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ABSTRACT
The paper addresses the problem of the evolution of systems from a given initial state to a final one in 
the most general case in which the transformations include non-equilibrium states. The specific 
phenomenon addressed here is the expansion of a real gas (non-constant specific heats) in a turbine 
cascade (nozzle + rotor). The model is based on an equation of motion similar to the real Ginzburg-
Landau equation but rephrased in terms of exergy, and it was described in previous publications. The 
fundamental assumption here is that the evolution of the fluid is driven by the specified temperature 
and pressure gaps between the up- and downstream boundaries, but that the details of the intermediate 
states are linked to the local deflection angle . Thus, for a fixed initial pair (T0,p0) and an assigned 
degree of reaction, it is possible to explicitly express the local work, friction- and heat losses along the 
passage as functions of the (integral of the) head coefficient . This paper may be considered as a 
corollary to the proof of the existence and quantification of a non-equilibrium exergy presented in 
previous articles by the present Authors. The model does not make use of the local equilibrium 
assumption, and for simplicity’s sake in the example discussed here a quasi-1D approach is adopted, 
assuming that at each station along its path the fluid is homogeneous in the directions perpendicular to 
the main motion (radial velocity identically zero and tangential velocity constant in the circumferential 
direction). 
The model calculates the (transversally averaged) non-equilibrium exergy at each station along the 
chord, and the main result is that its value at rotor exit is substantially higher than its equilibrium 
counterpart. The evolution history depends strongly on the deflection angle, i.e. on both the head and 
flow coefficients, and respectively. The solution to the mass- and energy balances leads to an 
analytical expression for the non-equilibrium exergy. The paradigm is theoretically simple and the 
resulting model of relative ease of implementation (the solution presented here was obtained on a I5 
core using MATHEMATICA), and fully two-dimensional solutions may be obtained as well, provided 
a proper form of the heat equation is used to calculate the fluid-to-wall thermal diffusion. Applications 
of the proposed framework may help designers to gain a better insight into real non-equilibrium 
expansion processes and to more accurately tune the nozzle- and rotor efficiency.

KEYWORDS:  non-equilibrium thermodynamics; exergy; Ginzburg-Landau equation; gas turbine 
cascade, real cascade exergy effectiveness

LIST OF SYMBOLS
Entity and units Symbol Entity and units Symbol

Womersley number aW Non-Equilibrium System NES
Angular frequency, s-1 Pressure, Pa p
Area A Radius, m r
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Area ratio Height, m z
Available Energy, J (eqtn. 3) A Local Equilibrium Assumption LEA
Density, kg/m3 Local expansion ratio
Dimensionless coordinate Y Mass, kg M
Dimensionless pressure ratio Polytropic exponent, pol

Dimensionless temperature Specific heat, J/(kgK) c
Dimensionless velocity V Specific heat ratio cp/cv

Drag coefficient along the blade  Temperature, K T
Dynamic viscosity, kg/(ms) Temperature scaling factor, T1/T0

Entropy, J/(kgK), J/K s,S Time, s t
Exergy, J/kg, J e, E Velocity, m/s V
Flow coefficient Volume, m3 V
Head coefficient Work, J W

1 – INTRODUCTION
A nonequilibrium system (NES in the following) can be described in simple but accurate terms as one 
that whose point in the state space is evolving in time and whose evolution is driven (also) by internal 
gradients of the fundamental state parameters. A system relaxing to equilibrium is also a NES, because 
its internal properties are changing in time, and so are the internal fluxes of mass- or energy. Another, 
very useful for tutorial purposes, type of NES is one that is in contact with two -or more- constant 
temperature/mass reservoirs at different but constant temperatures/concentrations: in this case non-
equilibrium is maintained by external energy or mass transfer through the boundaries and the system is 
said to be in steady-state non-equilibrium (SS-NES). A non-equilibrium state thus implies dynamic (i.e., 
time-dependent) phenomena and the presence of currents of the conserved quantities from one part of 
the system to another. 
There is a tendency in the engineering literature to consider the lifetime of a non-equilibrium state as 
“very short”, in the sense that its time constants are substantially lower than those of the “equilibrium 
situation”: this is though a fallacy that can be easily dispelled by considering for instance the dynamics 
of turbulent flows (which are essentially in non-equilibrium for their entire life!). In this regard, a SS-
NES constitutes a particularly interesting situation, because (except for the smaller molecular scales) it 
displays no time dependence at any point within its boundaries, but mass- and energy flow through it, 
driven by injection in one portion of the boundary and subtraction on another portion. Since the 
dynamics of real systems are dissipative, the steady state is associated with energy 
dispersion/degradation, i.e. with a (in this case constant) rate of entropy generation or, in exergy terms, 
of exergy destruction.   
It is common to distinguish [3,5,15] between non-equilibrium states and non-equilibrium processes: it 
is clear though that the latter is a succession of several instantiations of the former, and therefore we 
shall consider this distinction irrelevant for the purpose of this study.  
A very convenient way to treat NES is the so-called local equilibrium assumption (LEA), which posits 
the existence within the “macroscopic” NES of a large (in some norm) number K of sufficiently small 
regions Vk in which the thermodynamic properties are related to the state variables by the very same 
equations as in equilibrium. The LEA has been successfully applied to many physical processes in 
which local gradient are smooth and diffusion times are substantially shorter than the externally 
imposed gradients: it does not apply to shock waves, explosions or rarefied gas flows (high Knudsen 
number). LEA allows for the extension of equilibrium thermodynamics to non-equilibrium systems and 
leads to the calculation of mass- or volume-averaged temperature, energy, entropy and exergy that may 
vary both in space and in time [15]. If needed, the NES global properties can then be obtained by 
integrating the relevant quantity (called the density of the variable under consideration) over the 
system’s mass- or volume. Notice that, though each small portion Vk of the NES undergoes an 
irreversible transformation, its entropy generation rate is not necessarily positive, because it depends on 
the internal material and energy exchanges: nonetheless, Second Law must obviously apply to the body 
as a whole. Though often criticized by theoreticians, LEA is an extremely useful and successful method: 
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to witness, consider that all the numerical structural-, thermal- and fluiddynamic codes are implicitly 
based on it.
The non-equilibrium thermodynamic description we are after stems from three observations that emerge 
from the literature dedicated to this branch of thermodynamics: 
a) The level of irreversibility of any intermediate NE state in a process is related to its distance from 

