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ABSTRACT 
 
The imperative to decarbonize energy systems has intensified the need for efficient transformations 
within the heating sector, with a particular focus on district heating networks. This study addresses this 
challenge by proposing a comprehensive optimization approach evaluated on the district heating 
network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat 
production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat 
generation from Combined Heat and Power (CHP) plants for enhanced efficiency. 

To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that 
encompasses the conversion of various fuels into heat and power, integration with relevant markets, 
and considerations for technical constraints on power plant operation. These constraints include start-
up and minimum downtime, activation costs, and storage limits. 

The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three 
targets. We evaluate variants of the -constraint algorithm for their effectiveness in coordinating these 
objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational 
efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while 
another dynamically adjusts the grid based on identified solutions. Initial findings highlight the 
strengths and limitations of each algorithm, providing guidance on algorithm selection depending on 
desired outcomes and computational constraints. 

Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of 
solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly 
influences algorithm performance. These insights contribute to a nuanced understanding of algorithm 
selection for multi-objective multi-energy system optimization, offering valuable guidance for future 
research and practical applications for planning sustainable district heating networks. 
 

1 INTRODUCTION 
 
District heating networks are anticipated to be instrumental in decarbonizing the heating sector, 
particularly in urban and suburban regions. The allocation of resources towards non-fossil fuel-based 
generation technologies in these networks enables the reduction of carbon emissions associated with 
heat production in numerous households. Concurrently, this transformation leads to a more dispersed 
distribution of heat generation, resulting in an increasingly intricate challenge in terms of operational 
optimization. Moreover, optimization efforts not only prioritize economic objectives but also emphasize 

                                                      
a The preparation of this paper has been overshadowed by Jan-Patrick’s death. We had intended to write jointly: 
most of the main ideas were worked out together, and we have done our best to complete them. In sorrow, we 
dedicate this work to his memory. 
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ecological objectives and the enhancement of sector coupling efficiency (Dorotić et al., 2019; Falke et 
al., 2016). 

A good solution for a problem with conflicting objectives is one where you cannot improve on one of 
the objectives without worsening at least one of the others, i.e., Pareto optimal solutions. In Pareto 
optimization, the goal is to find such a set of solutions. Various scholarly works have focused on 
optimizing the design and operation of district heating networks, and more generally, distributed energy 
systems. The most commonly utilized approach involves the application of linear programming or 
mixed-integer linear programming (MILP) formulations (Fazlollahi et al., 2012; Bracco et al., 2013; 
Wu et al., 2016; Shukla and Singh, 2016; Buoro et al., 2013; Morvaj et al., 2016; Weinand et al., 2019; 
Chen et al., 2023). A realistic model of urban district heating networks can be highly intricate due to 
the involvement of numerous resources, energy flows, and interconnections within the system, as well 
as a diverse set of constraints. 

To achieve multi-objective optimization of such systems, researchers have employed a variety of 
optimization techniques, including genetic and evolutionary algorithms (Fazlollahi et al., 2012), as well 
as linear programming with a weighted sum approach on the objective functions (Wu et al., 2016; 
Shukla and Singh, 2016; Buoro et al., 2013; Bracco et al., 2013) and -constraint algorithms (Morvaj 
et al., 2016; Fazlollahi et al., 2012) or a combination of both (Dorotić et al., 2019). However, the 
performance of these optimization algorithms often raises concerns. Evolutionary algorithms require 
more computational effort than -constraint algorithms or integer cut constraints (Fazlollahi et al., 
2012). Combined algorithms similarly involve a large number of calculations to obtain the Pareto front 
with an acceptable level of detail (Dorotic et al., 2019). Note that suitable metrics to evaluate the quality 
of an estimation of the Pareto front is yet another research question (Datta and Figueira, 2012). Due to 
the increasing size of district heating networks and increasing complexity due to distributed energy/heat 
generation, we are interested in finding algorithms that provide the best trade-off between 
computational effort and the level of detail of the representation of the Pareto front. Finally, district 
heating operators rely on tools that explore solutions on the Pareto front that cover a range of flexibility 
options that are within a reasonable operational range and can be computed efficiently to support studies 
on several (investment) scenarios. 

