corresponding to a pre- (2019-2020) 
and a post- (2021-2022) Russia-Ukraine war scenario, respectively. The annual and seasonal clustering 
approaches are applied to obtain representative days of electricity and natural gas prices, global solar 
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irradiance and air temperature in the training dataset. The annual approach identifies representative 
days using the entire training dataset, whereas the seasonal approach first divides the training dataset 
into seasons and then identifies representative days for each season. A Mixed-Integer Linear 
Programming (MILP) model of the MES, solved for the representative days found by clustering, is used 
to optimize the sizes and operation of its units by minimizing the total investment and operational costs 
in the training dataset. Subsequently, the optimal design configurations of the system are tested (i.e., 
fixed) in the pre- and post-war scenarios. The optimal total cost found in the two scenarios and sizes of 
the units are compared with “perfect knowledge” solutions, obtained using all the time series occurred 
in these scenarios. The advantages of the seasonal clustering approach and the criteria to include 
extreme days are also discussed. Figure 1 shows the steps of the methodology proposed.  

Figure 1: Flowchart of the analysis of the MES. 
 

The novelties of this work can be summarized as follows: 
1. The application of the annual and seasonal clustering approaches to obtain different sets of 

representative days. Their impact on the optimal cost and unit sizes of a MES is assessed in 
comparison to the state-of-the-art approach (which considers average seasonal or monthly 
profiles). Contrary to the main literature, which presents an analysis of several clustering 
algorithms (e.g., k-means, k-medoids, etc. (Pfenninger et al., 2017)), this paper focuses on the 
comparison between the annual and seasonal clustering approaches. Extreme days of 
electricity price and thermal demand are taken into account, as proposed by Kotzur et al. (2018), 
by i) null (extreme days are neglected), ii) replacing (extreme days replace the representative 
days of their belonging clusters), or iii) adding (extreme days become the representative days 
of additional clusters) criteria. 

2. The evaluation of the accuracy of the optimal system cost and unit sizes in two different testing 
datasets, reflecting the increased variability of prices in Italy from the period before the Russia-
Ukraine war (i.e., 2019-2020) to the subsequent period (i.e., 2021-2022). 

 
2. METHODOLOGY 

2.1 Optimization model of the residential multi-energy system 
Figure 2 shows the residential Multi-Energy System (MES) under analysis. The MES includes a 
photovoltaic (PV) plant, an Electrical Energy Storage (EES) unit, a cogeneration (CHP) unit, a natural 
gas-fired boiler and a Thermal Energy Storage (TES).  
The optimization aims at minimising the total cost (investment and operational costs) of the system 
with an hourly resolution. The optimization model is formulated as a Mixed-Integer Linear 
Programming (MILP) and includes the following decision variables: design continuous and binary 
variables representing the sizes of the units and their inclusion/exclusion in the design configuration, 
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respectively; operational continuous and binary variables representing the energy flows of dispatchable 
conversion units/storage units and their on/off status, respectively. 

Figure 2: Residential multi-energy system under analysis.  

In the following equations, index t represents the total time, including the hour h, day d and year y. The 
constraints of the MILP model include the characteristic curves of the energy conversion units, the 
energy balances and the techno-economic constraints. For reasons of space, only the most relevant ones 
are presented. The electrical power generated by PV is:  

(1) 
where  is the area of the PV system,  is the global solar irradiance on the tilted plane,  is 
the efficiency of the PV system, which depends on the air temperature and  is the balance of system 
efficiency. The characteristic curves of CHP are obtained through interpolation from data given by 
manufacturers: 

(2) 
(3) 
(4) 

where  and  are the power and heat generated, while  is the fuel consumed.  
and  are binary variables representing the on/off status of the CHP and its inclusion/exclusion 
in the design configuration, respectively.  
The fuel consumption of the boiler is: 

(5) 
where  is the heat produced and  is the efficiency. 
The constraints of the EES are:  

(6) 

(7) 
(8) 
(9) 

In Eq. (6)  is the energy stored at time t,  is the energy at the previous time t-1, 
 is the self-discharge capacity of the system,  ( ) is the energy discharged 

