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ABSTRACT

A novel method is proposed and demonstrated for the optimization of the operation of power-to-heat 
systems with energy storage. It is based on semi-brute force for operation optimization and heuristic 
optimization for the unit capacities to minimize the levelized cost of produced heat. The method enables 
easy implementation of nonlinear features, such as lookup tables. A case study including an air-source 
heat pump and electric boiler is used to demonstrate both the method and the benefits of power-to-heat.  
Local climate conditions and hourly electricity prices of Finland are used. A global sensitivity analysis 
is conducted for the various cost parameters. The model turned out to be viable for business case 
analysis. The results indicate a strong potential for electric boiler combined with heat storage. The air-
source heat pump was rarely found in the optimal solution, and the capacities were mainly low,
reflecting the limitations of air as a heat source in cold climates. Higher capacities were found for 
biomass boiler, but it, too, was optimized out of the production palette in over half of the solutions. 

1 INTRODUCTION

Heating is responsible for 40% of global CO2 emissions (IEA, 2019). Heat is used in industrial processes
and buildings (space and water heating). Electrification has the potential to reduce fossil fuel use and 
CO2 emissions (IEA, 2019), provided that the electricity has low CO2 emissions. Heat pumps can be 
used to improve the performance of electric heat production further (David et al., 2017).

If electricity is largely produced by variable renewable energy (VRE), e.g., wind and solar, energy 
systems will need to become more flexible (Rinaldi et al., 2022). As space heating demand follows 
ambient temperature, electrification of heating may also increase peak loads (Hutty et al., 2020). A high
VRE share can be expected to increase price variation (Wen et al., 2022). Load and price peaks support 
the use of thermal energy storage (TES) to decouple energy production and consumption temporally. 
Avoiding moments of high prices is beneficial for cost-effectiveness, and lowering peak loads can
decrease the investments in both the electricity grid and dispatchable production capacity.

This study has two goals: presenting a novel way to optimize the operation and design of a system with
a TES and demonstrating the economic benefits of heat production with an electric boiler, heat pump, 
and TES. The methodology consists of two optimization layers: component sizing optimization, and 
system operation optimization at one-hour time steps. Wu & Ma (2021) have conducted a review of
optimization methods for electricity battery storage, which is analogous to TES. Traditional methods 
such as linear programming (LP), and mixed-integer linear and non-linear programming (MILP and 
MINLP) are extensively studied, but the strict structure of the constraints may limit the models and
often require simplifications or linearization (Tarragona et al., 2021; Montero et al., 2022). Studies
often use simple models: TES heat losses may be neglected (Zhang et al., 2022; Dorotić et al., 2019)
or estimated with a simple efficiency (Fischer et al., 2016), and heat pump coefficient of performance
(COP) estimation is often simplified (Tarragona et al., 2022; Krützfeldt et al., 2021).
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Metaheuristics such as particle swarm optimization (PSO), and genetic algorithm (GA) have more 
freedom in model formulation, permitting e.g., a detailed solar collectors and TES model described with 
partial differential equations to be optimized with PSO (Immonen & Powell, 2022). The drawbacks of 
metaheuristics include their computational load, and lack of convergence proof (Li et al., 2014; 
Siddiqui et al., 2021). Dynamic optimization (DO) has also been applied to TES operation (Siddiqui et 
al., 2021). However, the model preparation may be demanding (Jain & Singh, 2003). The hypothesis 
of this study is that (i) it is easy to include non-linear features and detailed models in an explicit time-
marching solver, (ii) rule-based DO can serve as a semi-brute-force method, the rules limiting the 
number of options.

The capacity optimization is performed using the CS3 cuckoo search metaheuristic (Saari et al., 2022).
For improved performance, a modified Hooke-Jeeves search is implemented for terminal convergence. 
Finally, a global sensitivity analysis is carried out by the SimDec method (Tarantola et al., 2024).

The main benefit of the proposed method is the ability to use complex models in a time-marching solver. 
This enables easy implementation of accurate component models without linearization. The method is 
demonstrated with a case study, in which heat for a small district heat (DH) network is supplied by a 
system consisting of wood- and oil-fired boilers, an electric boiler, an air-source heat pump, and a TES.
The optimization objective is minimizing the levelized cost of heat. Two cases are studied: in one there 
is an existing wood boiler, in the other, the wood boiler capacity is also a decision variable.

