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ABSTRACT

The investigation of energy transition paths toward a sustainable and decarbonized future under uncertainty

is a critical aspect of contemporary energy planning and policy development. There are numerous

methods for analysing uncertainties and sensitivities and many studies on sustainable transformation

paths, but there is a lack of combined application to relevant use-cases. In this study, we investigate the

sensitivity of energy transition paths to uncertainties in operational and investment costs of power plants

in the metropolitan area of Berlin and its rural surroundings. By employing the linear programming

energy system model oemof-B3, we extensively focus on the system’s energy technologies, such as wind

turbines, photovoltaics, hydro and combustion plants, and energy storages. Greenhouse gas reduction and

electrification rates per commodity are realized by selected constraints.

Our research aims to discern how investments in energy production capacities are influenced by

uncertainties of other energy technologies’ investment and operational costs in the system. We apply

a quantitative approach to investigate such interdependencies of cost variations and their impact on

long-term energy planning. Thus, the analysis sheds light on the robustness of energy transition paths in

the face of these uncertainties.

The region Berlin-Brandenburg serves as a case study and thus reflects on the present space conflicts to

meet energy demands in urban and suburban areas and their rural surroundings. An electricity-intensive

scenario is selected that assumes a 100% reduction in greenhouse gas emissions by 2050. With the

results of the case study, we show how our approach enables rural and metropolitan decision-makers to

collaborate in achieving sustainable energy.

Decision-making in long-term energy planning can be made more robust and flexible by acknowledging

the identified sensitivities and enable such regions better to navigate challenges and uncertainties associated

with sustainable energy planning.

1. INTRODUCTION AND STATE-OF-THE-ART

Examining energy transition paths for a sustainable and decarbonized future amid uncertainty is a crucial

aspect of modern energy planning and policy development. Investment costs and projected operational

costs play a significant role in shaping decisions regarding transition pathways once an energy system is

in place. Energy system optimization models (ESOMs) are useful tools to study transition pathways and

analyze robust decisions. They are technology-rich optimization models covering an entire energy system,

typically aiming to minimize the total system costs (or for some purposes socio-or techno-economic cost
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parameters). However, these costs come with considerable uncertainties. If not appropriately considered,

translated into the real world with uncertain and non-deterministic parameters, these uncertainties can

erode trust in planning based on ESOMs.

One most commonly employed strategies to tackle this challenge is parametric sensitivity analysis,

achieved by perturbing input parameters and handling uncertainties by using scenarios (Yue et al., 2018).

This approach often involves solving numerous scenarios, demanding substantial computational effort.

Based on these computations one can retrieve the most reliable investment decisions, which are those that

exhibit the least sensitivity to the uncertainties considered. Nevertheless, sensitivity analysis in linear

programming can sometimes eliminate the need to re-solve the problem, when a parameter changes.

Instead, knowledge gained from sensitivity analysis allows analysts to deduce how changes in a linear

programming parameter impact its optimal solution based on the original solution.

Each model parameter comes with uncertainty and a distinct role in influencing the modeling result in

interaction with the remaining model parameters. Computationally expensive global sensitivity analysis

can provide a comprehensive understanding of the model’s behavior by considering all model input

parameters (Ginocchi et al., 2021). It enables identifying which parameters are most influential in driving

model output, while some of those are out of control by decision-makers and can be considered with

rigorous scenario development. In practice, the analysis of selected scenarios is a standard method for

considering uncertainties in energy system analysis (Child et al., 2018). However, scenario analysis’ limited

coverage of the parameter space contain the risk of potentially overlooking important insights. The analysis

in this paper exemplifies the added insights of a local sensitivity analysis in a one-parameter-at-a-time

approach and centers on the technological cost parameters of the model.

This paper contributes to energy system analysis under uncertainties, focusing on a case study in

the Berlin-Brandenburg area. We utilize the open-source energy system model oemof-B3 to examine

the electricity and heat sectors. Our analysis explores sensitivities to uncertainties in operational and

investment costs, particularly in a scenario that emphasizes high electrification levels. By employing

LP sensitivity analysis, we aim to make more efficient use of computational resources. In the following

sections, we introduce the case study and scenario, conduct sensitivity analysis, and present computational

results to draw conclusions on system robustness.

