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ABSTRACT 
 
In the present work, recent advancements are shown in the development of neural network-based (NN) 
numerical solvers for the simulation of the coupled chemistry and physics typical of intermetallic Metal 
Hydride – Phase Change Material (IMH-PCM) hydrogen storage tanks. The final aim of this research 
activity is to obtain fast and reliable numerical tools, which should be able to span a large number of 
different IMH-PCM configurations and thus effectively support the optimal design of the tank in terms 
of energy density and specific power delivery.  
The results shown here include: i) a NN training phase, based on a subset of CFD-generated data, and 
ii) initial tests of the NN-based solver which is applied out of the training set points to estimate the MH-
PCM performance in terms of heat fluxes and hydrogen mass flow rate.  
Our findings show great potential in NN-based approaches to reduce simulation turnaround times for 
this class of complex hydrogen storage systems, thus paving the way for their efficient integration in 
real-time modelled hydrogen energy systems and their adoption as design tools for IMH-PCM devices
 

1 INTRODUCTION 
 
Intermetallic Metal Hydrides (IMH) are particularly attractive solid-state hydrogen carriers, due to the 
inherent safety and efficiency guaranteed by their moderate operating pressure and temperature, as well 
as their potential to significantly reduce volumetric footprint per stored kg of hydrogen (Drawer et al., 
2024; Pasquini et al., 2022). During the last decade IMHs have undergone significant developments, 
reaching a limited commercial availability and being forecasted to play a significant role in the small 
and medium scale hydrogen storage market by 2040 (Drawer et al., 2024). A crucial aspect of the 
efficient IMHs operation as hydrogen carriers is the system thermal management, which should account 
for the highly exothermic/endothermic reactions that take place during hydrogenation/dehydrogenation 
of the metal alloy (Nguyen & Shabani, 2021). A popular passive thermal management option is the 
coupling of IMHs with Phase Change Materials (PCMs) that act as thermal sink (during hydrogenation) 
or source (during dehydrogenation) thanks to their latent heat storage capacity (Facci et al., 2021; 
Kukkapalli et al., 2023; Nguyen et al., 2022; Sreeraj et al., 2022). 
The effective design of IMH-PCM storage tanks, as well as their efficient integration with stationary or 
mobile hydrogen energy systems, requires high-fidelity multiphysics modelling such as Computational 
Fluid Dynamics (CFD) – based methodologies (Alqahtani et al., 2020; Bartolucci & Krastev, 2022; 
Chibani et al., 2022; El Mghari et al., 2019). Standard CFD methods are time consuming and do not 
usually allow for testing many IMH-PCM system configurations and/or operating conditions. A viable 
alternative is represented by data-driven approaches, which can produce fast yet sufficiently reliable 
modelling for a variety of engineering systems. An increasing number of Neural-Network-based (NN) 
solver applications can be found in the literature, dealing separately with PCM-based thermal storage 
units (He et al., 2024; Maalla et al., 2024; Ouro-Koura et al., 2024) or different aspects of IMH-based 
hydrogen storage optimisation (Şenol et al., 2024). However, to the best of the authors’ knowledge, no 
IMH-PCM study through NN is currently reported, thus leaving a research gap in that field. 
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In the present paper, we show our more recent progress in the development of NN solvers for IMH-
PCM systems’ simulation. As a basic assumption, we use an already established CFD workflow to 
generate training data for the NN solver. The remainder of the paper is organised as follows: in Section 
2, the reference CFD model is introduced, followed by the definition of the NN; in Section 3, results 
from the NN training and test phases are shown and briefly discussed; in Section 4, conclusions and 
perspectives for future work are drawn.

2 MATERIALS & METHODS

2.1 CFD model
The IMH-PCM tank geometry and computational domain are displayed in Fig. 1. This is equivalent to 
the jacket-type system that has been already optimised for constant (atmospheric) pressure discharge 
operation in a previous publication from the authors (V. Krastev et al., 2023). The IMH is a La-based 
AB5 alloy, while for the PCM two options are considered at first: an inorganic salt hydrate (PCM1) and 
an organic paraffin-type material (PCM2), both initially selected to match the IMH equilibrium 
temperature in atmospheric pressure discharge conditions (V. Krastev et al., 2023). The most relevant 
IMH and PCM properties are listed in Tables 1 and 2.