(charged) and   is the EES round trip efficiency. In constraints (7),   and  are the 
minimum and maximum state of charge, while  represents the size of the EES. Eq. (8) indicates 
that the energy level at the end of each day is set, implying only intra-day storage. This is 
required because each representative day is independent from each other. Alternatively, other 
approaches (Gabrielli et al., 2018) could be adopted. Constraints (9) bound the minimum and maximum 
charging (discharging) power, with  corresponding to the hourly resolution. The big M method is 
adopted to prevent the EES to charge and discharge simultaneously. The constraints of the Thermal 
Energy Storage (TES) are similar to those of the EES. 

(10) 
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The big M method is used to prevent the system to buy/sell energy from/to the grid simultaneously. 
The total electric energy balance is: 

(11) 
The total thermal energy balance is: 

(12) 
The total cost, evaluated as sum between the investment cost (Eq. (14)) and the operational cost (Eq. 
(15)), is the objective function to minimize. For a full-scale optimization problem, it can be written as:  

(13) 

(14) 

(15) 

In Eq. (14), u refers to a specific unit and 1/α is the amortization factor, assuming the system lifetime 
equal to 20 years. r is the interest rate, equal to 4%. and  represent the fixed and the 
variable costs for a given unit, respectively.  is the binary variable describing the 
inclusion/exclusion of the unit, while  is its size. In Eq. (15),  
indicates the operational costs of CHP and boiler, where  is the price of natural gas, 

 is the cost for purchasing electricity from the grid and 
 is the revenue obtained by selling energy to the grid. 

In case N representative days are used in the optimization, the objective function is: 

(16) 

where wd is the weight of the representative day d in the entire training dataset. 
The accuracy of the optimal design solution found in the training dataset (2010-2018) is assessed in two 
distinct testing datasets, representing two scenarios of the “future”: a predictable one with prices before 
the Russia-Ukraine war (2019-2020), and a more unpredictable one with post-war prices (2021-2022). 
Details are already indicated in Section 1.2. In summary, the following MILP optimization models are 
considered: 

1. “Perfect knowledge” models solved in the testing datasets. A full-scale optimization (Eq. (13)) 
is carried out with all input time series really occurred in the testing dataset. Therefore, the 
optimized solution is the best one for such a period. 

2. Deterministic models solved in the training dataset. The optimization is based on representative 
days (Eq. (16)) obtained from the training dataset. The different ways to generate representative 
days are explained in detail in the next Section 2.2.  

3. Deterministic models solved in the testing dataset. The sizes of the units are fixed according to 
the optimized solution found in the training dataset, thus only a full-scale optimization of the 
operation of the system is performed. 

