
Paper ID: 41, Page 1

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

OPTIMAL SIZING OF AN AMMONIA PRODUCTION AND
TRANSPORTATION SUPPLY CHAIN BASED ON RENEWABLE 

ELECTRICITY: COMPARISON BETWEEN PARAMETRIC STUDY 
AND COSTS-EMISSIONS BI-OBJECTIVE OPTIMIZATION

Cécile Diamantis1*, Alain Ruby1, Pimprenelle Parmentier1, Elise Le Goff1

1CEA, LITEN/DTCH.SSETI/LSET, Grenoble, France

*cecile.diamantis@cea.fr

ABSTRACT

Large-scale hydrogen production and transportation for power-to-power supply chain has gained in 
interest in the context of energy decarbonisation. Hydrogen can be carried in vessels, in various forms: 
liquefied hydrogen, ammonia, liquid organic carrier, among others. The production and the transport 
impact each other, and choices of technologies, sizes and control have to be optimized together. In this 
work, we present a MILP model of batch transportation included within a global MILP model which 
encompasses several appliances functioning together: a renewable electricity production, an 
electrolyser, energy and gas storages, ammonia as hydrogen carrier and a gas turbine. The MILP model 
optimizes sizing and control of the complete hydrogen supply chain, however it is costly to compute.
We propose and combine two methods to reduce the number of integer variables for batch 
transportation: the template method and the time aggregation applied to transportation. The combination 
of these two methods reduces the computation time by 330 without losing results quality (gap lower 
than 0.7%). This computation time reduction enables to perform bi-objective optimization. A 
parametric study on carbon emissions and bi-objective optimization with an external loop to the MILP 
model are performed and compared in terms of total costs of the supply chain, carbon emissions and 
computation time. 

1 INTRODUCTION

Large-scale hydrogen transportation for power-to-power supply chain has gained in interest, in a context 
of energy systems decarbonisation. Especially since Fukushima Daiichi accident, Japan has engaged in 
the research for a reliable and affordable source of CO2-free energy. Hydrogen has been identified as 
one of the solutions to provide this energy. Kamiya, et al. (2015) studies this option with hydrogen 
produced from brown coal in combination with carbon dioxide capture and storage. Heuser et al. (2019)
approaches the issue from a global perspective between Patagonia and Japan, and shows that 25% of 
the land would be necessary to produce hydrogen with wind power. With a simplified equation to model 
the number of required ships to ensure the deliveries, they show that the cost of transportation amounts 
to 25% of the total costs, whilst the liquefaction amounts to 10% of the total costs. This underlines the 
importance of transport optimization in supply chains. Hong et al. (2021) compares four options for 
hydrogen transportation by vessel: cyclohexane, liquid hydrogen, compressed hydrogen and liquid 
ammonia, to provide Japan with hydrogen from different parts of Asia. As mentioned in the review of 
Riera et al (2023), modelling and optimizing hydrogen transport remains not frequently addressed in 
the literature.

In this article, we present a comprehensive MILP (Mixed Integer Linear Problem) model of the entire 
hydrogen supply chain starting from the generation of electricity from both photovoltaic (PV) and wind 
turbine sources, to the delivery to consumers in Japan, this with a granularity of two hours. A detailed 
model leads to high computation times. To overcome this, we combine and test two methods to reduce 
the size of the problem without losing quality: the time-step aggregation method and the template 
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method. In most cases, time aggregation has been used for time series aggregation with the final 
objective to reduce energy system models complexity (Hoffman and al, 2020) (Cuisinier and al, 2021). 
In this paper, time aggregation is used only for one component of the supply chain (the vessels). 

Section 1 presents the case study, a power-to-power supply chain between Australia and Japan with 
ammonia as hydrogen carrier. Section 2 presents the objective functions and the numerical tools used: 
Persee, an optimization tool developed by CEA (Cuisinier et al. 2022) to conduct techno-economic and 
environmental studies for multi-energies systems at different scales and the evolutionary algorithm 
NSGA III available in URANIE platform (Blanchard et al. 2019). Section 4 focuses on the transport 
modelling part, developed for Persee as well as the two aforementioned methods that were developed 
to drastically reduce the number of integer variables. The reduced computation time allows hybridizing 
the MILP model with a genetic algorithm (the open-source Uranie platform) to perform a cost-emission 
bi-objective optimization including non-linear contribution of ship sizes and number of ships. Section 
5 presents the comparison of a parametric study on carbon emissions and the bi-objective optimization. 