2 METHODS

2.1 The studied case
The proposed method and the potential of electrified heating and thermal energy storages are 
demonstrated with a case study, a small DH system (Fig. 1). The operation and capacities of the 
available heat sources are optimized, to minimize the cost of produced heat. The heat demand data is 
obtained from a Finnish energy company operating several DH networks in Finland. The maximum 
heat rate and annual heat demands are 6.5 MW and 18.5 GWh, respectively.

Figure 1: The case, district heat demand (qDH), ambient temperature (Tamb), and the performance of 
the heat pump for different evaporation (Tevap) and condensing (Tcond) temperatures.

The developed model consists of two parts: (1) the core model contains an explicit time-marching 
energy and mass balance, and the optimization of the system operation, (2) the outer layer minimizes 
the levelized cost of heat by optimizing unit capacities. The model is built in a MATLAB environment.
The objective function of the outer layer optimization is levelized cost of heat (LCOH) minimization,

ܪܱܥܮ = (భశ)(భశ)షభ ாାைாாీౄ , (1)

where the cost of production is obtained from the capital expenditure (CAPEX) annualized with the 
capital recovery factor defined through lifetime lt and interest i, and operating expenditure OPEX. The 
costs are divided by the produced energy for district heat EDH. The model includes a water tank type of 
thermal energy storage (TES), and four heat sources: an air-source heat pump (HP), an electric boiler
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(EB), a wood chip-fired biomass boiler (BB), and a light fuel oil boiler (LFOB). Quasi-steady operation 
with a one-hour time step is considered. Constant heat capacity cp is used for water.

2.2 Thermal Energy Storage
The TES charge rate qcharge is solved from energy balance with heat production rates q and demand qDH,ݍୡ୦ୟ୰ୣ = ୌݍ + ݍ + ݍ + ݍ − ,ୈୌݍ (2)

Negative qcharge means discharge. The TES is modelled as a perfectly stratified cylinder with constant-
temperature hot and cold parts, and 15 W/m2 heat loss (Koskelainen et al., 2006). The state of charge 
(SOC) is determined at each time step by the difference between the TES and DH return temperatures,ܱܵܥ = ݉ୗ ܿ୮൫ ܶୗ − ୈܶୌ,୧୬൯, (3)

The temperature of TES hot part changes during charge, as the charging water temperature may differ 
from the TES temperature. The charging temperature Tcharge is the DH supply T. DH return water is 
mixed with the TES the cold water. Hot temperature at moment n+1 is obtained from

ܶୗାଵ = ౦ు ்ు ା౦ౙ౨ౝ்ౙ౨ౝ౦ు ା౦ౙ౨ౝ −  ౢ౩౩௧౦ు , (4)݉ୡ୦ୟ୰ୣ = ౙ౨ౝ௧౦൫்ీౄ,౩౫౦౦ౢ౯ି்ీౄ,౨౪౫౨൯. (5)

During discharge, hot water is drawn from the TES and supplied to the DH network. Other sources may 
be used simultaneously to cover part of the demand. The required discharge mass is solved from݉ୡ୦ୟ୰ୣ = ̇ీౄ౦൫்ీౄ,౩౫౦౦ౢ౯ି்ీౄ,౨౪౫౨൯ିౄౌିుాିాాିైూోా౦൫்ుି்ీౄ,౨౪౫౨൯ Δݐ, (6)

where the time step Δݐ is one hour. Limited TES charge or temperature may limit the ability to cover 
the heat demand from the TES. In such case, discharge is mixed with remaining return water resulting 
in a mixing temperature Tmix, Eq.(7) and initial estimate for supply temperature ୱܶ୳୮୮୪୷ , Eq.(8)୫ܶ୧୶ = ̇ీౄ౦்ుା(̇ీౄି̇ు)்ీౄ,౨౪౫౨̇ీౄ౦ , (7)

ୱܶ୳୮୮୪୷ = ̇ీౄ౦்ౣ౮ାౄౌାుాାాాାైూోా̇ీౄ౦ . (8)

If ୱܶ୳୮୮୪୷ is insufficient, the discharge mass or temperature was insufficient, and additional heat qadd is 
needed from the available sources (HP, EB, BB, LFOB), Eq.(9), and discharge must be re-calculated, 
Eq.(10): ୟୢୢݍ = ݉̇ୈୌܿ୮൫ ୈܶୌ,ୱ୳୮୮୪୷ − ୱܶ୳୮୮୪୷ ൯, ୡ୦ୟ୰ୣݍ(9) = ୌݍ + ݍ + ݍ + ݍ + ୟୢୢݍ − .ୈୌݍ (10)

