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ABSTRACT 
 
We describe the application of autoencoder neural network on building automation system (BAS) and 
IoT sensor data enriched with semantic metadata.  
Datapoints to use for each anomaly detector are specified by querying the semantic representation of 
the facility and the accompanying IoT network using system, subsystem, connectedness or spatial 
criteria. Additional criteria can be used depending on the richness of the underlying representation and 
may include geometrical (core or perimeter zones, horizontal or vertical adjacency, space size), control 
strategy and similar information. List of used datapoints is further expanded with weather data such as 
temperature, humidity and wind speed, as well as synthetic datapoints obtained by lagging existing 
datapoints, measuring intervals between readings or calculating aggregations or derivations. Input data 
is cleaned of erroneous measurements and used for training autoencoder anomaly detectors dealing with 
specific subsystems. Individual autoencoder models are trained on data belonging to different systems 
and of differing spatial characteristics. We show that described method scales well to facility-wide 
generation of anomaly detection models. Reconstruction error threshold for detecting 10 anomaly 
groups within the test dataset reaches between 0.12 and 0.26 depending on the building system and 
number of input variables involved. Quality and normality of input data remains a requirement for 
training anomaly detection models based on unsupervised algorithms. Validation possibilities with 
existing facility data, and data sanitation techniques required to avoid saturation of output with false 
positives are evaluated. Approaches at incorporating operator feedback on detected anomalies are also 
discussed. 
 

1 INTRODUCTION 
 
Anomaly detection refer to the process of detecting data instances that significantly deviate from the 
majority of data instances (Pang et al., 2021). Anomalies can disturb the operation of the system, reduce 
its efficiency, or completely prevent it from working. Liu et al., 2020 classify anomalies into point 
anomalies and context anomalies, where point anomalies correspond to single-measurement anomalous 
values of an individual datapoint, while context anomalies occur over a period of time and can relate to 
multiple datapoints from the observed system. Machine learning approaches to anomaly detection 
include unsupervised, semi-supervised and supervised methods.  
 
Autoencoders (Michelucci, 2022) are commonly used unsupervised machine learning techniques 
applied to anomaly detection. One of the main benefits of using them for anomaly detection is that they 
can be trained with data containing no anomalies. This is beneficial as anomalies happen rarely, and 
even more rare are facility or building automation system datasets containing labelled anomalies.  
  
Araya et al., 2016  propose a contextual anomaly detection framework and within it provisions to 
include temporal and spatial context. Tziolas et al., 2022 investigated application of autoencoders on 
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industrial datasets. Unsymmetrical autoencoders were researched in Sun et al., 2016 and showed 
improvement over symmetrical variants. 
Linked data is increasingly used to connect knowledge about various domain and aid the data analysis 
in automation workflows. Specifically for domains related to the topic of this paper, numerous 
ontologies have been proposed that help with modelling buildings, such as BOT (Janowicz et al., 2021) 
or IFCOWL (Pauwels and Terkaj, 2016), modelling building systems (TUBES (Pauen et al., 2020), 
SAREF (Daniele, den Hartog and Roes, 2015)), automation control logic (Schneider, 2019) or  
combination thereof such as Brick (Balaji et al., 2018) or Saref4Bldg (Poveda- -
Castro).  
Previous work in Gaida et al., 2018 and Petrushevski et al., 2017 explored use of semantically modelled 
automation system to perform automated data analysis and optimization. Work has also been done on 
integration of semantic knowledge base to support data analytics workflows in et al., 2020. 
We build upon work on building and system ontologies, anomaly detection and autoencoders to propose 
usage of knowledge base representation of the facility and its systems to obtain a context for creating 
anomaly detectors targeted at specific systems and subsystems.  
 

2 DEMONSTRATION SITE AND USE CASES 
 
For the purpose of data collection, plant monitoring and model evaluation, FUTUREbase, a four-story 
office and laboratory building in Vienna, Austria, served as testbed (Figure 1). The building itself can 
be heated or cooled by a groundwater heat pump. A well pump system with two submersible pumps 
works as the main heat source. Daily and annual amounts of groundwater extraction and their return 
temperature to the ground are legally specified and need to be observed. The building consists of six 
floor levels, ranging from a basement floor up to the fourth floor. The entire HVAC1 supply equipment, 
laboratory infrastructure and server rooms are located on the two lower levels. Offices and meeting 
rooms are placed in the upper floors which in turn are divided into HVAC zones. Each of these HVAC 
zones distribute heating or cooling energy for a selected group of rooms to control the indoor air 
temperature conditions via a thermal concrete core activation (CCA) of the ceiling. Concrete core 
temperature is regulated by a variable mass flow control within the hydraulic loops. Their supply mode 
can be easily switched from heating to cooling using a distribution valve. 