2. CASE STUDY AND SCENARIO

The case study models Germany’s federal states Berlin and Brandenburg. These federal states are

characterized by a metropolitan area with high energy demand and low land availability and rural areas

with comparatively lower energy demand per area but higher land availability. The urban-rural divide in

the supply and consumption of energy harbors potential for conflict in terms of environmental pollution

and economic participation through energy production.

Energy demands in regions with such spatial and settlement structure conditions are often largely covered

by rural areas due to natural-topographical constraints. The growing demand for energy reinforces this

development and leads to an increasing need for planning, involving urban and rural stakeholders, in order

to enable and maintain a just energy transition. Thus, this case study insights can serve as a benchmark

for regions with similar settlement structures and natural-topographical characteristics.

2.1. Model and Reference Energy System
The open-source energy system model oemof-B3 is used to simulate and optimize the energy system. The

model is based on various libraries of the open source framework oemof (community, 2023): The model

generator oemof.solph (Krien, Schönfeldt, et al., 2020; Krien, Kaldemeyer, et al., n.d.), oemoflex (Launer,

Meier, et al., 2023) for the preparation of data packages and oemof.tabular (Simon Hilpert, 2021; @jnnr

et al., 2023).

The oemof-B3 model minimizes the total system costs of the energy system under several boundary

conditions. All boundary conditions and the objective function are linear for simplification. For the future
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development of final energy demand, prices, and emission factors are assumed to be perfect foresight for

optimization. The sector-coupled energy model covers the electricity and heat sector. Figure 1 shows a

schematic representation of the reference energy system and its components.

Various conversion technologies mediate between the energy sources electricity, heat, hydrogen, and

methane. In the case of heat, centralized heat and decentralized heat are treated separately via heating

networks and decentralized generation. Electricity generation from renewable energies (wind, pv, run-of-

river power plants) is shown as one source of electricity per technology, for which hourly weather time

series are used. Gas-fired power plants are implemented as conversion technologies that convert gas into

electricity (gas turbine), heat (boiler), or both (combined heat and power). Electricity-driven conversion

technologies such as heat pumps (centralized large-scale heat pumps or decentralized household heat

pumps), electrolyzers and resistance heaters connect the electricity sector with the heat and hydrogen

sector. Furthermore, storage facilities are implemented for various energy sources (H2-cavern, central

and decentral heat storage).

The model assumes both German federal states as single nodes with interconnecting electricity lines

but with no additional connection to either another German federal state or Poland. The energy conversion

technologies and their installed capacities are aggregated by the federal states.

The model determines the cost-optimized expansion and operation for the overall system, in a greenfield

approach. The total minimized system costs include the variable costs for operation and maintenance,

fixed costs for costs for operation and maintenance, and the annuitized investment costs of the individual

components.

Figure 1: Reference energy system of case-study: The model shows imports and sources of renewable

energy (left), the various technologies for energy conversion, storage and transmission (center)

and the individual energy demands (right). The colored bars represent the balance areas of the

energy sources or the substances electricity, heat - centralized, heat - decentralized, hydrogen,

and methane.

2.2. Scenario
The scenario assumes a high degree of electrification and considers the electricity and heating sectors and

hydrogen and methan, on the demand side, households, commercial, transport, and industry in 2050. The

ratio of electricity to gas is included in the model as a boundary condition and is determined for both

centralized and decentralized heat supply. Figure 1 shows which technologies can meet the corresponding

demand. With regards to renewable technologies wind-onshore, solar-pv and hydro-ror fixed feed-in time

series based on meteorological data are in place. By 2050 the emissions are limited to zero, in line with

the goals of the German government to become carbon neutral. Capacity expansion limits are in place

that restrict model deployment of wind and solar capacities due to geographical and settlement structures’
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Table 1: Techno-economic parameters
Technology Capacity cost Capacity cost_unit OPEX (% of invest) Lifetime (a) Efficiency References State
wind-onshore 1190000 EUR/MW 1.14% 40 (Agency, 2016) all