2.3 Heat production
The air-source heat pump (HP) uses a centrifugal compressor, and pentane as work fluid. The coefficient 
of performance (COP) is determined by a model described in Jaatinen-Värri et al. (2024) at -20 °C < 
Tevaporation < 20 °C and 75 °C < Tcondensation < 100 °C (Fig.1), with additional constraint of 20% minimum 
load. Temperature difference of 10 °C is assumed between the ambient and evaporator, due to the heat 
exchangers of the heat collector system. Electric and LFO boilers have no limitations on minimum load. 
The biomass boiler minimum load is 15%; minimum operating and idle time were varied in a sensitivity 
analysis.

2.4 Optimization of the system operation
Optimizing the system operation is based on a 24-hour semi-brute force horizon, with the number of 
possible options reduced by rules. The method uses for-loops going through different price limits to 
operate the system while solving the energy balance explicitly. Algorithm 1 presents the method in 
pseudocode. The 24-hour optimization is repeated through the simulation. The initial state of an
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optimization comes from the last step of the previous. Historical data is used for electricity prices and 
heat demands. Charging TES during lowest-price hours is assumed the best option. From no charging 
to charging at every hour, there are thus topt+1 = 25 charging options. Discharge is always allocated for 
the hours of the most expensive electricity. An example of all options for one optimization horizon is 
shown in Fig.3.

During charging, heat production qprod is constrained by TES free capacity, heat demand during the rest 
of the optimization period, and production unit capacities. Three possible combinations are available 
for TES charging: (1) HP+EB, (2) HP+BB, or (3) BB. Options (1) and (2) are possible when the 
electricity price is below the threshold. The choice of (1) or (2) is based on the following rules:

Heat pump is the primary source.
If the heat pump cannot provide the full heat or temperature, EB or BB is used as a supplementary 
heat source; choice is based on opex.
If BB is shut down, EB is used as a supplementary heat source.

Algorithm 1. Main algorithm for one optimization horizon topt.
Cel = hourly electricity prices
Cel,sorted = sorted hourly electricity prices

for i = from 1 to topt + 1 do
for h = from 1 to 24 do  

if Cel(h) < Cel,sorted(i) then
Charge with HP+EB or HP+BB 

elseif peak demand between h and 24 exceeds BB capacity then
Charge with BB 

else
No charging
if discharge allowed then

Try to provide heat from TES
end if

end if
Cover missing heat with HP, EB, BB, and LFOB
Update state of charge of TES 

end for
end for

Figure 3: Options of one optimization horizon; 8th is optimal. Numbers and colors indicate the charge
and discharge of TES.
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If the electricity price exceeds the threshold, TES can still be charged with BB alone, if the peak heat 
demand during the rest of the optimization period exceeds BB capacity. TES discharge is tried if
allowed. There is one discharge option per charging option (Fig.3). The rules are:

Number of hours that TES can cover heat demand: ndischarge = SOC/qDH

Allocate ndischarge for the most expensive hours of the optimization horizon.
Check if TES can provide the required discharge, Eq.(2)–(8). If not, calculate the additional heat 
required, Eq.(9)–(10).

If any heat demand remains after charge/discharge, the heat sources (HP, EB, BB, LFOB) can be used 
to cover the additional demand qadd if there is capacity left. The rules for heat sources selection are:

Heat pump is the primary source.
If the heat pump cannot provide the full heat or temperature (Fig.2), boilers are used.
Selection between EB, BB, and OB is done by specific opex and available capacity

2.5 Capacity optimization
The heat production unit capacities were optimized with the CS3/rand/1/bin cuckoo search (Saari et al.,
2022). The CS3 is a population-based method based on differential mutation and Lévy-distributed 
random walks. The CS3 typically finds the region of the solution relatively fast, spending most of the 
run refining it. To improve speed, a deterministic direct method was used for terminal convergence. 
Hooke-Jeeves (HJ) pattern search  (Hooke & Jeeves, 1961) is a well-known method, but it suffers from 
a limited ability to search outside of the variable axes: such moves can only be sums of successful 
single-axis moves. To alleviate this, the possibility of diagonal moves was added (Alg.2). 