2 CASE STUDY PRESENTATION

2.1 Power-to-power supply chain between Australia and Japan
The case study consists in a power-to-power supply chain between Australia and Japan with the aim to 
decarbonize Japanese electricity system. Figure 1 presents the considered supply chain.  

Figure 1 - Overview of the supply chain

In Australia, electricity produced by solar and wind power plants supplies electrolyzers. The resulting 
hydrogen allows  producing ammonia through a Haber Bosh unit. All along the supply chain, electricity 
storage, hydrogen storage and ammonia storage allow to deal with the intermittency of the electricity 
production. Ammonia as hydrogen carrier is then used for overseas batch transportation. In Japan, the 
ammonia is dehydrogenated and the resulting hydrogen is fed in a CCGT to produce electricity.

The following hypotheses are considered: 
- Electricity production:

o Ensured by solar and wind power plants, of which the sizes (ࢂࡼࡿ) and (ࡼࢃࡿ) are 
variables of optimization. There is no grid connection. 

o Curtailment is possible up to 10% of the installed capacity.
o The unitary power of solar and wind sources is provided for every two-hour interval 

throughout the year.
- Hydrogen production and storage:

o Ensured by a Proton Exchange Membrane (PEM) electrolyzer, optimized in size (ࡱࡿ).
o The electrolyzer has an efficiency of 65%.
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o A compressor compresses hydrogen up to 200 bar with an electric consumption 
associated to the quantity compressed.

o The sizes of the H2 tank (ࡴࢀࡿ) and compressor (ࡴࡿ) are optimized.
- Ammonia production and storage: 

o Haber-Bosch converts hydrogen and nitrogen to ammonia. Its size (ࡴࡿ) is optimized.
o The unit is flexible from 37% to 100% of maximum power, with no ramp limitations.
o Ammonia storages, optimized in size, allow storage before and after transportation.

- Transportation: 
o Ammonia is transported by batches in vessels of fixed capacity(ܥ). The total number 

of vessels (ࡾࢀࡿ) is optimized. The distance ܦ between departure and arrival and the 
speed of a vessel ݏ allows to deduce a time ݐ = ቒ ௦ቓ to travel between departure and 
arrival.

o A fraction of the transported ammonia is self-consumed by the vessels. 
- Electricity production and consumption in Japan:

o Ammonia is converted into hydrogen via dehydrogenation.
o The CCGT converts the hydrogen into electricity with a given efficiency. 
o Electricity demand is stable over the year with 4 maintenance periods. 
o The consumption time series are provided for every two hours of the year.   
o Annual Electricity demand is about 5 660 GWh. 

2.2 Specifics of the case study
The case study takes into account losses all along the supply chain (0.3 to 1% of the output stream for 
each component), GHG emissions linked to the construction of each component and linked to their 
operation. Another specificity of the case study lies in the optimization of the complete supply chain 
from PV and wind power plants to electricity production in Japan, including overseas batch 
transportation. 

3 METHODOLOGY

3.1 Objective functions 
We defined two objective functions. The first one is the minimization of total costs over 25 years, 
including investment and operation costs (1). The second one is the minimization of carbon emission 
over 25 years, including emissions linked to the construction of each component of the supply chain as 
well as emissions linked to their operation (2). Every modelled component is associated to a 
contribution in Capex and Opex, as well as a grey and direct emission of CO2. 