solar-pv-roof 849900 EUR/MW 1.16% 45 (Agency, 2016) B

solar-pv-ground 458442 EUR/MW 1.82% 45 (Agency, 2016) BB

hydro-ror 4000000 EUR/MW 2.00% 80 0.9 (DIW, 2013) all

ch4-gt 850000 EUR/MW 2.35% 30 0.42 (Agency, 2016) all

ch4-bpchp 1600000 EUR/MW 1.88% 30 0.55 (Agency, 2016) all

h2-gt 535000 EUR/MW 3.74% 30 0.43 own assumption all

h2-bpchp 1600000 EUR/MW 1.88% 30 0.43 own assumption all

liion_battery 250000 EUR/MW 0.22% 45 0.94 (Agency, 2018) all

975000 EUR/MWh 0.50%

ch4-boiler_large 250000 EUR/MW 1.00% 25 1.05 (Agency, 2016) all

ch4-boiler_small 287857 EUR/MW 5.09% 18 1.02 (Agency, 2016) all

electricity-heatpump_large 950000 EUR/MW 0.53% 40 5.7 (Agency, 2016) all

electricity-heatpump_small 1900000 EUR/MW 0.26% 40 variable (Agency, 2016) all

electricity-pth 170000 EUR/MW 0.59% 20 0.99 (Agency, 2016) all

heat_central-storage EUR/MW 50 0.99 (Gardian et al., 2021) all

8000 EUR/MWh 0.41% (Agency, 2018)

heat_decentral-storage EUR/MW 50 1 (Gardian et al., 2021) all

130000 EUR/MWh 20.51% (Agency, 2018)

electricity-electrolyzer 875000 EUR/MW 5.00% 35 0.8 (Agency, 2017)

h2-cavern 163000 EUR/MW 0.00% 100 0.99 (Agency, 2018) all

1800 EUR/MWh 1.33% all

boundaries. For Berlin, the upper expansion limit for solar-pv accounts for 9GW, in Brandenburg for

77GW, and the for wind-onshore 0.012GW in Berlin and 34 GW in Brandenburg respectively. No capacity

or activity limits for conventional energy technologies are in place. However, the decision regarding the

coal phase-out is a determining factor for the future development of conventional power plants in Berlin

and Brandenburg. The coal phase-out in Germany according to law will be completed by the end of

2038, thus those technologies are not considered in the scenario. The input dataset and to this article is

published on Zenodo (Launer, Haas, et al., 2023).

3. SENSITIVITY ANALYSIS OF SCENARIO

In this study, we investigate the dependence of the optimal energy mix on the input cost parameters

representing the investment costs and the marginal costs for the technologies and carriers considered for

the two federal states. We employ LP sensitivity analysis to first analyze the sensitivity of the energy mix

to the input cost parameters and then generate perturbed scenarios based on the LP sensitivity analysis

results.

3.1. LP Sensitivity Analysis
The oemof-B3 model is used to model the reference energy system explained in Section 2. It minimizes

the total cost of the system constituted by capital expenditure and operational expenditure. Changing the

input cost parameters defined in the scenario only changes the objective function coefficients, alternating

the search direction of the linear program (LP) solution algorithm. Therefore, we perturb each input cost

parameter one at a time to perturb the LP objective function and find a feasible solution to the system that

has a total cost in the neighborhood of the optimal solution to the base scenario. Here, the size of the

perturbation per cost parameter that changes the optimal solution matters to understand the optimal LP

solution’s sensitivity on each input cost parameter.

First, by LP sensitivity analysis, we analyze the sensitivity of the optimal solution of the base scenario

with respect to the input cost parameters. These are represented in objective function coefficients of the

scenario instance. We use the optimality conditions of the LP to find lower and upper bounds for the input

cost parameters, consistent with the same optimal solution to the instance, in case we change only a single

objective function coefficient.
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However, this is not straightforward for the oemof-B3 model. The challenge lies in the computation of

the objective function coefficients based on the input cost parameters. First, the input cost parameters are

the net present value (NPV) of capital expenditure (CAPEX) and fixed operational maintenance costs.