Algorithm 2. Modified Hooke-Jeeves algorithm to minimize f(x)
begin

n ← 0; set initial step length vector xn ← ( xn,1, xn,2, …, xn,D)
while number of function valuations < maximum and there exists xn,d > minimum threshold

fn ← f(xn);  n ← n+1  
for all i = 1, …, D do // try moves in direction of each axis

attempt moves by +/- xn,i ;update ܠ୬if succesful 
end for
if ୬ܠ  = // ୬ିଵܠ if no move was accepted

reduce step size: xn+1 ← xnܠ୬ = diagonal_exploration(ܠ୬, xn)
else // otherwise try pattern move

attempt further pattern moves by the sum vector of all successful moves, until failure
end if

end while
end
begin function diagonal_exploration(ܠ୬, xn)

for all i = 1, …, D-1 do 
for all j = i+1, …, D do 

attempt all 4 possible diagonal moves possible with ± xn,I ± xn,j

if ୩,୧ܠ =୩,୧ାଵܠ and j < D // if two-axis moves fail, try three-axis moves
for all k = j+1, …, D do 

attempt all 8 possible diagonal moves possible with ± xn,i ± xn,j ± xn,k

end for
end if

end for
end for
if ୩,୧ܠ ≠୩,୧ାଵܠ

attempt pattern moves until failure
end if 

end function
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2.6 Global sensitivity analysis 
Global sensitivity analysis is important for any analysing systems with uncertainties (Saltelli et al.,
2019). One recent technique is a hybrid uncertainty-sensitivity analysis approach, Simulation 
Decomposition or SimDec (Tarantola et al., 2024). SimDec decomposes the distribution of the output 
(target variable) by the multivariable scenarios, formed out of the most influential input variables
(Kozlova & Yeomans, 2022), where the influence of inputs is defined by variance-based sensitivity 
indices (Kozlova et al., 2023). The procedure reveals how different output ranges are achieved, and 
what parameter interactions affect the output (Kozlova et al., 2024). For each case, two forms of 
visualization, stacked histogram and box plots, produced with the same decomposition, are presented. 
The histogram highlights the output distribution, while the box plot indicates the extent of scenarios.

Many central parameters of the studied case, particularly energy prices but also equipment costs, have 
considerable uncertainties, and interactions between the uncertain parameters are also likely. The 
optimization was thus carried out in conjunction with a global sensitivity analysis.

3 RESULTS

The results were obtained through 1024 Monte Carlo simulation runs, where each simulation run is an 
optimization with randomized values of uncertain parameters. In each case, 8% interest and 20-year 
lifetime, were considered. Annual operating costs of all units were estimated at 3% of capex (fixed) 
plus 3 €/MWh (variable).  For electricity, the hourly energy price fluctuations were based on hourly 
historical data from 2020 (Nord Pool, 2022), varied by correction factors in a sensitivity analysis. To 
this was added a fixed 0.6 €/MWh tax according to Finnish tax class II and transmission costs of 13.6 
and 30.6 €/MWh for night and day times, respectively (Lappeenrannan Energia, 2022).

The variables subjected to sensitivity analysis are listed in Table 1. In each run, the electricity hourly 
prices were adjusted up or down by a constant factor of 0.5-2.0. The median was kept at 1.0 by dividing 
or multiplying at equal probability with a uniform-distributed random variable between 1 and 2; the 
mean value will thus be somewhat greater than the median. All other prices are uniform-distributed 
random numbers between the minimum and maximum.

Two cases were studied: (1) pre-existing biomass boiler, (2) clean sheet case. The first one serves as a 
retrofit for a typical small-scale DH system, and the latter illustrates how a new, greenfield system could 
be designed.

Table 1: Energy and grid connection costs.
Variable Min Median Max References

B
oi

le
rs Light fuel oil, €/MWh 70 160 250 (Statistics Finland, 2024)

Wood chips, €/MWh 20 35 50 (Bioenergia, 2023)
Minimum wood boiler oper./idle time, h 6 12 18 This study

El
ec

tr. Electricity spot price multiplier, - 0.5 1.0 2.0 This study
Share of electricity from the spot market, % 0 50 100 This study

Peak power cost, k€/MW/month 1.0 3.0 5.0 (Lappeenrannan Energia, 2022)

C
A

PE
X

Heat pump CAPEX, €/kW 630 900 1170 (Pieper et al., 2018)
Electric boiler CAPEX, €/kW 35 50 65 (Trevisan et al., 2022)

Thermal energy storage CAPEX, €/MWh 1400 2000 2600 (Dahash et al., 2021)
Biomass boiler CAPEX, €/MW 700 1000 1300 (Dahl et al., 2019)