This paper contributes to the field of multi-objective production portfolio optimization in district 
heating systems, emphasizing two case studies, a medium-sized city and the full Berlin model, 
representing the most complex Western European district heating system. We evaluate the efficiency 
of algorithms searching static/dynamic grids in the solution space to generate meaningful solutions on 
the Pareto front and present the pros and cons of the different algorithmic strategies concerning multi-
objective optimization of district heating network operations. Finally, we demonstrate how such 
analyses can support system operators in exploring the flexibility of operations with respect to three 
objectives. Thereby, we aim to enhance decision-making processes and support the development of 
optimal strategies for district heating systems. In the subsequent sections of this paper, we will delve 
into the mathematical model, introduce the coordination algorithms, present computational results from 
two case studies, and draw meaningful conclusions on the structure of these problems. Our ultimate 
goal is to improve the understanding of multi-objective optimization techniques and their application 
to real-world district heating systems.   
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2 MATHEMATICAL MODEL 
 
The overall goal of production portfolio optimization for a district heating network is to fulfill the heat 
demand of its customers at minimum cost and CO2-emissions while maximizing efficiency. Figure 1 
illustrates the resource flows and conversion between them. Various types of generation technologies 
transform fuel into heat and power. The produced heat can be used to cover the demands of different 
districts or can be conserved in short-term or seasonal heat storage. Power can be utilized for heat 
circulation pumps or electric heat generators such as heat pumps or electric heaters. It can either be 
purchased or co-generated by CHP-plants. Co-generated excess power can be sold. 
 
  

 
Figure 1: The multi-energy system comprises the dynamic flow of fuel (brown), power (purple), and 
heat (dark blue). Various technological blocks engage in conversion processes, while market blocks 

function as sources or sinks of resources. 

We consider the energy production portfolio optimization problem as a mixed-integer linear program 
(MILP). The problem represents a unit-commitment-problem with respect to a multi-energy-system.  
Let  be the set of power plants in the district heating system using the set of resources , and  be the 
time horizon for which unit commitment is analyzed.  
 
Three objectives are optimized with decreasing priority: Economic costs are minimized: 

  (1) 

where , being the operation variable of power plant  at time step . For resource , time step 
, and power plant , cost coefficients are given by deficit purchasing costs related to the price of 

purchasing  and the purchased amount , operational costs comprising , subtracted by the 
revenues collected from selling the excess amount of the produced resource  at the selling price . 
Herein, variable costs  are modeled as a piecewise linear function covering the maintenance, 
transportation, taxes, and running costs with respect to , the total amount of resource  flowing 
into power plant  at time step . CO2-emissions are minimized: 

   (2) 

where  is the CO2-emissions factor at a power plant  and  the length of time step . As a measure 
of energy efficiency CHP output heat is maximized: 

     (3) 

where  is the heat produced in CHP plants .  

Constraints arise from satisfying the global demand  while balancing resources: 

 (4) 
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with the amounts  produced,  withdrawn, and  filled into storage at time step . 

Physical production capacities of the activated power plants are considered demanding: 

    (5) 

where  is the physical capacity in terms of the amount of resource  produced at power plant  

and time step . The conversion of resources into one another at the power plants leads to: 

   (6) 

where  represents the piece-wise linear estimation of the conversion rates of the power plant . A 
variable  denotes when a power plant  goes from inactive to active at time step . This is called 
activation or start-up and can be expressed mathematically as follows:  

  (7) 

 (8) 

with the subset of power plants with activation constraints . Activation of certain power 
plants can lead to additional costs  and fuel consumption . The balance of 
fuel is given by: 

 (9) 

where the total incoming fuel is denoted by  and  represents the fuel that is left to 
generate heat and power. 
 
Some power plants cannot be switched on and off immediately but require a minimum number of time 
steps to be activated before a start-up or deactivated before a shutdown, modelled by minimum up and 
down time constraints:  

 (10) 

where  represents the set of time steps for which a power plant  must be on (or off) after time 
step .  
 
