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ABSTRACT

Dynamic modeling of heat exchangers is crucial in developing accurate models of various energy 
systems such as chillers, heat pumps and its other standalone applications. The operational efficiency 
and accuracy of the dynamic heat exchanger model relies heavily on the numerical method used in 
solving it. Among the common numerical approaches used in dynamic modeling of the heat exchanger,
finite volume (FV) method is found to be more robust and highly accurate, but it falls short in terms of 
computational efficiency when compared to others. Fast and accurate dynamic model of heat exchanger 
is essential for effective model-based control, system optimization and real time monitoring. This paper 
presents a surrogate model for a refrigerant-water heat exchanger using non-intrusive reduced order 
modeling with Radial Basis Function (RBF) regression and a Deep Neural Network (DNN). The 
surrogate model is specifically designed to handle step-like variations in input. Moreover, it provides 
solution with good accuracy, with a mean absolute error of around 0.35 K on the secondary fluid outlet 
temperature solution, while providing dramatically faster computation speed that are 150 times faster 
than FV approach for dynamic heat exchanger model. The proposed modeling approach is general and 
easily applicable to modeling of the heat exchangers for different configurations, and compatible for 
receding horizon model control.

1 INTRODUCTION

Heat exchangers facilitate effective heat transfer between two or more fluids, or between a fluid and a 
solid, when they are at varying temperatures. They have a broad spectrum of applications across various 
sectors such as HVAC (Heating, Ventilation, and Air Conditioning), chemical processing, automotive 
systems, renewable energy systems like solar and geothermal power plants. It is an important 
component of various vapor compression systems (chillers and heat pump). The dynamics behavior of 
these systems is largely contingent upon the heat-exchangers (evaporator / condenser). Accurate and 
efficient modeling of the heat-exchanger is crucial in developing dynamic models of vapor compression 
systems. It is highly challenging to model the dynamics of heat-exchangers, particularly when the 
primary fluid is compressible and also phase change occurs. Consequently, the accuracy and 
computational efficiency of vapor compression system models depend significantly on the approach 
taken to solve the dynamic heat exchanger model.

The common approaches used in dynamic modeling of heat-exchanger are Lumped Parameter (LP) 
method (Braun, 1988) (Jin & Spitler, 2002), Moving Boundary (MB) method (Grald & MacArthur,
1992) (He et al, 1994) (Pettit et al ,1998) and Finite Volume (FV) method (MacArthur & Grald, 1987)
(Rossi & Braun, 1999). The Lumped Parameter method simplifies the heat exchanger into a system 
with aggregated thermal properties and assuming uniform temperature distribution in each lump. The 
LP model is easy to solve and straightforward but it highly lacks accuracy. Specifically, it does not 
account for phase changes in two-phase fluids. In the MB method, the heat-exchanger is divided into 
three zones/regions namely vapor, two-phase and liquid. Each region has its respective conservation 
equations to solve. The boundaries of these regions are dynamically adjusted while solving. This 
method is quite fast and has reasonable accuracy. The LP and MB methods are primarily developed for 
real time application like model control. In these methods, the model complexity is decreased for faster 
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simulation but which is also results in loss of accuracy. In the FV method, the heat exchanger is 
discretized into n number of control volumes and solved, allowing for the precise calculation of heat 
transfer and fluid flow at each volume. It is highly versatile and identified as the most accurate, yet it is 
also computationally expensive option (Bendapudi et al, 2008). For the purpose of model control of
vapor compression systems, there is a need for faster dynamic model of heat exchanger that has the 
accuracy of FV model.

Reduced order modeling (Chinesta et al, 2010) (Bergmann et al, 2005) is one of the possible ways to
accelerate models without sacrificing their accuracy. ROM aims at lowering the dimension of a 
computational problem while preserving its input-output behavior as much as possible. The ROM will 
have a much smaller dimension than a high-fidelity approximation space. Thus, it computes the solution 
much faster with limited computational power than solving the high-fidelity full order problem and has 
a reliable outcome. The accuracy and efficiency of the ROMs mostly depend on the choice of the type 
of ROM. There exist many kinds of ROMs, such as Proper Orthogonal Decomposition - POD
(Chatterjee, 2000), Dynamic mode decomposition (Schmid, 2010), Proper Generalized Decomposition 
(Chinesta et al, 2010). Among these, the most popular option is POD, which is a posteriori model 
reduction technique. POD is aimed at reducing a large number of variables to a much smaller number 
of uncorrelated variables, while retaining as much as possible variation in the original variables. In 
POD, there are two main model construction techniques Intrusive POD (Volkwein, 2013) and Non-
Intrusive POD (Audouze, 2013). In Intrusive POD, a new low dimensional system of equations is built 
by projecting the original system of equations into a low dimensional reduced space. Solving this low-
dimensional system will be less expensive than the original full-order system. Whereas, Non-Intrusive 
POD method is independent of the governing equations. Here, instead of projecting the system of 
equations into low-dimensional space, the solution is approximated with the help of machine learning 
methods. 