The economic objective function (1) is the following:(࢜,࢙)ܿܧ =  ܿ(1 + ( ∗ ࢙ + ,௧ ∗ ࣳ∋௧࢚,࢜ ∈ℐ (1)
For each component ݅ of the system, the size ࢙ and the control ࢚,࢜ are optimized to minimize the 
economic function. Total costs are the considered economic indicators, consequently, we did not 
consider any discount factor. ܿ is the unitary capex of ݅ and  a unitary fixed opex per year.
The CO2 function (2) is computed on the same principle: ܱܥଶ(࢜,࢙) =  ݃ ∗ ࢙ + ݀,௧ ∗ ࣳ∋௧࢚,࢜ ∈ℐ (2)
With ݃ the grey emission associated to the construction of the component ݅ and ݀ the direct emissions 
caused by the control over the year. 
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3.2 Multi-objective optimization with PERSEE software and URANIE platform
Mixed Interger Linear Programming (MILP) optimization has been largely used for hydrogen supply 
chains design and optimization since 2005 (Efthymiadou et al 2024), (Riera et al 2023). CEA has been 
developing since 2018 the PERSEE modelling software to conduct techno-economic and environmental 
studies (Cuisinier et al. 2022). PERSEE, based on a MILP formalism, optimizes sizing and operation 
at hourly (or two hours) time step, extrapolated to the project’s lifetime (here 25 years). The objective 
function is the costs function described in 3.1 (1). 

In order to include environmental impacts from grey emissions (i.e. manufacturing) or direct emissions 
(by combustion or operation) two options are possible: 

- A parametric study on carbon emissions. The cost objective function is minimized under 
emissions constraints. An experience plan with increasing carbon constraints is built and allows 
obtaining sets of non-dominated solutions (i.e Pareto front). 

- Using an external optimization loop to take into account the environmental objective function 
described in 3.1 (2). We chose to use evolutionary algorithm NSGA III available in URANIE 
platform (Blanchard et al. 2019). The Uranie platform, developed by CEA is an open-source 
software for optimization, meta-modelling and uncertainty analysis. 

4 BATCH TRANSPORTATION SIMULATION

4.1 Transportation model and computation time
We present here a model that can be used for all types of vehicles to transport hydrogen, except when 
several consumers can be delivered in the same delivery circuit (which leads to much more complex 
problems of vehicle routine problem (VRP), which is described in (Toth et Vigo 2014). We will use the 
generic name “facility” to describe the float of transportation.

We model the batches by two snapshot flow graphs overlaid (see Figure 2 and Figure 3):
- The first one (facility snapshot graph) describes the number of vessels loading, traveling to 

departure and arrival, unloading and trip back. The variables associated are integer. 
- The second one (flow snapshot graph) describes the quantities of hydrogen loaded in the vessel, 

transported, unloaded. These quantities are limited by the first graph. 
From this model, we can also deduce the total number of facilities used at the same time (and optimize 
it), the fuel consumption and the associated costs. 
The facility snapshot graph contains the integer variables:

- ࢚ࡼ is the number of facilities not used between ݐ and ݐ + 1
- ࢚ࡰ is the number of facilities in charge
- ࢚ࡽ is the number of facilities travelling from producer to consumer, starting at t
- ࢚ࡾ is the number of facilities coming back, starting at t
- ࢚ is the number of facilities discharging at t.

As it is a flow graph, the flow have to respect Kirchoff law, all the year long, in departure ି࢚ࡼ + ି࢚ࡰ + ࢇ࢚ି࢚ࡾ = ࢚ࡼ + ࢚ࡰ + ࢚ࡽ ()ି࢚ + ࢇ࢚ି࢚ࡽ = ࢚ + ࢚ࡾ (4)
And the flow snapshot graph is described by the variables:

- ࢚࢛ the speed of flow (in kg/h) entering in facilities at ݐ
- ࢚ࢊ the quantity of H2 stored in departure between ݐ and ݐ + 1
- ࢚ the quantity of H2 sent from departure at ݐ
- ࢚ࢇ the quantity of H2 stored in arrival between ݐ and ݐ + 1
- ࢚ࢋ the speed of flow delivered to the next component at ݐ

The variables ࢚࢛ and ࢚ࢋ are the interface variables used to be linked with other models.

11101098https://doi.org/10.52202/077185-0094



Paper ID: 41, Page 5

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

With the following Kirchoff constraint:࢚࢛ ∗ Δݐ = ି࢚ࢊ + ࢚ࢊ + ࢚ ࢇ࢚ି࢚(5) + ି࢚ࢇ = ࢚ࢋ ∗ Δݐ + ࢚ࢇ (6)
The graphs are linked together by the capacity ܥ of facilities.࢚ࢊ ≤ ܥ ∗ ࢚(7) ࢚ࡰ ≤ ܥ ∗ ࢚ࢇ ࢚ࡽ ≤ ܥ ∗ ࢚
And the total number of facilities ࡾࢀࡿ is computed by the two following equations:ࡾࢀࡿ ≥ ݐ∀ ࢚ࡾࢀࡿ ∈ ࢚ࡾࢀࢀࣳ = ࢚ࡰ + ࢚ +   ୀൣ..௧ೌೕିଵ൧ି࢚ࡽ + (8)  ିିࢇ࢚ା࢚ࡾ
Note that this model allows representing several destinations with a common fleet to optimize. 