As shown in Tab. 3, the reference geometry has a H/D ratio of 2 (D = 2Ri), while volumes are the 
optimal ones for atmospheric discharge pressure conditions (V. Krastev et al., 2023). All the performed 
CFD simulations are based on the following main assumptions:

a. the IMH-PCM tank domain is 2D axisymmetric;
b. the external tank boundaries (except for the hydrogen outlet boundary) are all adiabatic walls;
c. hydrogen is released from the IMH bed at a known and constant external pressure;
d. a porous section with a resistance coefficient kout is added at the outlet, for mass flow damping and 
control;
e. gaseous hydrogen is assumed to follow the ideal gas law;
f. the IMH bed is considered as an isotropic porous medium with uniform porosity and permeability;
g. local thermal equilibrium is assumed to hold within the AB5-H2 system;
h. buoyancy is not considered for the heat transfer and melting phenomena within the PCMs;

Figure 1: Schematics of the IMH-PCM jacket configuration and computational mesh. Boundary conditions are as
follows: adiabatic walls (3, 6, 7, 8, 5), symmetry axis (1), interface wall (4) and porous pressure-outlet (2); the mesh is made
by uniformly distributed quads with a 0.5 mm spacing.
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i. properties of the PCMs are considered constant and equal to the average between solid and liquid. 
 

 
Table 1.  Main thermophysical and reaction properties of the AB5-H2 system. 

Parameters Description Values 
Ad Plateau coefficient (desorption) 10.57 
Bd Plateau coefficient (desorption) 3704.6 K 
Cd Rate coefficient (desorption) 9.57 s-1 
Cp,g Specific heat capacity (gas) 14890 J kg-1 K-1 
Cp,s Specific heat capacity (solid) 419 J kg-1 K-1 
Ed Activation energy (desorption) 16473 J mol-1 

HR Enthalpy of reaction 30478 J mol-1 
kb Bed viscous resistance 108 m-2 

Bed porosity 0.5 
g Thermal conductivity (gas) 0.1815 W m-1 K-1 
s Thermal conductivity (solid) 2 W m-1 K-1 
g Dynamic viscosity (gas) 8.4 x 10-6 Pa s 
sat Saturated metal density 7259 kg m-3 
emp H2-free metal density 7164 kg m-3 

w% Gravimetric capacity (bed only) 1.32 % 
mAB5 Metal mass  0.422 kg 
mH2 H2 storage capacity 5.6 g 

 
Table 2.  Main thermophysical properties of the PCMs. 

Parameters Description PCM1 PCM2 
Cp,PCM Specific heat capacity 2250 J kg-1 K-1 2000 J kg-1 K-1 
Lf Latent heat of fusion 296000 J kg-1 224000 J kg-1 
Tm Melting temperature 303 K 301 K 

PCM Thermal conductivity 0.95 W m-1 K-1 0.2 W m-1 K-1 
PCM Dynamic viscosity (liquid) 0.0042 Pa s 0.0031 Pa s 
PCM Density 1960 kg m-3 825 kg m-3 

Thermal diffusivity 2.15 ∙ 10-7 m2 s-1 1.21 ∙ 10-7 m2 s-1 
Pr Prandtl number (liquid) 10 31 
 

Table 3.  Dimensional details of the considered jacket-type IMH-PCM tank. 
Parameters Description Values 
RH2 H2 outlet radius 0.5 cm 
Ri Internal radius 2.1 cm 
Re External radius 3.2 cm 
H Height 8.5 cm 
H/D Slenderness 2 
VMH MH volume (total) 118 cm3 
VPCM PCM volume 154 cm3 

 
The IMH-PCM system model has been implemented in ANSYS® Fluent (Ansys Inc., 2024b, 2024a), 
with ad-hoc developed User Defined Functions (UDFs) for the hydrogen release kinetics. In all the 
performed simulations, hydrogen discharge at constant external pressure is modelled while initial 
temperature is set everywhere at 1 K above the PCM solidification temperature. The numerical time 
step is set to 0.1 s, with a physical simulated time of 104 s. The computational grid is made of quad-
uniform elements with a 0.5 mm spacing. Boundary conditions are listed in Fig. 1, while for further 
information on the modelling framework, the reader is redirected to previous publications from the 
authors (Bartolucci & Krastev, 2022; V. Krastev et al., 2023; V. K. Krastev & Falcucci, 2021). 
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2.2 Neural-Network definition
To demonstrate the capability of NNs to support the design of IMH-PCM systems, we develop a simple 
NN with the support of PyTorch libraries (Paszke et al., 2019), capable of predicting the evolution over 
time of the quantities of interest (QoI). The fully connected NN architecture includes an input layer, 