There have been quite few studies in the literature about building ROM based on Intrusive POD for 
heat exchanger model. Alonso et al (2009) have developed robust reduced order modeling for steady 
state heat transfer problems using POD and genetic algorithms. Xu et al (2018) have implemented ROM 
for the heat exchanger model using Intrusive POD technique. Samadiani and Joshi (2010) also used
Intrusive POD based ROM to model steady state heat transfer in data centers for turbulent flows. In 
addition to POD based ROM, several other techniques have also been explored to develop ROMs for 
heat exchanger models. Baldea and Daoutidis (2006) have built a reduced model for reactor-heat 
exchanger networks by employing singular perturbation theory to analyze the system's dynamics. 
Majumdar et al. (2018) explored the dynamics of two-phase flows within a narrow tube heat exchanger 
using a quasi-steady state reduced order model. To the best of the authors' knowledge, there has been 
no existing literature that specifically addresses the reduced order modeling of heat exchanger using 
Non-Intrusive method. In this study, a surrogate model of dynamic heat exchanger is developed using 
Non-Intrusive ROM technique with Radial Basis Function (RBF) regression and a Deep Neural 
Network (DNN). Here the DNN corrects the errors made by the ROM on quantity of interest, making 
this modeling approach as a sequential ensemble machine learning technique.

2 HEAT-EXCHANGER MODELING

The dynamic modeling of heat exchanger includes mass and energy conservation laws applied to the 
primary fluid, and energy conservation for the secondary fluid and the primary fluid’s tube. The heat 
exchanger is modelled for a compressible primary fluid and incompressible secondary fluid. And the 
pipes are made of copper. The flow directions of the fluids are considered as parallel. 

The following assumptions are made to model the dynamics of a heat-exchanger,
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2.1 Finite Volume Formulation

In FV, the heat-exchanger is divided into a number of control volumes along the length. In the 
discretization process, two types of variables are used: cell variables and node variables. The node 
variables are indicated by a “ ” superscript. 

Figure 1 illustrates the discretized one-dimensional shell and tube heat-exchanger. By integrating the 
conservation equations over the control volumes and after applying the simplifications, the 
following coupled linear set of Ordinary Differential Equations (ODEs) for control volume is
obtained (Bendapudi et al, 2008).

Secondary
fluid

Primary
fluid

 
 

 
 

 
 

 
 

 
 

 
 

Figure 1: Discretized heat exchanger model

Tube wall
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3 SURROGATE MODEL FOR HEAT-EXCHANGER

The surrogate model is specifically designed to handle sequence of inputs parameters which undergoes 
step-like variations. Figure 2 shows the input sequence which varies in a step like fashion, where each 
step is called as an input step with being time length of an input step. Figure 3 illustrates the 
schematic workflow for processing a sequence of input over a time period. Initially, the first input step's 
initial conditions ( ) for all state variables are together condensed 
into a reduced form ( ) using Principal Component Analysis – PCA (Zou et al, 2006). The ,
along with the primary inputs, is fed into the surrogate model, which then produces the solution for the 
entire time length corresponding to the respective input step. The final solution for the first input step 
serves as the for the second input step, then solution is approximated for second input step. This 
process is iteratively applied to each following steps in the sequence.

Figure 2: Example of an input sequence of a parameter (inlet temperature) that consists of 4 input 
steps

an input step
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Figure 4 gives the detailed diagram of the surrogate model (ROM + DNN). Surrogate model includes 
two blocks, the first is a ROM based on Non-Intrusive POD method which uses RBF regression and 
later is an error correction unit which contains a DNN. The principal function of the error correction 
unit is to correct the errors made by the ROM, particularly in the quantity of interest with respect to the 
inputs. In heat exchanger modeling, the quantity of interest is secondary fluid’s outlet temperature 
( . The quantity of interest can also be the values of any other variables. Thus, along with the 
primary inputs, DNN takes from the ROM’s output and produces the corrected quantity of interest 

.

3.1 Reduced Order Model

The ROM built in this study is based on non-intrusive technique which uses POD to decompose the 
data and then a machine learning method is used to predict the low dimensional features. The brief 
methodology and mathematical formulation used in building ROM are discussed below.  