 

 
Figure 1 - Demonstration site FUTUREbase 

Initial investigations revealed that the CCA often alternated during summer and transition periods. This 
led to an idea to define an AI-supported detection of anomalous behavior in HVAC systems through 

 
1 Heating, Ventilation and Air Conditioning 
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the analysis of monitoring data. The goal of the use case was to identify potential misbehavior of data 
points from the BAS and visualize detected instances on a dashboard for further inspections. For this, 
use case requirements were specified. Here, pre-conditions like external and operational data as well as 
process related information were listed. Table 1 shows the data sources of mentioned pre-conditions. 

Table 1 - Use case pre-conditions and their data sources

pre-conditions data sources 

External data IoT sensor data (temperature, humidity, motion, etc)

Operational data

Sufficient amount of previously collected 
monitoring data for training of anomaly detection 
models  
Milestone from which to check for anomalous or 
missing readings  
Inclusion of operator feedback in further iterations
Incident list 

Process related information Relationships of datapoints: naming scheme, other 
available documentation of the control system  

All monitoring data from the BAS was transferred to a cloud platform, where almost 3.5 years of 
continuous data was collected. This data was used for training and evaluation of anomaly detectors. 
Furthermore, an IoT sensor network was installed in the first and third floor to collect indoor 
environmental data of investigated zones / rooms (room air temperature, relative humidity, VOC, 
door and window contact, occupancy, brightness). The ZigBee communication protocol was selected
for the IoT sensor network due to the wide availability of sensors and gateway equipment, simple 
deployment and data collection. ZigBee was especially convenient due to its adaptability and mesh 
networking. In a star network, all networked devices communicate with each other via a central node. 
In contrast, the ZigBee mesh allows arbitrary interconnections between edge (battery powered) and 
repeater (main-powered) devices.  
Two Raspberry Pi 4 devices served as data loggers on each floor and were combined with ConBee II 
stick devices acting as gateways. The open-source software Home Assistant (Assistant, no date) ran as 
operating system on the Raspberry Pis. Associations of sensors to the network and their configuration 
were carried out via the Home Assistant interface. In Figure 2, the network area of installed IoT sensors 
for floor 1 is shown. Plugs and similar devices are main-powered and act as repeaters within the Zigbee 
network, effectively extending the reach of the network. This network topology reduces sensor failure 
because each battery-powered sensor can connect to any repeater within range if necessary. Network is 
also self-healing as multiple paths for a signal are possible, when one of the repeaters drops out of 
network, the network is able to reconfigure itself as long as there are viable routes and no disjoint 
subnetworks. 

Figure 2 – Map of installed IoT-equipment on the first floor of demonstration building
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3 METHODOLOGY

Where metadata model is presented, and machine learning workflow is broken down in steps with 
clarifications related to each step.

3.1 Facility model 

As part of the project the Brick ontology was used to structure knowledge about the topology of the 
building, its HVAC subsystems and data points. Brick is an open-source ontology-based unified 
metadata schema which semantically describes physical, logical and virtual entities and their relation-
ships. The standardized ontology is expandable and ensures a flexible data model that can be easily 
integrated into existing tools and databases. RDF (Resource Description Framework) represents logical 
statements about arbitrary things as the basis for semantic web technology and was designed by the 
W3C as a standard for formulating metadata. The general structure of an RDF data model consists of a 
subject that is logically connected to an object via a predicate. This gives the opportunity to provide 
machine-interpretable building data for the autoencoders workflow. Three sub-models were modeled 
for the building data model (knowledge database) as follows: the building, the BAS of heating / cooling 
supply / delivery for relevant areas (main service room & offices) and the IoT sensor network. The 
following figures show the basic structure of BAS and IoT sensor model. For a better understanding of 
the individual classes, color coding is shown in Figure 3: 

Figure 3 - Color code for Brick schema

Figure 4 outlines a part of the data model for the BAS and HVAC plant. Sub-system HK01 represents 
the main heat / cold supply system. HK01 is feeding O1HK which is located in Floor_U1 and contains 
O1HK_V02, a water system for concrete core activation. Within every sub-system entity like equipment 
(chiller, pumps, etc.), points (sensor types, etc.) exist and are somehow related with each other. For 
example, O1HK_V02 compose two regulating valves to control the volume flow of the heating 
(O1HK_V02_BTA_HV) or cooling (O1HK_V02_BTA_KV) circuit. These valves in turn include data 
points like a valve position command. 