Figure 2: Neural Network architecture and training results. (a) Sketch of the NN architecture. The blue circles represent the feature 
that describe the PCMs and the operating condition, orange and violet circles represent the hidden layers and the output layer neurons,
respectively, and the arrows represent the weights of the NN. (b) Loss function trend during the training phase.(c,d,e) Prediction error
Eq. (4), for the normalised temperature , hydrogen mass flow rate and the heat flux for each simulations used for the training
for the two PCMs. The x-axis shows the different training pressure group. Each pressure has a corresponding set of five simulations,
where each simulation uses a distinct value of the resistance ratio k* (1, 102, 103, 104, 105). The effectiveness of the training phase is 
evaluated by analysing the maximum (violet dots), minimum (magenta dots), and the mean error of prediction obtained for each 
simulation. The orange line represents the standard deviation of the error.
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two hidden layers with 100 neurons each and one output layer, see Fig. 1(a). The selection of the number 
of neurons and hidden layers is crucial for achieving optimal performance of the NNs. Since no exact 
theory exists on how to select the hyperparameters, we experimented with several network 
architectures, evaluating and comparing their performance both in the training and testing phase, 
adopting the NN configuration that provide the best balance between fitting the training and testing 
data. The ReLU activation function is adopted since satisfy several requirements: compared to other 
activation functions (e.g. sigmoid and hyperbolic tangent), ReLU has a simpler mathematical definition, 
leading to a faster training phase; the ReLU function helps to solve the vanishing gradient problem 
(Roodschild et al., 2020); finally, in the study here proposed the ReLU function provides better 
performance both in training and testing phase. 
The input layer is designed to accommodate the features of the IMH-PCM system. A total of 10 features 
are chosen: external discharge pressure p and the porous resistance ratio k*= kout/kb defines the system 
operating conditions; 7 features, based on the properties shown in Tab. 2, that characterise the PCM 
material; the last one is the physical time t. In this preliminary study, features related to the IMH and 
geometry are not used and thus considered invariant in the system. It should be noted, however, that the 
approach is general and can be easily extended to incorporate variations of the IMH and system 
geometry. 
For the NN training and test phases, a total of 100 transient CFD predictions are generated, considering 
2 PCMs (PCM1 and PCM2), 10 external pressure levels (1.1 – 2.0 bar range) and  five k* values (from 
1 to 105). For the training phase only, a subset of 50 CFD simulations is selected, considering only few 
combinations of p and k* for both PCMs (p = 1.1, 1.3, 1.5, 1.7, 1.9 bar and k* = 1, 102, 103, 104, 105), 
see Fig.2. The remaining 50 simulations were used for the testing phase. 
For better results readability, all features are scaled to obtain values between 0 and 1, according to the 
following equation written for the generic feature xi 
 

  (1) 

 

where  is the normalised feature,  and  are the minimum and maximum values of xi, 
respectively. For k* only, a log10 normalization has been applied instead: 
 
 

 (2) 

 
The data normalization is also an important aspect during the training phase for NNs. Data 
normalization allows to compare, as in our study, features with different scales ensuring that each 
feature has, for instance, a comparable impact on the weight update during the backpropagation. 
The training is then performed minimizing the sum-of-square error function (x,y) (loss function) given 
by 
 , (3) 

 
where, N is the total number of samples in the data set, y(xi) is the predicted value, and   is the 
normalised corresponding actual target value. 
To optimise the NN’s parameters, the backpropagation algorithm is employed. This process involves 
computing the gradient of (x,y) with respect to the model parameters and adjusting the parameters 
using the ADAM optimization algorithm. The model selection was made using the k-fold cross-
validation method. The training dataset is divided into k groups (folds), one of those groups is used as 
validation set and the remaining k-1 folds are used for the training for  epochs. Moreover, to 
reduce the risk of overfitting, a 10% dropout is applied (Srivastava et al., 2014). In Fig. 2(b), the loss 
function trend for the selected model is reported. To give a clear quantification of the difference between 
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the prediction  and the real target value  (i.e. the NN error), the error  is defined as 
follows: 
 
  (4) 

 
It is worth noting that, since the maximum value of a quantity normalised according to Eq.(1) is 1, the 
error  multiplied by 100 is a percentage. In Fig. 2.(c-e) the minimum, maximum and mean errors 

 for the two PCMs and for the three normalised QoIs (PCM temperature , hydrogen mass flow 
rate  and the heat flux ) is reported. For each pressure and resistances k* , the mean error is 
systematically lower than 6% confirming the training success. A detailed discussion about the training 
phase results is presented in the Results section. 
   