The objective function coefficients related to the CAPEX on the other hand, address the equal annual

annuity (EAA) of the total investment and the fixed maintenance costs. Thus, we map the sensitivities of

the objective function coefficients back to nominal investment costs based on the computation below:

𝑐𝑡 ,𝑖,𝑟 = 𝐶𝑡 ,𝑖,𝑟 ·
𝑤 · (1 + 𝑤)𝑛

(1 + 𝑤)𝑛 − 1
+ 𝑓𝑡 ,𝑖,𝑟 · 𝑛 (1)

where, 𝑐𝑡 ,𝑖,𝑟 is the objective function coefficient representing the cost of unit capacity investment to
technology 𝑡 for carrier 𝑖 in the region 𝑟, 𝐶𝑡 ,𝑖,𝑟 is the NPV of the capital expenditure, 𝑓𝑡 ,𝑖,𝑟 is the annual
fixed operational maintenance cost, 𝑤 is the weighted average cost of capital, and 𝑛 is the lifetime of the
investment. In this study, we have Berlin and Brandenburg, the two federal states in Germany, as the two

regions.

Secondly, some input cost parameters influence multiple objective function coefficients. Hence, before

interpreting the analysis results, we evaluate whether changing a single cost input parameter affects more

than one objective function coefficient. This is particularly important as some of the cost values are equal

to each other for installing a facility in different federal states or some technology costs are correlated.

Here, we use the 100% rule (Bradley et al., 1977), when changing a particular input cost parameter affects

more than one objective function value, to make inferences on the range of the input cost parameter

change that keeps the optimal solution intact. Accordingly, we computed the lower bounds (LB) and

upper bounds (UB) of this range for each input cost parameter.

After performing this analysis, we eliminate any perturbations that do not change the optimal solution

of the base scenario, reducing the computation time.

An immediate result of the above-explained LP sensitivity analysis is that we cannot guarantee the

optimality of the base scenario solution for any meaningful change in the marginal cost parameters in

the scenario defined in Section 2.2. The reason is, in the scenario, a single input cost parameter applies

to all periods of each carrier, technology, and region. So, we cannot make any scenario reduction in

terms of input cost parameters affecting the objective function coefficients associated with operational

maintenance costs (OPEX). In this study, we also do not analyze the fixed operational maintenance costs

based on their marginal effect on the total cost specific to the scenario that we analyze.

For input cost parameters affecting objective function coefficients associated with CAPEX, the

sensitivities are presented in Figure 2. In the table, we present the LP sensitivity analysis results of

each input cost parameter in terms of the lower bound and upper bound for the parameter’s interval

that guarantees the same optimal solution as the base scenario. The first interval gives the analysis

result and the second interval is considered when applying perturbation. The latter is determined by

considering the costs in terms of their estimated bounds during the analysis period. For example, the

interval of unit capacity investment cost for CH4 using small boiler technology that guarantees the base

scenario optimal solution is larger than the estimated investment cost. Therefore, the optimal solution is

practically insensitive to the changes in this input cost parameter and we deduct the scenarios involving its

perturbations from our scenario set. Such cases are presented by "NONE" in the table. On the other hand,

the optimal solution of the base scenario is insensitive to the changes in H2 cavern storage unit investment

cost in Berlin as the LB and UB of the LP sensitivity analysis results are big numbers that we assume the

interval is (−∞,∞). However, because of the dependence of the costs in Berlin and Brandenburg for this
carrier and technology pair, we cannot reduce the scenario set.