 
2.2 Clustering approaches for the generation of representative days 
Clustering approaches aggregate similar elements (i.e., temporal periods), identifying representative 
ones that can be used in an optimization problem to achieve a good compromise between solution 
accuracy and acceptable computational effort. In this work, periods correspond to days. 
The main steps of a clustering approach are data normalization (to take into account variables that have 
different units of measurement), application of a clustering algorithm and selection of representative 
days, including the extreme ones (Teichgraeber and Brandt, 2019).  
The k-means algorithm is applied to the “past” training dataset (2010-2018) to generate clusters and 
identify representative days of global solar irradiance, air temperature, electricity and natural gas prices. 
Demand profiles are not considered in the clustering process because the electrical one does not change 
from year to year and the thermal demand is already represented by the temperature (Section 2.3). The 
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representative day of each cluster is chosen as the one with the lowest value of the Euclidean distance 
from the centroid, i.e., the arithmetic mean of all periods assigned to a cluster, to avoid average profiles 
that could not correctly represent strong daily fluctuations. The weight of each representative day is the 
number of elements belonging to its cluster.  
Another crucial aspect is the addition of extreme days, which could strongly affect the optimal design 
of energy systems. In this work, the extreme days are represented by the days with the highest and 
lowest daily sum of the hourly electricity prices, as well as by the day with the highest thermal demand 
to guarantee the feasibility of the system, so fulfilling all load requirements. To include these extreme 
periods in the representative set of days, the null, replacing and adding criteria (Kotzur et al., 2018) are 
considered. In the null criterion, extreme days are neglected. In the replacing criterion, they become the 
representative elements of the clusters they are assigned to. This criterion usually overestimates their 
weight in the objective function of the optimization problem. In the adding criterion, the extreme days 
become new centres of additional clusters after an iterative process that reassigns all the elements to the 
clusters. The influence of these extreme periods on the optimization results will be small, as only a few 
elements will be assigned to these new clusters, implying a lower weight in the objective function 
compared to the replacing criterion. Furthermore, three different approaches are considered to generate 
representative days. The annual clustering approach is applied to the entire training dataset (using all 
criteria to evaluate extreme days), varying the number of representative days from 3 to 28. The seasonal 
clustering approach differs from the previous one by first dividing the training dataset into seasons. The 
state-of-the-art approach, involving the generation of average seasonal or monthly profiles, is also 
applied. The extreme scenario of thermal demand is still added to guarantee the feasibility of the 
solution. The time required to generate the clusters is always less than one minute for all the approaches. 
Figure 3 shows four representative days obtained by the seasonal approach (one for each season) and 
three extreme days, obtained by the adding criterion, associated with the highest and lowest profiles of 
the electricity price (green and blue curves) and the highest thermal demand (red curve).  

Figure 3: Four representative days of global solar irradiance, air temperature, electricity and natural 
gas prices and three extreme days of electricity price (green and blue) and thermal demand (red). 

 
2.3 Input data
The weather data are global solar irradiance and air temperature in the period 2010-2020 for a PV 
system located in Padova (Italy) with the best inclination and azimuth angles. The weather time series 
in the testing dataset with more unpredictable prices (i.e., 2021-2022) are assumed to be the same as in 
the other testing dataset (i.e., 2019-2020), which is acceptable given the low variability of climatic 
conditions over the analysed years and the given demand curves, as explained in the following. 
The electricity price, available in the period 2010-2022 (Terna, 2024) is calculated as: 
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(17) 
where , , ,  and  are the day-ahead market price in Italy,  
the transport and management cost, the system charges, the taxes and a term to fit the prices to those of 
typical Italian families in such a period, respectively. This data vary quarter to quarter.  
The price of natural gas is known for each quarter of the period 2010-2022 (Arera, 2024) and is 
calculated as: 

(18) 

where , ,  and  are the costs of raw materials, 
infrastructure, distribution and the taxes, respectively. The electrical and thermal demands, taken from 
an internal database, refer to a group of residential users. The electrical demand is assumed constant 
over the years, while the thermal demand varies over the years depending only on the external 
temperature. 

Table 1: Techno-economic data of the energy conversion and storage units (DEA-Danish Energy 
Agency (2023)).  

 
3. RESULTS 

3.1 Annual clustering 
Figure 4 shows the relative errors of the optimal total costs found by solving the deterministic model in 
the pre- and post-war scenarios (with fixed unit sizes according to the optimal values found in the 
training dataset), compared to the “perfect knowledge” solutions (section 2.1), for the different criteria 
to consider extreme days (i.e., null, replacing, adding). Focusing on the annual clustering approach, 
these errors decrease rapidly when the number N of representative days (Eq. (16)) increases. The trend 
presents oscillating values without being strictly monotonic, which is coherent to the chosen clustering 
algorithm (Kotzur et al., 2018). Figure 5 shows the relative errors of the unit sizes, based on the 
representative days found by the annual clustering approach with the adding criterion in the training 
dataset, compared to the “perfect knowledge” solutions of the pre- and post-war scenarios. 
Starting from the pre-war scenario (2019-2020), according to the “perfect knowledge” solution the sizes 
of PV, CHP, boiler and TES are 17.18, 41.05, 54.55 [kW] and 66.87 [kWh], respectively, while the 
EES is not installed. The optimal total cost is equal to 79.87 [k€] (21.68 [k€] for the design and 58.19 
[k€] for the operation). Figure 4 highlights that it is not trivial to choose the best criterion to consider 
the extreme days. For example, the adding criterion should be considered the best as it gives the lowest 
error of the optimal total cost for 11 out of the 26 cases (i.e., each characterized by a number of 
representative days ranging from 3 to 28), but it also gives the highest error in 8 cases. Similarly, the 
replacing criterion should be considered the worst as it leads to the highest error for 11 out of 26 cases, 
but it also presents the lowest error in 5 cases. Furthermore, as the number of representative days 
increases, the error reaches values below 3%, so differences between the extreme day criteria become 
negligible. These small errors are justified by the repeatability of climatic conditions, the predictable 
prices and the inelastic electricity demand profiles. Moreover, the possibility of using only intra-day 
energy storage also reduces the error. As the representative days are independent, seasonal storage is 
not allowed and, to ensure a fair comparison, it is also neglected in the full-scale optimization. 