 

3 RESULTS 
 
As mentioned above in Section 2.2, the NN training was carried out considering both the PCMs and 
only some values of pressure p and relative resistance k* (see Fig. 2 and the Materials & Methods section 
for details). 
For the PCM1 temperature, Fig.2(c), the error during the training phase decreases as the external 
pressure increases, while it remains approximately constant as the value of k* increases. For both the 
PCMs, as the pressure increases, the prediction appears more accurate and reliable since the standard 
deviation decreases and the mean error is always lower than 4%. A similar behaviour is observed also 
in the trends of the heat flux errors for PCM1, see the left side of Fig. 2(e), while for the PCM2 the 
errors are consistently less than 1%, right side of Fig. 2(e). For the hydrogen mass flow rate, Fig. 2(d), 
the minimum and maximum errors converge to a single point around 6% for both the PCMs.  
 
The test phase is then conducted using pressures p never used during the training phase, see Fig.3.  In 
this Figure, a general trend can be observed: increasing the external pressure, the mean error and the 
error standard deviation decrease (i.e. better predictions) and also better performances are obtained for 
PCM2. The quality prediction of QoIs for the second PCM are related to the dynamics of the system in 
which this PCMs are used. As can be observed in Fig. 4, the dynamics of the IMH-PCM2 system is 
slower with respect to the dynamics of IMH-PCM1, especially at the beginning of the hydrogen 
discharge phase, see also inset Fig. 4(c). For the same reasons, when k* and p increase, the prediction 
errors decrease. This means that, as expected, systems with smooth and slow dynamics are easier to 
predict accurately for our NN model. 
 
As previously stated, in Fig. 4 a direct comparison between NN and CFD results for few cases is shown. 
Specifically, to highlight the effectiveness of the model, cases are presented where low external pressure 
values (fast dynamics) were used in conjunction with high values of the parameter k* (slow dynamics).  
In Fig.4(a,d), the normalised temperature  of both the PCMs is reported and the trends are well 
reproduced by the neural network. The NN has also demonstrated the ability to predict, with good 
approximation, the PCM temperature behaviour even when low pressure values are applied (blue solid 
lines in Fig.4(a,d)). Furthermore, the NN is also able to effectively capture and replicate the hydrogen 
mass flow rate and the exchanged heat flux across the entire time range, Fig.4(b-f). Moreover, despite 
the neural network is trained to reproduce the long-term performance of the system over a time span of 

 s, it is even capable of accurately describing behaviours occurring within the initial hundreds of 
seconds (~1% of the total time) characterised by a faster dynamics, see Fig.4(b,e) and insets in Fig4(c,f). 
In turn, this implies the ability of neural networks to understand and reproduce the hidden mechanisms 
behind the physical connections that exist between the analysed variables.  
It is worth also noting that, the NN remarkable properties of predicting the faster dynamics in IMH-
PCM systems (if compared with the utilization time of this kind of system) and the long-term trend of 
QoIs, may be attributed to the specific focus on study only the hydrogen release scenario. However, 

781 https://doi.org/10.52202/077185-0067



Paper ID: 84, Page 7

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

when complex load profiles are integrated and both hydrogen accumulation and release are considered, 
targeted training can be exploited to further enhance the neural network performance.

Finally, the NN model is tested on a third PCM (PCM3), with main thermophysical properties listed in 
Table 4. For the reader convenience and to highlight the difference between the PCMs, a radar diagram 
is reported in Fig. 5(a). The diagram shows five derived quantities that fully describe the PCMs and 
focusing on the absolute values, PCM3 exhibits intermediate properties between PCM1 and PCM2.
Consequently, it proves to be an excellent test for verifying the model’s capabilities as a regressor. In 
Fig. 5(b) the errors for the prediction of the three QoIs for PCM3 are reported. The third PCM is tested 
for one pressure level, p = 1.5 bar, and for two k* = 104-105. In line with the observations for PCM1 and 
PCM2, the prediction errors for PCM3 remain lower for hydrogen the mass flow rate and the exchanged 
heat flux compared to those observed for the temperature. Despite this, the overall prediction error 
remains below 10%, which is further confirmation of the model's strong performance as a regressor.