3.1.1 Mathematical formulation of POD: The mathematical formulation of the POD presented here 
closely follows Chatterjee (2000) and Audouze (2013). In POD, the solution for a given parameter 
is approximated as linear superposition with a set of optimal orthogonal basis vectors (also called a 
POD basis functions or POD modes) and the corresponding projection coefficients . The mathematical 
formulation of the POD is given as following, 

Primary inputs

ROM outputs

Figure 4: Detailed diagram of the surrogate model

Figure 3: Schematic workflow for a sequence
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where L is the optimal number of the POD modes used,
based on the decay of first L eigenvalues with respect to the largest eigenvalue, which 

should be lesser than a pre-defined tolerance level .

3.1.2 Radial Basis Function (RBF) Regression: For this study, RBF regression has shown superior 
performance compared to machine learning models and has therefore been selected. Radial Basis 
Functions (RBF) regression was first introduced by Hardy (1971). RBF regression approximates a 
function by fitting a linear weighted combination of radial basis functions. The prediction of projection 
coefficients given new input parameter is as following,

Where are set of all training inputs, 

The above equation is given in matrix form as follows G = WB, where B matrix is basis function of 
Euclidean distance between each and every training inputs. The regression weights W is found by fitting 
the regression model using 

3.1.3 Training data generation for ROM: The primary inputs for the dynamic heat-exchanger 
model are refrigerant’s inlet enthalpy and inlet mass flow rate , water’s inlet temperature 

and inlet mass flow rate . To generate training data, numerous sequences of simulations are
conducted by varying all the primary inputs together. Each sequence begins with randomly chosen 
initial conditions for the state variables. Here, the key strategy is to keep the time length of each input 
step to be a fixed constant which is denoted as . The heat exchanger is configured to heat the 
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secondary fluid (water) by transferring heat from the primary fluid (R410A) through pipe wall made of 
copper. Physical properties of R410A are calculated with help of CoolProp (Bell et al.). The ranges for 
selecting the primary inputs are specified in Table 1.

Table 1: Range for varying primary inputs

3.1.4 Building and training of ROM: The training set , consists of data collected from 20 
sequences of simulations, each containing 20 continuous input steps. The time length of every input 
step is fixed to a constant time, denoted as . Here, is the time taken by the system to 
reach steady state given an input. The synthetic data is arranged in a specific way to create the snapshot 
matrix for the ROM.  The dynamic solution of state variables for all control volumes for every 
stepwise variation in inputs within each sequence are flattened and organized in columns. Since the 
time length of each input step variation is constant, the length of all the columns of S will be the same. 
For the inputs with each being set of inputs corresponding to M number of input step pairs,
S is given as,

The POD modes can be computed by performing SVD to snapshot matrix S. The decomposition is 
given by , where, is the snapshot matrix, is the left orthogonal 
matrix, is diagonal matrix of singular values, is the right orthogonal matrix. The 
left orthogonal matrix is POD modes and is truncated to first L modes, where L is the number of 
dominant modes to keep. The truncated left orthogonal matrix is the optimal POD modes 

. The projections coefficients are found by performing scalar product between and S, which is 
used as output data to train the RBF regression model.

The inputs for the RBF regression model consist of primary inputs and of state variables
. The for state variables, when stacked together, result in a vector 

of dimension 3n+1, with n being the number of control volumes. The lengthy will affect the 
performance of the RBF model. Thus, feature selection is applied using PCA, resulting in a reduced set 
of features denoted as . In this study, the RBF model’s performance is studied for different number 
of principle components. The first 7 principal components are found to be adequate to effectively 
represent the spatial initial conditions of all state variables together.

3.2 Error Correction by Deep Neural Network

The ROM is built based on the data generated for the input steps of constant time length . Thus, 
given an input, ROM predicts the solution for the receptive time length . In order to have 
flexibility in the input step’s time length as needed and to correct the error made by ROM in the quantity 
of interest, error correction unit is added which uses a DNN. It takes the quantity of interest from the 
ROM prediction along with the input of ROM and outputs the corrected quantity of interest. In the 

Primary inputs/ State variables Range
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context of dynamic modeling of heat exchanger, the quantity of interest is secondary fluid’s (water)
outlet temperature over time. 

3.2.1 Data preparation for training DNN: New training data set is generated following the same 
procedure used to create the training data set for the ROM. A number of sequences of simulations 
are performed and each sequence has multiple continuous input step variations, but the key difference 
here lies in the time length of each input step. Unlike during data generation for ROM where time length 
of each input step is fixed to a constant . Here the time length of the input step is not constant 
and it is chosen randomly within a range for each input step within a sequence. The varying time length 
of the input step is denoted as .  Selecting optimal bounds for the range of is crucial. The 
upper bound can be the time before the system begins to reach a steady state for each input combination. 
The lower bound is the minimum time length of the input step needed in prediction and model 
deployment stage. Thus, the upper and lower bounds of can be chosen based on the respective 
application and requirements. In this study, it was observed that the lower bound is, the more data is 
required during training to have good accuracy.