Technology Quantity Unit 
 

Technology Quantity Unit  
PV  €/kWp 1250 EES  €/kWh 880,28 

 € 0  € 3494,44 
 m2/kWp 9,7  . 0,87 

 - 0,136   0,04 
 - 0,85 SOCmin  0 

CHP  €/kWel 1738,26 TES  €/kWh 244,05 
 € 32046  € 968,52 

Boiler  €/kWth 64,86  . 0,7 
 € 1622   2,1 

 . 0,97    
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Figure 4: Relative errors of the optimal total cost in the pre-war scenario (on the left) and in the post-
war scenario (on the right) for the annual clustering approach. The time required to get an optimal
solution with a gap of 3% is less than one minute and around 540s for 3 and 28 representative days,

respectively, for all the criteria.

Figure 5: Relative errors of unit sizes in the pre-war scenario (on the left) and in the post-war 
scenario (on the right) for the annual clustering approach with the adding criterion.

Regarding the sizes (Figure 5), the error in the PV oscillates and does not have a clear trend when the 
number of representative days increases, for all the three criteria used to evaluate the extreme days. In 
general, the adding and null criteria overestimate the PV size, while the replacing criterion
underestimates it. The optimal size of the CHP increases with the number of representative days, 
resulting in errors oscillating around +1.3%, +7.7% and +3% for the null, replacing and adding criteria, 
respectively. On the contrary, the optimal size of the boiler decreases with the number of representative 
days, resulting in an error in the range +20-40% for the three criteria. No optimal solution envisages the 
installation of the EES due to its high investment cost, which does not guarantee a relevant advantage 
throughout the operation, especially considering only intra-day storage. Finally, the average error of the 
TES size is around +4% for the three criteria, without a precise trend.
Focusing on the post-war scenario (2021-2022), the “perfect knowledge” solution has a total cost of 
110.63 [k€] (29.26 [k€] for the design and 81.37 [k€] for the operation), which is 38.5% more expensive 
compared to the pre-war scenario. The optimal sizes are 21.05 [kW] for the PV (+22.38%), 52.11 [kW] 
for the CHP (+26.79%), 35.05 [kW] for the boiler (-35.69%), 26.56 [kWh] for the EES and 74.43 [kWh] 
for the TES (+11.2%). The inclusion of the EES (resulting in a higher total investment cost) is justified 
by the improved flexibility of the system, which reduces operating costs. The increase in the sizes of 
PV and CHP is related to the higher electricity prices, while the size of the boiler decreases as it is used 
only when the heat generated by the CHP (the size of which increases) is not sufficient to cover load 
requirements. 
The trend in the relative error of the optimal total cost is similar to that found in the pre-war scenario 
(Figure 4). However, in the post-war scenario, the optimal total cost (error of +4% compared to the 
“perfect knowledge” solution) is on average 1.5% higher compared to the pre-war scenario. Although 
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the difference may seem small, it would be likely much higher if elastic electricity demands and a longer
(than two years) optimization period could be considered. 
The optimal PV size is strongly underestimated for the three criteria, especially for the replace and 
adding ones (-18,66% and -16,03% on average), because they underestimate the use of PV, while this 
post-war scenario would require its higher use to face the increase in electricity prices. The size of CHP 
is also underestimated (-25% on average for the three criteria), while the error for the boiler is higher 
than 100% for replacing (the most conservative criterion) and around 90% for null and adding criteria.
The EES is never included as in the optimal deterministic solution of the pre-war scenario, whereas the 
TES size is always underestimated, especially for the replacing criterion (-15% on average).
The main outcome is that the introduction of the extreme days of electricity price does not guarantee an 
increase in the accuracy of the optimal solution, since such periods are extreme in the training dataset,
but strongly lower compared to prices reached in the period 2021-2022.