Consequently, in this scenario instance, by performing the LP sensitivity analysis, we reduce the number

of input cost parameters to analyze from 15 to 13. We also cut the number of perturbations for three input

cost parameters by half by considering the insensitivity of the optimal solution to increase or decrease

in this cost parameter. Therefore, considering an equal number of scenarios generated by perturbing

each cost parameter by both increasing and decreasing its value, the LP sensitivity analysis provided a
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23% immediate reduction in the scenario set regarding the objective function coefficients associated with

CAPEX. The scenario reduction ratio would be even larger for the scenarios where the investment costs

of the regions behave independently because of the differences between urban and suburban areas.
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Figure 2: LP Sensitivity Analysis Results

3.2. Generation of Perturbed Scenarios
Based on the LP sensitivity analysis and anticipated technology costs, we set upper and lower bounds for

input unit capacity and storage investment costs. Within these intervals, we selected discrete cost values

to create our perturbed scenarios. On the other hand, we use the normal distribution to draw the amount

of perturbations for the marginal costs for each variable. We set the input cost parameter itself as the

mean value of the distribution and the standard deviation as 1
3
of the marginal cost itself. With this setting,

we have a non-negative marginal cost in the perturbed scenario which is greater than 1
3
of the original cost

about 99% of the time.

The overview of all scenario perturbations analyzed in this study is presented in Table 2. In this Table,

the columns are partitioned according to the perturbed input cost types. The perturbed unit capacity

investment costs and unit storage investment costs, denoted as "Capacity Costs" and "Storage Costs",

respectively, are selected according to the LP sensitivity analysis results presented in Figure 2 and their

expected values during the analysis period.

The results presented in the ensuing sections are distilled from the analysis of 446 scenarios in total

generated based on the scenario in Section 2.2 by one-at-a-time perturbation of 296 input unit investment

cost parameters, 80 input marginal cost parameters, and 70 input unit storage investment cost parameters.

We analyze the sensitivity of the energy transition path to the changes in the input costs. The lower

and upper bounds and pertubations of the resulting installed capacity, OPEX, and CAPEX based on the

scenario perturbations are shown in Table 2.

In the next section, we provide exemplary results using the plots from the dashboard and comment on

the dashboard’s utilization in decision-making under uncertainty.

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND

ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE – 4 JULY, 2024, RHODES, GREECE

13561344https://doi.org/10.52202/077185-0115



Paper ID: 125, Page 7

Table 2: Overview of Cost Perturbations (in EUR/MWh for marginal costs, EUR/MW for capacity and

storage costs)
Capacity Costs Marginal Costs Storage costs

Technology lower bound step size upper bound perturbations lower bound upper bound perturbations lower bound step size upper bound perturbations
boiler_large 9,920.25 10,000 219,999.14 30 -0.7 0.4 10

electrolyzer 266,635.89 10,000 233,329.46 30

heatpump_large 169,903.85 100,000 1,449,998.76 30 -0.8 1 10

heatpump_small -1.2 1.9 10

liion_battery -0.5 0.5 10 204,998.83 10,000 784,994.68 29

pth 36,253.52 -0.5 0.5 10

bpchp 142,999.65 10,000 599,929.10 -3.9 1.6 10

gt h2 149,994.79 10,000 379,999.68 30

cavern h2 92,729.86 10,000 50,329.12 16 -0.5 0.5 10 200.00 50 599.90 12

central heat storage 799.02 5,199.99 29

ror 10,000 809,772.51 32

pv 219,997.38 10,000 274,994.89 30

wind onshore 10,000 309,998.66 30 sampled from

normal distribution

0.5 10

4. RESULTS ON THE EFFECT OF COST UNCERTAINTIES ON THE OPTIMAL
ENERGY SYSTEM DESIGN

4.1. Base Solution of the Undisturbed Scenario

Figure 3: Base solution for undisturbed scenario (installed capacity in MW per technology and region).

Installed capacities are depicted in blue for Berlin and in orange for Brandenburg.

Figure 3 shows that with the given investment cost from Table 1, the wind potential is almost fully

invested in (region BB: 96%, region B: 100%). The solar-pv potential in the region Brandenburg is

used to approx. 48% with 36995 MW, while the potential in Berlin is hardly used (approx. 0.5%).