Figure 2 - Snapshot graph of the batches of facilities. All the variables are integer. Variables in blue
exists in the flow graph. For instance, Q1 corresponds to the number of facility starting their journey 

in Australia at t1.

Figure 3 - Snapshot used to model the fluxes. Variables in blue correspond to the ones that exist in 
the two overlaid graphs. For instance, q1 corresponds to the quantity of hydrogen in the vessels 

starting their journey in Australia at t1.

This model has the advantage to give a realistic view of how the fleet is managed, and to optimize it at 
the same time as the other components. However, it implies a high number of integer variables. This 

11111099 https://doi.org/10.52202/077185-0094



Paper ID: 41, Page 6

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

leads to high computation times (more than one day to plan a year). For a single optimization, this could 
be acceptable. Nevertheless, the objective of the project was to perform bi-objective optimization using 
an evolutionary algorithm. For that purpose, computation times needed to be shorter. We developed 
two methods to drastically reduce the number of integer variables and consequently reduce the 
computation times. The first one is the time aggregation (4.2) and the second one the template (4.3). 

4.2 Time aggregation and its impacts on computation times
Temporal aggregation is often used to reduce the amount of input data and reduce computation times. 
Nevertheless, it is applied to the time series for renewable productions or energy demand most of the 
time (M. Hoffman et al. 2021). In our case, the long computation time is due to the transport module: 
without considering the vessels computation time is about one minute for the entire supply chain; 
integrating the complexity of vessels logistic leads to computation times in the order of one day. The 
objective is then to reduce the number of integer variables for the transportation module.    

The principle of time aggregation is to use different time steps for the whole energy system and for a 
specific component. We aggregate the variables differently if they are flow or stock variables.

Flow variables ݒ and stock variables ݏ are linked together as follows:ݏ௧ାଵ − ௧ݏ = ௧ݒ ∗ Δݐ (9)
We name ܣ an aggregation, with ܶ the number of the model time steps Δݐ aggregated in the time step Δݐ of ܣ. A flow variable ݒ is aggregated as follows in ݒᇱ :

௧ᇱݒ = ∑ ∗௧ݒ ்ା்ିଵୀ ܶ (10)
The reverse operation, to write constraints between aggregated variables and non-aggregated, will be 
written as follows: ௧ݒ = ඌݒ ௧்ඐ (11)
Note that if we aggregate an integer variable, it is possible to impose the aggregated variable to be 
integer, which is more constraining but ensures that it remains integer when de-aggregated. 
Stock ݏ௧ variables are aggregated in ݏ௧ᇱ as follows:ݏᇱ௧ = ∗௧ݏ ் (12)
And the reverse operation: ௧ݏ = ඌݏ ௧்ඐᇱ (13)
In our case study, we applied time aggregation to the transport. The variables ࢚ of flux departures 
represent a storage that is shipped at one time step. By aggregating, we reduce the number of possible 
times of departure to keep the one corresponding to the new time step:ݍ௧ = ݍ ௧்ᇱ if ݐ divides ܶ, 0 else (14)
In our case study, the time step for the complete supply chain is two hours and we choose a time step 
of 16 hours for shipping. Figure 4 presents a schematic view of the time-step aggregation for vessels. 

Figure 4 – schematic view of time step aggregation for Vessels
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In the case presented in Figure 4, a ship can leave Australia only every 16 hours. The number of integer 
variables is then reduced by a factor of 8. This method could be used for all other components if needed.  

The Table 1 shows the impacts of time aggregation method on resolution times and total costs.
Technical costs are evaluated in one MILP optimization including the transport method. The solver 
used is CPLEX (v 20.1), with a computer with 2 processors Intel Xeon CPU 2.993GHz and 96.0 GB of 
RAM. The gap is set to 5% to ensure a convergence at a time step of 2 hours without aggregation 
method. The number of thread is caped to 8.