Certain power plants  cannot change their power output immediately but must ramp up to a 
given level. To model ramping, we imply a limit on the amount of change of the power output of plant 
 from  to : 

 (11) 
Finally, storage management involves 

  (12) 

where  is the stored amount of a resource. Furthermore, storage loading is subject to storage 

limits , filling limits , and withdrawing limits : 

    (13) 

   (14) 

    (15) 

We assume empty storage at the start of the optimization period: 

    (16) 

For more information on the model, additional generation technologies beyond those used in this study, 
investment planning extensions, and a discussion of the problem class, please refer to Clarner et al. 
(2022). 
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3 A-POSTERIORI ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION 

 
Figure 2: E1 algorithm and illustration of the grid for . 

There are three distinct approaches to multi-objective optimization, which differ according to when the 
decision maker inputs their preferences. A-priori methods are algorithms in which decision-makers 
assert their prioritization of objective functions at the outset of the process. Conversely, in a-posteriori 
methods preferences are stated at the conclusion. Interactive methods have dialogue phases with 
decision-makers to refine prioritization iteratively throughout the process. To ensure the diversification 
of solutions and evaluate the pros and cons from a decision maker’s perspective while mitigating the 
influence of personal bias on the resultant solutions, we opted to implement two distinct a-posteriori 
algorithms. The main idea of both algorithms consists in partitioning the feasible space into an - 
dimensional grid along the  hyperplanes. 

3.1 Algorithm E1 
The ϵ-constraint algorithm is one of the most commonly used a-posteriori algorithms for multi-objective 
optimization (e.g., Mavrotas et al., 2009). It evenly divides the objective space along each dimension. 
Figure 2 describes the algorithm for  objective functions. For each dimension  in  and 
corresponding objective function , the lower bound  denotes the minimum value with respect to  
and the upper bound  the lexicographic minimum with respect to , giving the highest priority to . 
For a fixed resolution vector , each interval is divided into  evenly spaced subintervals. The 
algorithm then searches every grid cell for an optimal solution. 

This approach is designed to find diverse Pareto optimal solutions in a large area, providing a 
comprehensive depiction of the Pareto front. Nevertheless, there are scenarios where our focus may be 
directed towards a specific localized region harboring numerous solutions, while the remainder of the 
solution space may be infeasible. Algorithm E1 fails to handle these cases, leading to the development 
of alternative algorithmic strategies. 

3.2 Algorithms E2A and E2B 
We propose two algorithms highly inspired by Laumanns et al. (2006) adapted to characteristics of the 
multi-energy unit commitment. In contrast to Algorithm E1, the grid will be created dynamically at 
runtime, enabling a refined division of the feasible space to retrieve a high resolution in densely 
populated areas. Algorithms E2A and E2B employ distinct criteria for partitioning grid cells.  

For algorithms E2A and E2B, additional variables  and  will store the grid structure by saving the 
ticks along the dimensions  and . A list  stores infeasible or dominated regions. Starting with a 
single cell grid  ticks are added to  and  based on solutions retrieved to refine 
the grid further. 
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Figure 3: Algorithm E2A and illustration of dynamic grid splitting 

In a row wise fashion, the algorithm computes for an unvisited grid cell  the lexicographically optimal 
solution. Once a feasible, non-dominated solution is found, the dimensions  and  is partitioned at 
the respective midpoint of the current cell, as long as this does not create intervals smaller than the 
minimum defined size. The cell tracker  is reset,  is increased, and the cell iteration process is restarted 
(lines 34 - 45). When the process iterates through the grid without creating new intervals, it is stopped 
and returns the list of Pareto optimal solutions . 

Algorithm E2B differs from E2A in the cell split condition. Instead of using resolutions  and  to 
store the minimum cell-width, E2B only utilizes a single parameter , which refers to the maximum 
number of splits. After this number of splits has been reached, the algorithm searches the grid one last 
time for solutions without creating new cells. The rationale for this methodology lies in the observation 
that employing E2A in a densely populated feasible space results in behavior akin to that of the E1 
algorithm. Consequently, this may lead to prolonged computational time, particularly noticeable for 
smaller values  and . To mitigate this, constraining the frequency of grid cell splits allows for 
managing overall runtime without sacrificing the ability to obtain finer differentiations in targeted 
regions. 