An overview of the data model structure regarding the IoT sensor network is shown in Figure 5. Here, 
the installed sensor devices for an office room are illustrated. An HVAC zone which is a logical entity 
to connect several rooms together, arranges meeting rooms and offices. In these offices are several 
different IoT sensor types (temperature, humidity, contact, illuminance) placed. The sensors itself 
contain the meta data of their unit.
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Figure 4 - HVAC sub systems 

 

 
Figure 5 - IoT sensors in rooms 

 
3.2 Machine learning workflow  
 
Workflow shown on Figure 6 depicts progression of steps in the machine learning workflow.  
 
First step involves selection of relevant datapoints that represent the context. Approaches to determining 
contextually relevant datapoints may include but are not limited to spatial adjacency and system 
connectedness. For the analysis of demonstration building’s systems, we use the datapoints of the 
system itself and datapoints of its most closely connected subsystems. We query the facility knowledge 
base using the SPARQL query language (Quilitz and Leser, 2008).  
 
To collect all the datapoints of a system we use query: 
 
SELECT ?sub ?point 
WHERE { 
    ?point brick:isPointOf ?sub 
} 
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Figure 6 - Workflow for data processing and anomaly detector training

and to collect all the datapoints of all subsystems of a system we use query:

SELECT ?subsub ?point 
WHERE {
    ?subsub brick:isPartOf ?sub . 
    ?point brick:isPointOf ?subsub 
} 

Both queries are parametrized by replacing ?sub placeholder with a reference to a specific system or a 
subsystem, and are executed iteratively over all systems of interest. 
In case of system O1HK_V02, the returned datapoints are: O1HK_V02_BTA_TE_M, 
O1HK_V02_BTA_HV_S, O1HK_V02_BTA_KV_S, that represent temperature of the concrete core 
activation system, and settings of controllable valves of the heating and cooling, respectively.  
In the next step data is collected from different internal (BMS and IoT network) and external (weather, 
forecast, calendar) systems (Figure 8). Next, synthetic datapoints are added. Synthetic datapoints may 
be simply lagged (time delayed) values of selected datapoints, but they may also include values derive 
from single or multiple datapoints. Derivation methods include, but are not limited to, average, median,
minimum, maximum or total change of values for periods of arbitrary duration from the past (e.g.
hourly, daily or weekly average for the past hour or 1, 2, 12, 24, 72 hours prior). Furthermore, as data 
collection is event-based and new events are arriving in non-deterministic intervals it is beneficial to 
calculate time intervals since last event for each selected datapoint. That would allow the anomaly 
detector to also detect problems with data collection itself (i.e. no data from sensor for the last two 
days). 

Figure 7 - inputs to the neural network is composed out of multiple data sources. System/subsystem data includes datapoints 
collected by querying the system topology. External datapoints are collected from external data sources, while synthetic 

datapoints are dynamically generated rather than sensed.  
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Data then needs to be cleaned of problems such as erroneous measurements, such as “stuck” values, 
instantaneous minimum, maximum or default readings. When running the system in the production, 
data will not be cleaned prior to running them through the anomaly detector, but in order to prevent 
detector to learn common data recording problems as normal, any segments with values outside 
statistical error threshold are removed. To identify such readings, we use the z-score (normal score) 
statistical measure. Normal score measure quantifies reading’s distance to the mean of a dataset. We 
calculate the normal score of each datapoint and remove datapoints where abs(zscore)>3, with the 
assumption that such values are erroneous.  

As data collection is event based, and number of inputs is fixed, zero-order hold method is used to infer 
value of other data points when there is a new event from one of the trended data points. This means 
that last known state of values for all the relevant datapoints is retained apart from ones changed by the 
latest event. Synthetic datapoint needs to be updated whenever one of the datapoints that is used for its 
calculation is updated. For example, synthetic datapoints measuring time since last update of the 
datapoint need to be updated every time there is a change to any other datapoint. Figure 8 shows how 
values for all datapoints are inferred when new event happens. Datapoint 1 has a new value at timestep 
0, 2 and 5, while datapoint2 has new values at timestep 1 and 4. Interval since last received value for 
datapoint 1 linearly increases every timestep, and resets to 0 when new event involving datapoint 1 
occurs.