Table 1 – Impacts of time aggregation method on resolution times and total costs

Time step for the 
complete supply chain

Time steps 
for shipping

Resolution 
times

Total technical 
costs 

Number of 
vessels T

NH3

Storage 
size

2 h 2 h 82,659 s 3
2 h 16 h 3,213 s +0.4% 4 -42%

As presented in the Table 1, the time aggregation method allows in our case to obtain computation times 
reduced by more than 25. This method degrades slightly the economic results with a total costs increase 
of 0.4%. With the aggregation method, there is one more vessel and smaller NH3 storages.

4.3 Template method 
The template method consists in choosing a period ܻ of size ܶ which is repeated over the years. Each 
period of the template is named ݑ, ݅ ∈ 1. .݊ . For instance, we choose a period of one month replicated 
12 times to model one year.
Instead of using |ܻ| binary variables ݒ௧ to model a decision over time, we use ห ܻห variables ݒ′.ݒ௧ = ᇱݒ ,݇ = ܶ (15) ݀݉ ݐ
This method adds constraints to the system. The seasonality of the renewable production in Australia is 
balanced by NH3 storages in Australia and Japan. Vessels roundtrips are then periodic all along the 
year. This point can be more realistic than a complete optimized planning with a lot of irregularity.

4.4 Combination of the two methods
Figure 5 shows an illustration of the two combined methods. Note that these two methods can be used 
for some specific variables of the problem, and not for all of them. It allows mixing efficiently several 
systems that have to be managed at different timescales. In our case, the vessels use the transport model 
which needs at least three integer variables by time step.

Figure 5 - Example of combination of time aggregation and template method used for the same 
variable. The coloration represents aggregation of time step, and the brace the same template period 

repeated over the time.

11131101 https://doi.org/10.52202/077185-0094



Paper ID: 41, Page 8

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Figure 6 illustrates the template method for a chosen period of one month.  

Figure 6 – Illustration of the template method on vessels management.

As shown in Figure 6Figure 6 – Illustration of the template method on vessels management., a given 
template is replicated every 732 hours. The Table 2 presents the impacts of the combination of the two 
methods on the resolution time and on the total technical costs. 

Table 2 – Impacts of the template method on computation times

Time step for 
the complete 
supply chain

Template Time steps 
for 

shipping

Resolution
time

Total technical 
costs

Number of 
vessels T

2h 16 h 3213 s reference with 
time aggregation1

4

2h 1 month (732 h) 16 h 106 s +0.0% 4
2h 3 months (2,196 h) 16 h 193 s +0.67% 4
2h 6 months (4,392 h) 16 h 237 s +0.67% 4

As shown in Table 2, the template method coupled with time aggregation for shipping allows to obtain 
resolution times under 250 seconds. The computation time reduction is then 13 times lower than with 
aggregation time for transportation only, and 330 times lower in comparison with the MILP model 
without reduction time methods. The impacts on total costs are limited and not significant with an 
increase of 0.67% of the total technical costs. The choice of the period for the template depends on the 
optimization period. In our case study, a vessel needs at least 17 days for a roundtrip. Consequently, the 
minimal used period should be over 17 days. 

The obtained computation times are small enough to conduct the bi-objective optimization coupling the 
MILP solver and an evolutionary algorithm. It allows also to reduce the gap to 0.5%.

5 BI-OBJECTIVE OPTIMIZATION

5.1 Parametric study on carbon emissions
The parametric sensitivity study on carbon emissions consists in minimizing the total costs under carbon 
emissions constraints. The first run is done without any constraint on CO2 emissions. For the following 
runs, the emission constraint is reduced from a constant step in absolute value equivalent to about 1% 
decrease until there is no convergence. We obtain 27 solutions in 439 minutes. The Figure 7 presents 
the total costs (on the top) and the renewable installed capacities (on the bottom) for each run (report 0 
= reference, report 26 = highest carbon emissions constraints that is lowest carbon emissions).