As there is mainly potential for rooftop systems in Berlin for reasons of space, the investment costs

there are almost twice as high as in Brandenburg. In comparison, the transmission losses and costs for

transporting electricity between the regions are relatively low. This is reflected in the high utilization

of the transmission line of 85% (transport from Brandenburg to Berlin), while the solar-pv potential in

the Berlin region remains almost unexploited. From a cost optimization perspective, the absolute values

of the techno-economic parameters of wind turbines are less convenient than those of solar-pv: higher

investment costs per MW, shorter lifetime, higher operating and maintenance costs, and marginal costs.

The higher full load hours of wind turbines in of approx. 1700 hours (in BB) compared to those of

solar-pv (approx. 1000 hours in BB/B) reduce this effect. Nevertheless, the wind potential is almost fully

utilized, while only 48% of the solar-pv potential is used.
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4.2. Total Cost Sensitivity
First, we analyze the impact of the perturbations in Table 2 on the total cost. Hence, we investigated

the impact of changing the unit capacity investment costs on the total OPEX and the effect of changing

the marginal costs on the total CAPEX. These are presented in Figure 4a and Figure 4b, respectively.

Capacity investment cost perturbations affect the resulting total OPEX within the interval of -60 to 30

million EUR while analysis of the plots shows that marginal cost perturbations influence the resulting

total CAPEX within the range of ±1.5million EUR.
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0

50

100

150

200

250
Total Marg. Costs pert. ALL

(a)

5.7545 5.7550 5.7555 5.7560 5.7565 5.7570 5.7575
0

10

20

30

40

50

Total CAPEX pert. ALL

(b)

Figure 4: Histograms Illustrating the Effect of (a) Unit Capacity Cost Perturbations on Total OPEX (b)
Marginal Cost Perturbations on Total CAPEX (Y axis representing the number of solutions in

the interval of OPEX/CAPEX given in the X axis)

4.3. Capacity Sensitivity
Next, we investigate the sensitivity of the installed capacity to the changes in the capacity costs, storage

costs, and marginal costs. The figures A.1, 5 and A.2 present the sensitivity of the installed capacity of the

energy generators to the unit capacity investment costs of the generators and storages, and the marginal

costs, respectively.

We observe from Figure A.1 that although not installed in the base scenario, the carrier-technology pair

electricity-pth is installed in Brandenburg if the unit capacity costs are changed. Yet, we also observe

that the capacity of electricity-pth in Berlin is insensitive to the unit capacity investment costs of the

alternative technologies.

Despite substantial cost perturbations among alternative technologies, the absence of electricity-pth

installation at Berlin, mirroring the base scenario, underscores its economic infeasibility within this specific

scenario instance. Conversely, deviations of up to 50% in installed capacity for H2-gt and electricity

li-ion battery in Brandenburg compared to the base scenario highlight their heightened sensitivity to

capacity installation costs, rendering them the most sensitive technologies in this regard. Figure 5

shows that contrary to the case in Berlin, in Brandenburg, investment in electricity-heatpump-large and

CH4-boiler-large carrier-technology pairs are highly sensitive to the changes in the unit storage capacity

costs, increasing up to 8.7 MW to 150 MW and 12.7 MW to 300 MW, respectively. Figure A.2 reveals that

some variables are not affected by uncertainties in marginal costs at all; in terms of installed capacities.

The sensitivity analysis of capacity in Figure A.1 shows that, in Brandenburg, solar-pv reacts more

sensitively to a change in investment costs than wind energy. This is due to investment in fluctuating RES

is strongly influenced by their generation profiles and their relationship to demand profiles. From the

model output data on balance we see only around 30% of wind and solar-pv electricity is needed to cover

the electricity demand, while a large proportion is used to cover heat demand. For the increased heat

demand in winter, wind is a more cost-effective solution than solar-pv, as the wind generation profile has

a higher overlap with the heat demand profile in these months. This means that a larger proportion of the
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electricity can be used directly by heat pumps, for example, and less investment in storages is needed than

with higher solar-pv expansion. This also explains why solar-pv reacts more sensitively to cost changes

than wind. As it is complementary with storages, it requires higher investment in storage capacity than

wind, it is in stronger competition with (green) gas, whose power plants can be operated flexibly.