3.1 Pre-existing biomass boiler
The electricity price and wood fuel price have the greatest influence on LCOH, as seen in Fig.4. At the 
lower electricity prices, the wood boiler is used less. Its cost affects the LCOH only moderately, as 
indicated by the fairly slight shift to the right with the lighter shades of the red- and yellow-colored low-
and medium-price electricity scenarios. At the high electricity prices, wood use increases, and therefore 
also the influence of its cost on LCOH becomes significantly more, indicated by the clearly increased 
spread of shades of blue.
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The decomposition for heat pump (HP) capacity, indicated as compressor power consumption, is shown 
in Fig.5. In more than half of the optimization runs, no HP was installed. When one was included, it 
was typically under combinations of low HP specific cost, and expensive wood chips (a light red 
scenario in Fig.5), but even then, the capacity was comparatively small.

Color Electricity price Price of wood chips
LCOH (€/MW)

Share of data
min mean max

low
low 18.7 25.0 34.3 11 %

medium 19.1 28.0 35.4 11 %
high 19.7 30.1 39.1 11 %

medium
low 24.7 30.6 37.3 11 %

medium 26.1 37.5 47.2 11 %
high 28.3 41.0 54.3 11 %

high
low 25.3 33.2 39.4 11 %

medium 35.6 42.3 49.7 12 %
high 44.1 51.2 59.7 11 %

Figure 4: Levelized cost of heat (LCOH).

Color HP CAPEX Price of wood chips 
HP capacity [MW]

Share of data
min mean max

low
low 0.00 0.09 0.51 11 %

medium 0.00 0.17 0.68 11 %
high 0.00 0.33 0.84 11 %

medium
low 0.00 0.01 0.21 12 %

medium 0.00 0.05 0.34 11 %
high 0.00 0.11 0.52 11 %

high
low 0.00 0.00 0.01 11 %

medium 0.00 0.00 0.06 12 %
high 0.00 0.04 0.32 11 %

Figure 5: Heat pump (HP) capacity, as design-point compressor electric power consumption.
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Fig.6 shows the decomposition of electric boiler sizing. The electric boilers were sized much larger –
only in ca.10% of the cases less than 0.5 MW, and at the high end, nearly 6 MW was sometimes 
installed, amounting to almost 90% of the system's maximum heat rate. Unsurprisingly, the prices of 
electricity and the cost for grid connection peak power were the most important variables explaining 
the electric boiler sizing. The distribution of capacities indicates a multi-modal problem.

Color Electricity price Grid connection
peak power cost

Electric boiler capacity (MWh)
Share of data

min mean max

low
low 1.9 4.0 5.7 11 %

medium 1.0 3.0 3.3 10 %
high 0.5 2.5 3.3 12 %

medium
low 0.7 2.5 5.5 11 %

medium 0.1 1.8 4.5 11 %
high 0.0 1.3 3.2 11 %

high
low 0.0 1.0 2.8 11 %

medium 0.0 0.7 2.1 12 %
high 0.0 0.4 1.0 10 %

Figure 6: Electric boiler (EB) capacity.

Color Electricity 
price

Grid connection peak
power cost

Storage capacity (MWh)
Share of data

min mean max

low
low 1.3 23.9 36.3 11 %

medium 0.3 18.5 28.2 10 %
high 0.0 15.2 24.5 12 %

medium
low 0.2 12.7 36.9 11 %

medium 0.5 8.4 29.6 11 %
high 0.6 6.3 24.4 11 %

high
low 0.0 2.4 23.8 11 %

medium 0.0 2.8 22.7 12 %
high 0.1 2.6 3.2 10 %

Figure 7: Thermal energy storage capacity.
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The optimal TES capacity (Fig.7) is centered around two points: below 5 MWh, and 20-25 MWh. The 
first one consists of mostly medium or high electricity prices, while the second consists mostly of low 
ones. This indicates two different operation strategies for TES, potentially the first one charging mainly 
with BB, and the second one with EB. Two main occasions to charge with BB are (i) heat demand drops 
below BB minimum load during the summer and (ii) heat demand varies over and below maximum BB 
capacity. For both, the charging and discharging rates are small, supporting smaller TES. In contrast, 
electric heating could benefit from larger TES to utilize cheap electricity better.