1 Second line of table 1. 
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Figure 7 – Parametric study on carbon emissions: total costs (top figure) and renewable capacity 
installed according to carbon emissions constraints (bottom figure). Report 26: highest constraint, 

report 0 = reference

As shown on the Figure 7, a 25% decrease of carbon emissions is possible. The impact on total costs is 
then an increase of 22%. The main factor that allows to decrease carbon emissions is the reduction of 
installed PV capacity and the increase of wind capacity. Regarding the costs, the wind/PV ratio has no 
impact (Figure 8). The main component influencing the costs increase is the hydrogen storage which 
size increases with wind source increase in order to compensate the intermittency. 

Figure 8 – Parametric study on carbon emissions: total costs breakdown. Report 26: highest CO2

constraint, report 0 = reference

5.2 Bi-objective optimization
The bi-objective optimization is based on the hybridization of the MILP model with an evolutionary 
algorithm. The two objective functions used by the loop external to PERSEE are the minimization of 
the total costs (1) and the minimization of CO2 emissions (2). In order to avoid infeasible solutions we 
chose to limit the components sized by the external loop to one decisive element of the supply chain 
and to non-linear elements. The parametric study showed that the wind / PV mix is decisive for the 
carbon emission criterion. Exploring the complete range of PV or wind installed capacity allow to 
explore all the possible solutions. Moreover, the advantage of evolutionary algorithm is the capacity to 
deal with non-linearity. In order to test this ability, the vessels size is optimized by the external loop 
while the MILP model optimizes the size of the fleet. The MILP model is also in charge of operation 
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and sizing of all other components (wind power plant, battery, electrolyzer, hydrogen storage, Haber 
Bosch, ammonia storages, number of vessels, dehydrogenation and the CCGT). We chose to stop the 
evolutionary algorithm after 30 solutions in the Pareto front. 

The 30 solutions in the Pareto front are obtained in 1,065 minutes. Figure 9 presents the total costs (on 
the top) and the renewable installed capacities (on the bottom) for each solution in the Pareto front.

Figure 9 – bi-objective costs – emissions optimization: total costs (top figure) and renewable capacity 
installed according to carbon emissions (bottom figure). report 0 of parametric study = reference

As shown in Figure 9, a decrease of 26% of carbon emissions should be possible with a cost increase 
of 23%. The carbon emissions decrease is mainly due to the increase of wind installed capacity and the 
decrease of PV installed capacity.

5.3 Comparison of parametric study and bi-objectives optimization
The resulting Pareto optimal solutions are then compared to the Pareto optimal solutions computed   in 
Figure 10.

Figure 10 – Comparison of Pareto fronts obtained with a parametric study and with a bi-objectives 
optimization
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The Pareto front of the bi-objective study is slightly under the Pareto front of the parametric study
because the vessels size is optimized for the bi-objective study while it is not the case for the parametric 
study. Figure 10 illustrates also the impact of the step used for the emission constraints in the parametric 
study: the last step (below index 74) has not converged and we did not obtain the solution for a minimal 
carbon emission.

The hybridization of MILP model with an evolutionary algorithm allows to:
- (i) run bi-objective optimizations and, at the same time, deal with non-linearity. 
- (ii) overcome the steps issue specific to a parametric study.

6 CONCLUSION

The present work presents a MILP model for overseas batch transportation and two methods to 
drastically reduce the computation time. This will allow to investigate other energy systems with 
logistics issues. The time aggregation applied to variables of a particular component allows to deal with 
different time scales. For instance in our case study, the intermittency of renewable production and the 
longer travelling time for vessels. This could be applied to other components of a supply chain since 
there is a discrepancy between time scales of components. 

The study also illustrates the ability to combine a MILP model with an evolutionary algorithm to deal 
with non-linearity and multi-objective analysis. The comparison between the parametric study and the 
bi-objective optimization showed that the Pareto Fronts are quite similar with both methods. The 
parametric study is less time consuming (more than 2 times less consuming) than the bi-objective 
method. Nevertheless, the latter allows to take into account non linearity that are arduous to take into 
account with the MILP approach.

NOMENCLATURE
All variables are written in bold and integers ones are in caps.