Figure 8 - Calculation of synthetic datapoints in relation to behavior of primary datapoints; datapoint 1 interval changes 
every time a change occurs for any other datapoint. When event is received for the source datapoint, interval datapoint is 

reset to zero

All the data points with little or no changes for the whole data collection period are ignored. 

Data is split in distinct sets for training and validation in relation. 80% of the dataset is used to train 
the model and 20% is used for testing. Scaling parameters for scaling each time series to [0,1] range 
are calculated and applied to training and testing dataset to prevent any of the datapoints having 
outsized influence on the training process. 

Once data is prepared, autoencoder models are created and trained. Resulting anomaly detectors are 
tested on a complete dataset, results are saved and stored for analysis. 

3.3 Autoencoder network architecture

Network architecture is based on the classical symmetrical autoencoder concept as shown in Figure 9.  

705 https://doi.org/10.52202/077185-0060



Paper ID: 303, Page 8 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Incoming data is fed into the network on the input layer Le1 (encoder layer 1). Size of the input layer 
corresponds to the number of primary, external and synthetic datapoints. Input layer is followed by an 
n-1-layer deep series of densely connected layers (Le2-Len), ending with a encoded representation layer 
(Lc). This is followed by a series of decoder layers (Ldn-Ld1), with a final one providing outputs of the 
network. Outputs represent the reconstruction of the autoencoder’s inputs. ReLu2 is used as an 
activation function for all the layers. All tensors are initialized with a random normal function which is 
a part of the Keras library (Chollet et al., 2015) that provides a high-level API for setting up deep 
learning workflows. Biases are initialized with zeros. 

Figure 9 - Schematic representation of symmetric autoencoder architecture with variable number of internal layers

3.4 Hyperparameter optimization criteria

We set up a hyperparameter tuning process that optimizes hyperparameters. We consider the following 
hyperparameters: number of internal layers, learning rate, and factor for L2 regularization. Number of 
internal layers was limited to a set [1,3,5,7] (including the encoding layer). Learning rate can take values 
from the set [0.01, 0.001, 0.0001], while L2 factor is selected from the set [0.01, 0.001, 0.0001]. 
Hyperparameter optimization is performed using a hyperband tuner (Li et al., 2018), a part of a Keras 
library.  

3.5 Grouping of anomalies 

Anomalies can occur as point anomalies or groups of related anomalous readings. We introduce a notion 
of anomaly group where one group can contain one or more anomalous points, and any anomaly point
within a group is not farther than a chosen time delta from closest anomaly point within the group. We 
select 2 hours as our time delta. Grouping is especially important for views meant to be presented to 
users for feedback.  

2 Rectified linear unit
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4 RESULTS 
Table 2 shows best reconstruction errors and respective model hyperparameters for each combination 
of system and lag used. Interestingly, all of the selected models have only one internal layer, that is in 
fact the encoding layer. L2 factor of 0.001 is selected in models with smaller input sizes (O1HK_V01 
and O1HK_V02). In all the other models L2 factor of 0.0001 yielded best results. Larger learning rate 
of 0.01 seem to be preferred by models of smaller encoding sizes, with larger encoding sizes favoring 
smaller learning rates of 0.001. Findings from the hyperparameter space optimization will be used if 
further research. 
 

Table 2 - Reconstruction error threshold and properties of best models of each category (system, lags) 