1300 1400
0

50
ch

4-
bo

ile
r

0 100200
0

50

ch
4-

bo
ile

r

0 500 1000
0

50

ch
4-

gt

1350 1400
0

50

el
ec

tro
ly

ze
r

5000 10000
0

50

el
ec

tro
ly

ze
r

900 950
0

50

el
ec

-h
ea

tp

0 50 100
0

50

el
ec

-h
ea

tp
0 100 200

0

50

liio
n_

ba
tte

ry

0 10000
0

50

liio
n_

ba
tte

ry

0 10 20
0

50

el
ec

-p
th

0 50 100
0

50

el
ec

-p
th

380 400
0

50

h2
-b

pc
hp

2000 2300
0

50

h2
-b

pc
hp

2 2
104

0

50

h2
-c

av
er

n

3000 5000
0

50

h2
-g

t

2800 3000
0

50

he
at

_c
en

tra
l-s

to
ra

ge

0 1 2
105

0

50

he
at

_c
en

tra
l-s

to
ra

ge

0 500
0

50

he
at

_d
ec

en
tra

l-s
to

ra
ge

0 50
0

50

so
la

r-p
v

3.6 4.0 4.4
104

0

50

so
la

r-p
v

0 5 10
0

50

on
sh

or
e

2.5 3.0
104

0

50

on
sh

or
e

Figure 5: Capacity Sensitivity to Unit Capacity Investment Cost of Storages (in MW Installed Capacity/

MWh for storage technologies), with heatp. and boiler referring to the large variant of those

4.4. Impact of Input Costs on Particular Technologies
The dashboard and the sensitivity analysis results also enable us to investigate the impact of altering

the cost of particular technologies. Analysis of the effect of increasing respectively decreasing the

marginal costs for wind onshore on the installed capacities reveal a dependency of capacities of electricity

generation from CH4 and power-to-gas to the wind onshore marginal cost, especially by an increase in the

installed capacities when the cost decreases (without figure).

Last but not least, we investigate the sensitivity of the marginal costs of the available technologies

and carriers to the changes in unit capacity investment costs of wind onshore and solar-pv. Figure A.3

shows the increase in the capacity cost has contrasting effects on the marginal costs of technologies such

as decreasing gas turbine vs. increasing li-ion battery. Yet, this contrasting effect is not observed when

we increase the unit capacity cost for solar-pv. However, decreasing the capacity cost of solar-pv has a

similar impact on the li-ion battery marginal costs as decreasing the capacity costs of wind onshore.

5. CONCLUSIONS

We present a method that integrates LP sensitivity analysis, optimization, and data visualization techniques

to facilitate decision-making under uncertainty, particularly in contexts involving competing technologies

and varied decision-maker preferences. Demonstrating the efficacy of our approach through a real-world

case study in Berlin and Brandenburg, we showcase its capabilities in accommodating diverse decision-

making perspectives, from urban to suburban areas. Employing visualizations enables the participation of
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decision-makers without mathematical background to discuss design alternatives. The graphical treatment

of hundreds of scenarios makes it possible for decision-makers to explore technological alternatives with

respect to their goals and regional specifics. Geographical and settlement structures, national targets,

technology costs and demand projections weigh account into the design of energy system. They are

enabled to better weigh choices with regard to successful sustainable energy system transformation paths,

though at the expense of cost optimality but in favor of other transformational success factors such as

timely feasibility of technical transformation or social acceptance of technologies. Thus, decision-makers

are enabled to conceive policies to trigger more robust development paths towards a net zero energy

system. The proposed method also provides a foundational tool for assessing the design alternatives to

scrutinize for structural uncertainties in the continuation of the study.
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A. APPENDIX
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Figure A.1: Capacity Sensitivity to Unit Capacity Investment Costs (in MW Installed Capacity/ MWh

for storage technologies), with heatp. and boiler referring to the large variant of those
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Figure A.2: Capacity Sensitivity to Marginal Costs (in MW Installed Capacity/ MWh for storage

technologies)
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Figure A.3: Sensitivity of Marginal Cost to Increase in Unit Capacity Costs of Wind Onshore (in EUR),

with heatp. and boiler referring to the large variant of those
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