As previously indicated, we did not implement the original version of Laumanns’ algorithm, which is 
specifically designed for optimization scenarios characterized by a finite number of solutions. Thus, 
after identifying a solution, the coordinates of  and  are utilized as new splitting points for the field, 
eschewing the use of midpoints (lines 38-45). Likewise, the original algorithm lacks consideration for 
the input resolutions  and . Consequently, no evaluation is made regarding the potential size of the 
new subintervals (line 38). The optimization problem concerning Berlin’s district heating network 
exhibits a dense feasible space. When partitioning the grid at the precise coordinates of identified 
solutions, there exists a significant likelihood that each of the resulting four grid cells contains similar 
feasible points. This leads to a pattern where the algorithm fixates on a small segment of the feasible 
region, a scenario avoided by the aforementioned modifications. 

  

769 https://doi.org/10.52202/077185-0066



 
Paper ID: 31, Page 7 

 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE 

4 COMPUTATIONAL RESULTS FOR TWO CASE STUDIES 
 
To assess the performance of the algorithms and how they can assist the analysis of district heating 
system operators, we showcase two case studies: A first study considers a medium sized city, which 
features all important heat production units but is efficient to solve, allowing us to explore the strength 
of the different algorithms in estimating the Pareto front. A second study involves the application of 
algorithm E1 to the entire district heating system of Berlin, Germany. 

4.1 Case Study 1: A medium sized city 
For Case Study 1, all calculations were performed using a single Intel(R) Xeon(R) Gold 6342 CPU. 
The memory was limited to 10GB, and the time to 50 hours. All calculations were completed well 
below the specified time limit. The considered model represents a realistic sub-network of the Berlin 
district heating system, comprising approximately 17,000 connected households. The purpose was to 
employ multi-criteria unit commitment optimization to analyze operational strategies within district 
heating networks. Within this sub-network, characterized by a centralized structure, three power plants 
were considered. The primary power plant contributed 98.4% of the overall heating capacity. It features 
two technologies, one utilizing gas (81.6% of the total capacity) and one representing a combined heat 
and power plant (CHP) using biomass (16.8% of the total capacity). Two additional CHPs constituted 
1.3% (CHP1), using gas, and 0.2% (CHP2), using biogas, of the total capacity. A small storage facility 
was incorporated, and the potential for importing heat was explored, though not utilized in the 
algorithmic solutions. The resulting mathematical model is based on a graph with 128 nodes and 171 
edges. A time step of 4 hours was considered, resulting in a constraint matrix with 68-70 T rows and 
71-74 T columns per considered month. A MIP Gap of 0.1% was tolerated. 

 
a) Midseason 

 
b) Conclusion 

Figure 4: Case Study 1: Solutions on the Pareto front for two months representing midseason and 
conclusion of the heating season derived by the three algorithms (triangles for E1 and circles for 
E2A and x for E2B), grid structure and detected infeasible regions (grey background). For each 
month, three solutions are highlighted, representing the extreme points with respect to the three 

target functions in the selected area of the feasible space. 
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Figure 4 illustrates solutions on the Pareto front with respect to the three target functions for a month 
during the midseason and a month during the conclusion of the heating season. Overall, the three 
objectives are conflicting, as demonstrated by the cost-optimal solution, which involves the lowest 
efficiency and highest CO2-emissions. High CHP heat production and low emissions combinations are 
infeasible due to the fuels used in the CHP plants. However, for both months, we find specific sweet 
spots where operations can reduce CO2-emissions at a more than linear rate by decreasing CHP heat. 
This analysis would not be possible using a simple scaling of the three objectives. 

While E1 creates a regular grid, the two dynamically generated grids by E2A and E2B delve deeper in 
interesting areas of the solution space. Despite the mixed-integer nature of the problem, the feasible 
space is densely covered. Therefore, selecting the most important region of the solution space and 
generating the most suitable search grid are pivotal when choosing the algorithmic strategy. E1, 
generating a grid in the beginning, allows for effective parallelization. On the other hand, the E2B 
algorithm is preferable for steering the solution process to interesting regions and finding superior 
solutions with respect to the second and third objectives. In operational analysis, the decision maker 
can prioritize the second or third objective, specifically focusing on altering the grid traversal from rows 
to columns or vice versa. While the majority of grid boxes exhibit solutions situated in the upper right-
hand corner, signifying elevated CO2-emissions and minimal CHP heat in this region, certain boxes do 
not present any solutions. These unpopulated boxes denote regions that are either infeasible (depicted 
in grey) or dominated points. For instance, in Figure 4b, the solution at 9576 t of CO2-emissions and 
31955 MW CHP-heat surpasses solutions with identical costs and emissions but with less CHP heat, 
indicating inferior efficiency with respect to the third target. Similarly, in the lower right-hand corner, 
multiple boxes lack solutions, indicating that lower CO2-emissions can be attained without an increase 
in costs or a decrease in CHP-heat.  