System Lags Input size Encoding size Internal 
layers 

Learning rate L2 
factor 

Threshold 

O1HK_V01 0 13 5 1 0.01 0.001 0.18 
O1HK_V01 1 17 5 1 0.01 0.001 0.25 
O1HK_V02 0 13 4 1 0.01 0.001 0.23 
O1HK_V02 1 17 5 1 0.01 0.001 0.26 
O1HK_V03 0 17 7 1 0.01 0.0001 0.22 
O1HK_V03 1 23 10 1 0.01 0.0001 0.21 
O1HK_V04 0 29 12 1 0.001 0.0001 0.12 
O1HK_V04 1 41 16 1 0.001 0.0001 0.15 
O1HK_V06 0 19 7 1 0.01 0.0001 0.17 
O1HK_V06 1 26 10 1 0.01 0.0001 0.13 
O1HK_V07 0 21 9 1 0.001 0.0001 0.13 
O1HK_V07 1 29 10 1 0.01 0.0001 0.12 
O1HK_V10 0 19 8 1 0.001 0.0001 0.12 
O1HK_V10 1 26 10 1 0.01 0.0001 0.12 
O1HK_V11 0 21 7 1 0.001 0.0001 0.12 
O1HK_V11 1 29 13 1 0.001 0.0001 0.16 
O1HK_V12 0 19 7 1 0.001 0.0001 0.15 
O1HK_V12 1 26 8 1 0.001 0.0001 0.13 
O1HK_V13 0 21 8 1 0.001 0.0001 0.12 
O1HK_V13 1 29 13 1 0.001 0.0001 0.12 
O1HK_V14 0 21 9 1 0.001 0.0001 0.12 
O1HK_V14 1 29 11 1 0.001 0.0001 0.12 

 
 
Encoding dimension is the most important model parameter and influences the data reconstruction 
ability of the model. Threshold value from table is calculated as mean reconstruction error which results 
in 10 groups of anomalies (with groups defined as in section 3.5).  
 
In more than half examples (14 out of 22), best reconstruction threshold was not reached by the model 
with largest encoding layer as would be expected. We calculated encoding size to input size ratio, and 
we plot thresholds of all trained models in Figure 10. Different systems are represented on the x-axis.  
Circle sizes indicate thresholds (smaller is better), while color indicates whether respective model input 
includes datapoint lags. Top of the plot (encoding to input ratio is higher) represents models where with 
looser compression, and expected better reconstruction, while the bottom of the plot shows models with 
more constrained representation, and consequently worse reconstruction. 
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5 DISCUSSION

We have shown that using semantic model of the facility helps with setting up training process by 
simplifying selection of relevant datapoints for each anomaly detector in a systematic way. When 
another approach for variable selection is devised, it is simple to reuse it on other subsystems, systems,
zones or even buildings, as long as identical or similar modelling approach is used. 

Figure 10 - Reconstruction error thresholds resulting in 10 detected anomaly groups. Highest encoding to input size ratio 
does not always result in a best error threshold.

Figure 11 shows snapshot from a dashboard created to explore trained models and their performance 
on the dataset. General workflow consists of selecting the desired system, after which the model 
dropdown box gets populated with a list of models trained for that system. After the model is selected, 
the whole dataset is evaluated using this model. Additionally, evaluation is saved for future use. Then 
system calculates the threshold required to detect 10 anomaly groups, and populates the rightmost 
dropdown box with a list of anomaly groups. Upon clicking on one of the groups, it gets visualized in 
the plot below. Plot is also interactive, so it is possible to turn on and off visualization for individual 
datapoints, as well as navigate the plot. Threshold can also be manually changed which causes anomaly 
group recalculation and update in the corresponding dropdown box. 
Main deficiency of the proposed approach is requirement for the existence of high-quality data and 
contextual metadata. Furthermore, in case of facility changes, care must be taken to detect changes 
relevant for individual anomaly detectors and retrain them. Changes may be related to structure (adding, 
removing or rearranging equipment), or settings (setpoints, control algorithms). Depending on the scope 
of changes, it may be necessary to retrain the relevant models. In case of adding new datapoints, 
anomaly detectors affected by these datapoints may need to be retrained. To properly take new 
datapoints into consideration, a sufficient amount of data needs to be collected first.

708https://doi.org/10.52202/077185-0060



Paper ID: 303, Page 11 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Next step for the development is including feedback from facility manager about quality of detected 
anomalies. The desired feedback includes list and characterization of false positives and false negatives. 
To that end, to prevent future false negatives, either connecting directly to the building incident book 
or otherwise integrating the information about system failures would help when retraining the anomaly

Figure 11 - Anomaly detection dashboard enabling exploration of anomalies detected with each of the trained autoencoders. 
Model with encoding size of 9 of system O1HK_V04 is selected

detectors. To prevent the false positives, either raising the threshold or putting more weight on 
problematic data segments should be performed to address specific issues. As seen, in some cases the 
anomaly detector does not reconstruct the input data well, and base threshold remains high. As this 
affects some systems significantly more than others, the affected systems will be examined closely to 
identify reasons for weak performance and improve it. 
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