3.2 Seasonal clustering and state-of-the-art approach
The use of the seasonal clustering approach implies the generation of M days for each season, resulting 
in a total of N=4*M representative days. 
In the pre-war scenario, Figure 6 shows that the relative error in the total cost with respect to the “perfect 
knowledge” solution is lower (compared to the annual clustering approach) only with N=8 or 12, N=8 
and N=4 or 8 for the null, replacing and adding criteria, respectively. When the annual clustering 
approach leads to errors around 2.5%, seasonal clustering approach gives errors of 3.23%, 4.02% and 
3.5% on average for the null, replacing and adding criteria. The reason for this is that seasons are 
artificial periods and, thus, their consideration does not bring an evident advantage in terms of higher 
solution accuracy, unless only climatic conditions are evaluated by clustering. All the three extreme day 
criteria overestimate the PV size, especially the replacing one (+26% on average). The CHP size is 
underestimated, with an error of -14% on average for all the three criteria, while the boiler size is 
overestimated (38% on average). 
Considering the post-war scenario, as shown in Figure 6, the relative errors in the total cost according 
to the annual and seasonal clustering approaches are similar (around +4%). Considering all the three 
extreme day criteria, the PV size is close to the “perfect knowledge” value, but the CHP size is still 
underestimated, and the boiler size is overestimated (-32% for the CHP and +120% for the boiler, on 
average for all criteria). In both the pre- and post-war scenarios, the EES is never included in the optimal 
design configuration, while the error in the TES size fluctuates without a clear trend.

Figure 6: Relative error of the optimal total cost for the annual and seasonal clustering approaches, 
considering the null, replacing and adding criteria, in the pre- (left) and post-war (right) scenarios.
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The state-of-the-art approach, based on average seasonal or monthly profiles for all the input time series, 
leads to higher errors in the optimal total costs and sizes compared to the annual and seasonal clustering 
approaches, in both pre- and post-war scenarios. In the pre-war scenario, the seasonal and monthly 
profiles result in relative errors in the optimal total cost of 16.30% and 8.75% compared to the “perfect 
knowledge” solution, respectively. The mean profiles strongly underestimate the PV size (-25.29% for 
seasonal and -20.29% for monthly profiles), because they overestimate its power production, and the 
CHP size (-38.10% for seasonal and -28.88% for monthly profiles). They overestimate the boiler size 
(90.73% and 64.15%) and underestimate the TES size (-41.61% and -6.50%), without including the 
EES. In the post-war scenario the errors in the optimal total cost are even higher, i.e., 17.82% for 
seasonal and 10.12% for monthly profiles. The errors in the sizes are -38.96% and -34.87% for PV, -
51.18% and -43.91% for CHP, 196.62% and 155.26% for boiler and -47.52% and -15.55% for TES, 
according to the seasonal and monthly profiles, respectively. 
 