Figure 3: Neural network prediction errors. The panels represent the error in the test prediction for the two PCMs for the 
normalised temperature (panel (a)), hydrogen mass flow rate (panel (b)), and heat flux (panel (c)).  The x-axis 
represents the pressure groups and for each group the error for five simulations, that differ for the resistance ratio k* , is 
reported. The minimum, maximum and mean errors are represented using the magenta, violet and orange dots, respectively. 
The orange segment represents the error standard deviation (in panel (b) the standard deviation is smaller than the symbol used 
for the mean error).
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Table 4. Main thermophysical properties of PCM3

Parameters Description PCM3
Cp,PCM Specific heat capacity 2000 K kg-1 K-1

Lf Latent heat of fusion 132000 J kg-1

Tm Melting Temperature 302 K
λPCM Thermal conductivity 0.5 W m-1K-1

μPCM Dynamic viscosity (liquid) 0.05 Pa s
ρPCM Density 1525 kg m-3

α Thermal diffusivity 1.6 10-7 m2s-1

Pr Prandtl number (liquid) 200

Figure 4: Neural network prediction example during the test phase. (a-c) Comparison between the NN prediction and 
the original CFD data for the normalised temperature (panel (a)), hydrogen mass flow rate (panel (b)) and thermal power 
(panel (c)) for PCM1. The insets in panel (b) and (c) highlight the capability of the NN to predict faster dynamics in the 
initial hundreds of seconds. (d-f) Comparison between the predicted QoIs through the NN and the CFD simulation data. The 
insets in panel (e) and (f) shown the prediction of the NN within the first 100 s, where the dynamics of the system change 
rapidly. 
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Figure 5: NN prediction for PCM3. (a) The radar diagram summarise the difference between the three PCMs in terms of:
volumetric latent heat , volumetric heat capacity of the liquid phase , solid phase volumetric heat capacity 
, liquid thermal diffusivity , solid thermal diffusivity , and convective heat transfer factor (CHTF). For a detailed 
discussion on those parameters, the reader is referred to (Bartolucci & Krastev, 2022). The PCM1, PCM2 and PCM3 are 
represented by red, blue and green areas, respectively. (b) Prediction errors for the normalised temperature, hydrogen mass 
flow rate and heat flux, for the PCM3. The x-axis represent simulation groups defined through the resistance ratio k* . All the 
simulations and prediction are performed at p = 1.5 bar.

. 

4 CONCLUSIONS

In spite of the preliminary nature of the results shown above, the following concluding remarks can be 
drawn: 

the proposed NN approach is capable of accurately reproduce time-varying outputs from an 
IMH-PCM storage system, including hydrogen mass flow and the heat transfer between the 
hydride and PCM compartments;
except for limited initial sharp transients, encountered in uncontrolled mass flow discharge 
cases (low k*), the error in NN predictions is well within 10% compared to the initial high-
fidelity CFD data used for training and testing;
the data-driven model is able to predict the behaviour of the IMH-PCM system even for PCMs
not used in the training phase keeping the error below the 10%.

The pathway towards a full-featured NN-based solver for IMH-PCM modelling will include: I) the 
extension of the training base with up to 103 additional CFD-generated data sets; II) the refinement of 
the physics included (e. g. mass flow controller modelling) and III) testing within complex time-varying 
load profile scenarios. 

NOMENCLATURE

NN Neural Network
IMH/MH Intermetallic Metal Hydrides/Metal Hydrides
PCM Phase Change Material
CFD Computational Fluid Dynamics
QoI Quantity of Interest
H Height [m]
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D  Diameter     [m] 
Ri  Internal Radius     [m] 
Re  External Radius     [m] 
k  Viscous resistance    [m-2] 
A  Plateau coefficient (desorption)   [-] 
B  Plateau coefficient (desorption)   [K] 
C  Rate coefficient     [s-1] 
Cp  Specific heat capacity    [J kg-1 K-1] 
E  Activation energy    [J mol-1] 
ΔHR  Enthalpy of reaction    [J mol-1] 
λ  Thermal conductivity    [ W m-1 K-1] 
μ  Viscosity     [Pa s] 
ρ  Density      [kg m-3] 
ε  MH porosity     [-] 
w%  Gravimetric capacity    [%] 
m  Mass      [kg] 
k*  Resistance ratio kout/kb    [-] 
L  Latent heat of fusion    [J kg-1] 
T  Temperature     [K] 
α  Thermal diffusivity    [m2 s-1] 
Pr  Prandtl number     [-] 
p  Pressure     [bar] 
ℒ  Loss function     [-] 

  Prediction eror     [-] 
y  NN prediction     [-] 
f  Target value     [-] 
x  Generic feature     [-] 

   Mass flow rate     [kg s-1] 
   Heat flux     [W] 

N  samples      [-] 
 
Subscript 
d desorption 
out outlet 
gas gas 
s solid 
b bed  
sat saturated MH 
emp empty MH 
AB5 LaAB5-based alloy 
H2 hydrogen 
f fusion 
m melting 
i feature 
0 baseline 
min minimum 
max maximum 
 
Superscript 
^ normalised quantity 
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