The data for training the DNN is collected as follows. Firstly, for the inputs corresponding to the training 
data set fed to ROM and high dimension solutions are predicted, and the water outlet temperature 
solution is extracted for respective inputs to train DNN. Even though ROM is built using training data 
set , this is done so that the DNN learns to correct the error made by ROM specifically on its training
data set . Secondly, predicting the outputs for data set , which is 

3.2.2 Training of DNN: The training set is collected by performing 20 sequences of simulations 
with each has 20 continuous input steps. The time length of each set of input step is varied randomly 
between 75 to 125 secs. The water outlet temperature data which is extracted from the predicted outputs 
for the inputs corresponding to training data and is combined with the ROM inputs and acts as 
training inputs for DNN. The corresponding training outputs will be the actual water outlet temperature 
data. The input format for DNN is The 
DNN learns to corrects the error made by ROM in the outlet water temperature time step by time 
step. The hyperparameters and other specifications of the DNN used is specified in Table 2. Overall, 
the ROM and error correction unit works together to predict corrected .

Table 2: Hyperparameters for the DNN

No. of layers 5
No. of neurons per layers 100

Optimization Adam
Activation function Rectified Linear Unit (ReLU)
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4 VALIDATION OF SURROGATE MODEL 

Figure 5: Variation of primary input parameters over time for validation sequence 1

The surrogate model is validated for two different validation sequences. In both sequences, the primary 
parameters such as are varied randomly in a step like manner within the given 
range as mentioned in Table 1. The time length of each input step is also randomly selected within the 
range 75 to 200 secs.  Only the input variation for validation sequence 1 is shown in Figure 5. 

Table 3: Comparative Error Metrics for Water Outlet Temperature between FV and Surrogate 
Model’s solution across Validation Sequences

Validation
Sequence

Mean Squared Error
( )

Maximum Absolute 
Error (K)

Mean Absolute Error 
(K)

1 0.16 1.97 0.31
2 0.25 2.26 0.38
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From Table 3 and Figure 6, it is evident that the surrogate model exhibits quite good accuracy against 
FV on the water’s outlet temperature. Even though there are some fluctuations in the surrogate model’s 
solution, it captures the overall dynamics very well. The fluctuations and spikes primarily occur because 
the solution for a sequence of input steps is approximated iteratively, using the final solution of the 
previous step as the initial condition (IC) for the current step. Sometimes, the IC derived from the 
previous step's approximated solution may not be sufficiently accurate. However, in longer aspect, this 
does not significantly impact the overall accuracy of the surrogate model. From Table 4, in terms of 
computation time, the surrogate model outperforms the FV model with very large gap. The surrogate 
model is nearly 150 times faster than FV model. Overall, the surrogate model, featuring a simple and 
straightforward building and training process, predicts the quantity of interest at a significantly faster 
speed with good accuracy which is around 0.35(K) mean absolute error.

Figure 6: Comparison of water outlet temperature solution over time between FV model and 
surrogate model for validation sequence 1 (a) and 2 (b)

Table 4: Computation time taken by FV model and surrogate model for different validation 
sequences

Validation Sequence FV model Surrogate model
1 986 sec 6.75 sec
2 1040 sec 6.72 sec

5 CONCLUSIONS

The surrogate model for dynamic heat exchanger, which employs non-intrusive ROM and an error 
correction unit, demonstrates superior performance and significant computational time savings, nearly 
150 times compared to FV heat exchanger model. Furthermore, the surrogate model predicts the 
quantity of interest (water’s outlet temperature) with a mean absolute error of around 0.35K, showcasing 
its compatibility for certain model control applications and system optimization. The potential future 
research aspects on this surrogate model are improving the model to have more flexibility in nature of 
input variation, improving the accuracy and making the model more generalized and robust by 
incorporating physics in the error correction unit. 

NOMENCLATURE

velocity ( )
time coordinate ( )
Spatial coordinate ( )

(a) (b)
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Enthalpy ( )
Pressure ( )
Surface area ( )

T Temperature ( )
Specific heat capacity ( )
Mass flow rate ( )
Volume ( )
Initial Conditions (-)
Density ( )
Heat transfer Coefficient ( )
Orthogonal modes (-)

Subscript
p Primary fluid
s Secondary fluid
w Tube wall
in Inlet
out Outlet
is Input step
init Initial
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