Figure 4 displays solutions in the feasible region close to the cost-optimal point. The relative flexibility 
is computed from relaxing bounds on one of the targets. For example, when optimizing for CO2 without 
imposing any bounds on CHP-heat, emissions can be reduced to 8568 t for the midseason month and 
2281 t for the conclusion month. Achieving these reductions, however, comes at a significant cost 
increase and a decrease in CHP-heat. Flexibility in terms of costs and CO2 is lower for the midseason 
month, with all solutions only differing 2% w.r.t. costs, 11% w.r.t. CO2-emissions, compared to the 
conclusion month, displaying differences of 15% w.r.t cost and 33% w.r.t. CO2-emissions. However, 
in the following analysis, we constrain CO2-emissions even more, adhering to values in line with the 
bounds defined by CHP-heat. 

To delve deeper into the qualitative differences between the solutions, we select the most extreme 
solutions in terms of each of the objectives cost, co2, and chp within the search space for the three 
months considered onset, midseason, and concl of the heating season. Figure 5 illustrates the time series 
of two of these solutions along the Pareto front, emphasizing minimal CO2-emissions co2_concl and 
the cost-optimal solution cost_concl in the conclusion month. It showcases a strong preference for 
biomass over gas in the primary plant and distinct variations in the utilization of the CHP plants across 
different solutions, a characteristic also displayed in the onset and midseason period. For instance, in 
the cost_concl scenario, CHP1 remained unused, while in the co2_concl scenario, it contributed to the 
production in a majority of the time steps. As the heat demand decreased in the final days, the full 
capacity of the biomass plant was no longer required, and the storage facility distributed the generated 
heat throughout the day. Notably, CHP2 was favored in the cost_concl scenario, accounting for 6% of 
total energy production, compared to 4% in the co2_concl scenario (see Figure 5b), related to the 
different fuels and their implied CO2-emissions. This figure also presents the total production ratios of 
the production units, highlighting limited alternatives for heat production within the current network 
setup, with differences primarily observed in the production rates of the small CHP plants. 
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a) Heat demand and supply time series for heating season conclusion, scaled by maximum demand. Due 
to limited capacity, activation of CHP1 is also depicted by a green star. 

 
b) Production ratios for three selected solutions in each month representing minimizing costs, maximizing 

CHP-heat and minimizing CO2-emissions 
Figure 5: Case Study 1: Comparison of heat supply for three representative months and 

selected solutions from the Pareto front 

4.2 Case Study 2: The full Berlin model 
Case Study 2 is designed to examine the multi-objective unit commitment of the most complex Western 
European district heating grid for an entire year. Based on the results of Case Study 1, algorithm E1 
was selected due to the option to run in parallel and efficiency without unnecessarily high resolution in 
densely populated areas of the solution space. The full Berlin model includes powerplants at 10 
generating substations in the so-called Verbundnetz, the main connected grid, excluding the subgrid 
considered in Case Study 1. The heat producing power plants comprise approximately 43% installed 
heat capacity by heating stations and 57% by CHP plants. Most of them are primarily operated by gas 
(75%) and coal (19%). Furthermore, the model contains several storage facilities as well as potential 
import and export of heat.  