4. CONCLUSIONS 
This paper focuses on the design and operation optimization of a Multi-Energy System (MES) under 
the uncertainty of unpredictable variables, highlighting the impact of different clustering approaches on 
the optimal total cost and unit sizes. The objectives are to i) find the best set of representative days of 
uncertain electricity and natural gas prices, global solar irradiance and air temperature, with a special 
focus on prices, influenced by unpredictable socio-economic events (e.g., a war) and ii) assess the 
impact of such days, including the extreme ones, on the optimal total cost and unit sizes of a MES. A 
MILP model of the system, based on representative days of the “past” training dataset (2010-2018), is 
used to optimize the sizes and operation of its units by minimizing the total cost. The representative 
days are generated by annual or seasonal clustering approaches, including extreme scenarios with null, 
replacing or adding criteria. Subsequently, the optimal design solutions are tested in two distinct 
“future” datasets, characterized by different prices of the pre- (2019-2020) and post (2021-2022) 
Russia-Ukraine war scenarios. Eventually, the optimal total costs and sizes are compared with the 
“perfect knowledge” solutions based on data really occurred in the two testing datasets. The general 
guidelines obtained from this work are summarized in the following.  

 Compared to the average profiles, which present an error about 9-17%, the representative days 
found by clustering allow obtaining a 2.5-4% error in the total costs with respect to the “perfect 
knowledge” solutions of the pre- and post-war scenarios. The best solution, in terms of total 
cost, is given by the annual clustering with adding criterion and 26 typical days, with a relative 
error of +2% and +2.11% for the pre- and post-war scenarios, respectively. In the period 2019-
2020, the relative errors in the sizes of PV, CHP, boiler and TES are +3%, +1.33%, +19.6% 
and +6%, respectively. Instead, in the period 2021-2022, errors are higher (-15% for PV and 
CHP, +86% for the boiler).  

 The seasonal clustering approach does not bring relevant advantages compared to the annual 
clustering approach, especially for a number of representative days higher than 12. In fact, 
seasons are artificial distinctions that do not reflect the real distribution of time series, such as 
the price of electricity or natural gas.   

 The introduction of extreme days of electricity price, obtained in the training dataset, does not 
result in a higher accuracy in terms of cost or unit sizes. This is because such days are similar 
to the representative ones of the pre-war scenario and therefore their prices are much lower 
compared to those of the post-war scenario. However, the inclusion of the extreme days of 
thermal demand in the set of representative days is necessary to guarantee a feasible and optimal 
design of the system. In fact, since a thermal network is not conceived in this work, no optimal 
solution would be found if they were neglected. 

In summary, the use of clustering techniques allows obtaining accurate solutions in comparison to the 
use of average profiles and this is proved by testing them with data really occurred. However, the 
inclusion of extreme days is not necessary for such a small system, regardless the variability of input 
data, unless feasibility problems arise. Future work will look at the temporal relation between 
representative days (here assumed independent) to properly model seasonal storage. More complex 
systems will also be analysed, including units such as heat pumps or hydrogen conversion/storage units.  
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NOMENCLATURE 

Acronyms 
CHP Cogeneration system 
EES Electric energy storage 
MES Multi-energy system 
PV Photovoltaic system 

SOC State of charge 
TES Thermal energy storage 

Greek letters 
 Binary variable associated with the inclusion of a given energy conversion unit 
 Binary variable associated with on/off status of a given energy conversion unit at time t 

 Efficiency for the balance of system 
 Efficiency of a given energy conversion unit 

Symbols 
 Area of the photovoltaic system  

 Size of an energy conversion (storage) unit [kW] ([kWh]) 
 Specific cost for an energy conversion (storage) unit [€/kW] ([€/kWh]) 

 Energy level for the electric energy storage [kWh] 
 Fuel required by a given component at time t [sm3/h] 

 Global solar irradiance for the tilted plane [kW/m2] 
N Number of representative days [-] 

 Power produced by an energy conversion unit, or required by the load, at time t [kW] 
 Power charged in or discharged from the electric energy storage, at time t [kW] 
 Heat flow produced by an energy conversion unit, or required by the load, at time t 

[kW] 
 Heat flow charged in or discharged from the thermal energy storage, at time t [kW] 
 Level of energy in the thermal energy storage at time t [kWh] 

 Weight of a given representative day [-] 
Subscripts 

d Day of the year 
des Design 
fix Fixed 
h Hour of a day 
k Cluster 

op Operation 
t Total time 

var Variable 
y Year 
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