Global problem 
Set and indices:݅ ∈ ℐ Components of the system (Solar power plant (PV), Wind power plant (WP), Electrolyzer 

€, H2 tank (TH2), H2 compressor (CH2), Haber-Bosch (HB), Transportation (TR))ݐ ∈ ࣳ Time steps of the year (hours)

Parametersܿ unitary capex of component ݅ unitary opex of component ݅ ,௧ economic costs associated to control of component ݅݃ unitary grey emission of component ݅݀,௧ C02 emissions associated to control of component ݅
Variablesࡿ size of component ࢚݅,࢜ control of component ݅
Transport model part
Parametersܥ Capacity of one truck ܦ Distance between departure and arrival (here Australia and Japan)ݏ speed of a vesselݐ Number of time steps to travel between Australia and Japan
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Variables࢚ࡼ number of facilities not used between ݐ and ݐ + ࢚ࡰ1 number of facilities in charge࢚ࡽ number of facilities travelling from producer to consumer, starting at t࢚ࡾ number of facilities coming back, starting at t࢚ number of facilities discharging at t࢚࢛ speed of flow (in kg/h) entering in facilities at ࢚ࢊݐ quantity of H2 stored in departure between ݐ and ݐ + ࢚1 quantity of H2 sent from departure at ࢚ࢇݐ quantity of H2 stored in arrival between ݐ and ݐ + ࢚ࢋ1 speed of flow delivered to the next component at ݐ
7 REFERENCES

Blanchard, Jean-Baptiste, Guillaume Damblin, Jean-Marc Martinez, Gilles Arnaud, et Fabrice Gaudier. 
2019. « The Uranie Platform: An Open-Source Software for Optimisation, Meta-Modelling and 
Uncertainty Analysis ». EPJ Nuclear Sciences & Technologies 5: 4. 
https://doi.org/10.1051/epjn/2018050.

Cuisinier, Étienne, Pierre Lemaire, Bernard Penz, Alain Ruby, et Cyril Bourasseau. 2022. « New rolling 
horizon optimization approaches to balance short-term and long-term decisions: An application 
to energy planning ». Energy 245 (avril): 122773. 
https://doi.org/10.1016/j.energy.2021.122773.

Efthymiadou, Margarita E., Vassilis M. Charitopoulos, et Lazaros G. Papageorgiou. 2024. « Optimal 
hydrogen infrastructure planning for heat decarbonisation ». Chemical Engineering Research 
and Design 204 (avril): 121‑36. https://doi.org/10.1016/j.cherd.2024.02.028.

Heuser, Philipp-Matthias, D. Severin Ryberg, Thomas Grube, Martin Robinius, et Detlef Stolten. 2019. 
« Techno-Economic Analysis of a Potential Energy Trading Link between Patagonia and Japan 
Based on CO2 Free Hydrogen ». International Journal of Hydrogen Energy 44 (25): 12733‑47. 
https://doi.org/10.1016/j.ijhydene.2018.12.156.

Hong, Xiaodong, Vaishali B. Thaore, Iftekhar A. Karimi, Shamsuzzaman Farooq, Xiaonan Wang, 
Adam K. Usadi, Bryan R. Chapman, et Robert A. Johnson. 2021. « Techno-Enviro-Economic 
Analyses of Hydrogen Supply Chains with an ASEAN Case Study ». International Journal of 
Hydrogen Energy 46 (65): 32914‑28. https://doi.org/10.1016/j.ijhydene.2021.07.138.

Kamiya, Shoji, Motohiko Nishimura, et Eichi Harada. 2015. « Study on Introduction of CO2 Free 
Energy to Japan with Liquid Hydrogen ». Physics Procedia 67: 11‑19. 
https://doi.org/10.1016/j.phpro.2015.06.004.

Riera, Jefferson A., Ricardo M. Lima, et Omar M. Knio. 2023. « A review of hydrogen production and 
supply chain modeling and optimization ». International Journal of Hydrogen Energy 48 (37): 
13731‑55. https://doi.org/10.1016/j.ijhydene.2022.12.242.

Toth, Paolo, et Daniele Vigo. 2014. « Vehicle RoutingProblems, Methods,  and Applications ». In 
Vehicle Routing, i‑xviii. MOS-SIAM Series on Optimization. Society for Industrial and 
Applied Mathematics. https://doi.org/10.1137/1.9781611973594.fm.

11181106https://doi.org/10.52202/077185-0094