The resulting mathematical model is based on a graph with 2.9 T nodes and 3.8 T edges. We selected a 
time step of 24 hours, resulting in a constraint matrix with 2.9 M rows and 3.0 M columns, aimed at 
optimizing three objectives. Due to the increased size of the model, the memory has been increased to 
100GB, sufficient for the majority of the instances. A MIP Gap of 0.5% was tolerated. Only two sub-
instances had to be re-executed with a memory limit of 300GB. Moreover, to achieve tractability within 
a reasonable time, for these specific instances the MIP-Gap was increased to 1% and 3%, respectively. 
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Figure 6: Case Study 2: Solutions for the full Berlin Model computed by the E1 algorithm 

Given the more diverse production unit portfolio, the network’s flexibility is greater compared to the 
outcomes of Case Study 1. The exploration range of E1 spans from approximately 4.2 Mt to 5.2 Mt of 
CO2-emissions and 7.6 TWh to 8.3 TWh of CHP-heat. Within this range, we identified 29 non-
dominated solutions on the Pareto front (see Figure 6). Among them, the two closest to the infeasible 
region, featuring low CO2-emissions and high CHP-heat production, incur cost increases of 2.4 and 1.9 
times the costs of the cost-optimal solution. Note that these are the two instances that also involved 
more memory and further relaxation of MIP bounds to retrieve a solution w.r.t the three objectives. In 
contrast, 21 of the computed solutions exhibit reduced emissions or increased CHP potential, with cost 
increases of less than 10% compared to the cost-optimal solution. 

Given these findings, it is recommended that, upon implementation in industrial settings, the system 
operator adjusts the cost constraints to ensure they fall within an economically viable range, thereby 
mitigating the need for excessive computational resources, as demonstrated for the two grid boxes 
proximal to the infeasible region. 

5 CONCLUSION 
 
In summary, our study introduces a model for optimizing operations of realistic district heating 
networks with multiple objectives. We explore two algorithmic strategies to efficiently estimate the 
informative region of the Pareto front, showcasing their effectiveness in two case studies ranging from 
a medium sized city to the capital of Germany. The E1 algorithm offers a broad overview of flexibility 
options, allowing for parallelization and reduced computation time in large-scale systems with millions 
of constraints. These features make it preferable to explore options using very large and complex 
models, such as those used for day-ahead planning or longer planning horizons for district heating 
systems and other multi-energy models. They are also useful for other applications of unit commitment 
and investment models with a densely populated feasible space. Conversely, the E2B algorithm excels 
in steering the solution process within dense solution clusters, making it particularly useful when 
focused on specific regions of the Pareto front, which can especially support intra-day operations of 
sub-systems or small networks. Finally, combining both algorithms in an interactive workflow enhances 
the effective estimation of the Pareto front for holistic planning. 

Our case studies reveal that the current centralized system has limited flexibility in curbing CO2-
emissions or improving efficiency to meet demand. The focus on realistic networks and their current 
energy production portfolios limits the use of renewable technologies to biomass in heat plants or CHP 
plants. In these networks, flexibility options are most prevalent at the beginning and end of the heating 
season, when the system operates well below maximum capacity. As we transition towards 
decentralized heat production to achieve decarbonization, significant changes are expected. This 
includes a more diverse and decentralized production portfolio, which will enhance operational 
flexibility and necessitate decision support systems to inform stakeholders about the various available 
options. Finally, multi-objective optimization emerges as a crucial tool not only for unit commitment 
decisions but also for guiding investment choices during this transition. Clarner et al. (2022) have 
extended this model to incorporate investment decisions, albeit at the cost of increased constraint 
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complexity and additional coupling constraints. This expansion further underscores the significance of 
the proposed approach in shaping an evolving landscape of district heating networks. 

 
NOMENCLATURE 

 
 price of a resource or operational 

costs 
 purchased amount of a resource 
 selling price per unit of a resource 
 excess amount of the produced 

resource 
 physical production capacity at a 

power plant 
 global demand 

 CO2emissions factor at a power plant 
 fuel 
 activation variables of a power plant, 

e.g., representing activation costs or 
ramp up limits 

 operation variable of a power plant 

  activation switch of a power plant

 total amount of a resource 
flowing into/out of a power plant 

 amount of a resource 
loaded into storage (and its 
limit) 

 amount of a resource 
unloaded from storage (and 
its limit) 

 storage of a resource (and 
its limit) 

MIP mixed integer program 
t  length of time step t . 
   a piecewise linear function that 

depicts variable costs 
   a piecewise linear function that 

depicts the rate of conversion of one 
resource to another at a power plant 

 
 

Subscripts and Superscripts 
 

   time step 
  energy conversion technology, alternatively power plant, e.g., CHP, heating station etc. 
  resources on the network, e.g., heat, fuel, power 

 indication of the subset of power plants with activation constraints 
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