3.2 Clean sheet case
The results for the case where all production capacity except for the LFO boiler had to be invested in 
were broadly similar to the above-described results for the case of pre-existing 3.5 MW biomass boiler. 
LCOH variation range increased only slightly, to approximately 82 €/MWh at the high end. Installed 
heat pump capacities followed a very similar pattern to the case of pre-existing biomass boiler: HP 
capacities remained at zero in slightly over half the cases. Slightly more capacity was installed at the 
highest end of the scale, at 1.05 MWel as opposed to just under 1 MWel , but the shares of these results 
remained minuscule. A slightly greater share of cases, albeit still arguably negligible, resulted in 
approximately 200 kWel capacity installed. This took place when the wood chip price was high, and the 
HP CAPEX low. 

The sizing of the EB (Fig.8) and the TES (Fig.9) show considerably greater changes than the HP. The 
EB capacity varies within a similar range as with pre-existing biomass boiler (see Figs 6 and 8), and the 
peaks are also similarly located at 1, 3, and 5 MW, but without the pre-existing BB the 5 MW peak 
grows considerably, the 1 MW peak shrinks, and the 3 MW peak all but disappears. Electricity price 
and grid connection peak power cost remain the most influential uncertainties. 

Color TES capacity BB capacity
EB capacity (MW)

Share of data
min mean max

low
low 1.02 3.30 5.14 1 %

medium 0.00 2.97 5.25 4 %
high 0.00 0.91 2.94 28 %

medium
low 0.00 4.50 5.35 12 %

medium 0.00 4.12 5.42 15 %
high 1.39 2.32 3.18 6 %

high
low 4.22 4.99 5.98 20 %

medium 3.34 4.93 5.97 14 %
high - - - -

Figure 8: Electric boiler (EB) capacity with clean sheet case.

The Fig.8 plot was generated by including the optimized decision variables (installed capacities) as 
input parameters. This provides insight into how the optimizer is using the electric boiler and the TES 
in conjunction with each other: TES capacity is the most influential parameter explaining EB capacity, 
with a large TES corresponding to a large EB, and vice versa. A large TES allows the operation 
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optimization to use a large EB to make maximum use of the hours of cheap electricity. The second most 
influential parameter is the BB capacity; large BB is found with small TES and EB, and vice versa. 
There are no results with large TES, EB, and BB, and only 1% have small TES, EB and BB. 

Color EB capacity BB capacity
TES capacity (MWh)

Share of data
min mean max

low
low 1 11 23 1 %

medium 0 13 24 2 %
high 0 5 23 30 %

medium
low 1 26 33 13 %

medium 0 23 36 18 %
high 0 18 26 3 %

high
low 1 29 41 20 %

medium 1 29 39 13 %
high - - - -

Figure 9: Thermal energy storage (TES) capacity with clean sheet case.

Color HP capacity LFO price
BB capacity (MW)

Share of data
min mean max

low
low 0.00 1.00 3.57 12 %

medium 0.00 0.73 3.73 10 %
high 0.00 0.52 3.75 11 %

medium
low 0.00 0.78 3.45 11 %

medium 0.00 1.03 3.70 11 %
high 0.00 1.17 3.80 12 %

high
low 0.00 1.24 3.79 10 %

medium 0.00 1.56 3.90 13 %
high 0.00 1.60 4.24 10 %

Figure 10: Biomass boiler (BB) capacity.

557 https://doi.org/10.52202/077185-0047



Paper ID: 232, Page 11

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

The TES capacities are similar to the case of pre-existing BB, but with a greater 30 MWh and smaller 
near-zero peak, largely mirroring the results for EB. The BB data (Fig.10), on the other hand, shows 
HP capacity and LFO price as the most influential explanations for installed biomass capacity, and a 
distribution similar to HP. This indicates that the biomass capacity appears to compete with heat pumps 
for base load in a small number of cases (2.5 to 4 MW installed capacity), as well as oil for peak-load 
generation.

4 CONCLUSIONS

The combination of electric boiler and TES looks best for base/mid-load district heat generation in all 
but a small minority of cases, and is superior to air-source heat pumps for taking advantage of low-cost 
electricity together with TES. It should be noted that this conclusion is limited to the case of air source, 
and cold climate; if higher temperature heat sources are available, either due to warmer climate, or 
alternative heat sources, the COP and time within operational limits will support the air-source heat 
pump, improving economic performance. Biomass boiler and air-source heat pump appear as competing 
technologies. If the wood chip fuel is cheap, it tends to push out even the small air-source heat pump 
capacities. For future work, a unit of combined heat and power could be added to represent a larger 
district heat network.
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