global equilibrium (GE) and usually grows with it; 
b) This distance NE-GE can be measured in terms of the gradients of one or more state parameters i

of the system: T, p, u, z…; 
c) The higher the gradient , the larger is the distance NE-GE and the stronger the tendency of the 

system to return to equilibrium or to switch to a different configuration, closer to a (possibly 
different) equilibrium (this “jumping” or “morphing” characterizes cases of bifurcating and 
catastrophic processes, which are outside of the scope of this paper).

The need for treating non- equilibrium systems was well known to Maxwell, Boltzmann and Gibbs, and 
also Lotka [16] addressed it albeit in a qualitative way. The topic received enormous attention after the 
publication in 1944 of Erwin Schrödinger’ book “What is Life?”, in which he suggested that life is a 
manifestation (he used the suggestive term “property”) of far-from equilibrium systems that maintain 
their organized, low-entropy state by producing entropy at the expenses of an external supply of energy 
and matter. Since the publication of the Onsager reciprocal relations in 1931 [18,19] (see also [1,17]), 
many fundamental exploratory studies in the theoretical and practical aspects of non-equilibrium 
thermodynamics were published: it suffices here to mention the monographs  by Prigogine in 1967 [21], 
DeGroot and Mazur in 1969 [3], Fitts in 1962 [5] and the more recent works by Demirel [4], Jou et al. 
[12], Grmela et al. [10] and Öttinger [20].  
The thermodynamics of irreversible processes uses transport equations for temperature, pressure, and 
mass (concentration): its applications include the estimate the rate of entropy production in physical, 
chemical, and biological processes that involve heat and fluid flux, heat and mass transport, phase 
separation, and chemical reactions. In a non-equilibrium system, under the LEA hypothesis, the 
intensive variables are well-defined locally, while the densities of extensive variables, such as energy 
and entropy, are defined in terms of local temperature and concentrations. The thermodynamic variables 
are therefore functions of position and time.

3 – THE GINZBURG-LANDAU HYPOTHESIS AND GAGGIOLI’S AVAILABLE 
ENERGY EVOLUTION

In the context of pattern formation, in 1950 Landau and Ginzburg [13] proposed what came to be 
known as the real Ginzburg-Landau equation (rGL), a wave amplitude equation to be applied to 
convection in binary mixtures.  
The rGL equation states that, for any thermodynamic function u(x,t)= ( ) ( , )    (1) 

Where the nonlinear operator M depends on some control parameter that controls the stability of the 
system. Then, to lowest order in , and after rescaling, the amplitude a of the oscillations about 
equilibrium obeys the real Ginzburg-Landau equation (rGL) [14]:= + | |     (2) 
Gaggioli [6,7,8] proposed to rephrase eqtn. (1) in terms of Gibbs’ Available Energy A(x,t): = ( ) ( , )    (3) 
The solution of eqtn. (3) is obviously a negative exponential, that guarantees that in any real 
process the Available Energy of an isolated system decreases in time. The matrix F is process- 
and material dependent.

4 – THE NON-EQUILIBRIUM EXERGY METHOD
The method we propose is logically derived from the three theoretical observations listed in section 1, 
and its implementation into a practical paradigm requires three additional fundamental assumptions: the 
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first one mathematical, the second referring to non-equilibrium exergy [2,] and the third being our 
adaptation of the Ginzburg-Landau equation. 
I - Any spontaneous process is described by differential equations of first order in time; 
II - In any process of equilibration, some amount of mechanical work (equal to zero only in ideal limit 
cases) is delivered to the environment. This is the part of work that has neither been used by the system 
to evolve nor dissipated in the equilibration. If we look at the evolution of the system alone, the 
difference between the maximum theoretical work that may be extracted from the system in its initial 
state (its non-equilibrium exergy at t=0) and the part of it delivered to the environment is the “energetic 
driver” responsible for the evolution of the system. We will indicate this function by E1.

III - The variation in time of the thermodynamic variables i , 1...i n ,  of the system is proportional 

to the variation (i.e., to the gradient) of E: in any volume V of the system, the variation in time of i

is idV
t

and this must be proportional to k
k

EEdV E dV . This means that = ,     (5) 

Since by definition E decreases in the equilibration process, so that < 0, the signs of and of 

must be opposite, so that the (possibly non-linear) matrix , is Hermitian and negative semi-
definite (all eigenvalues negative or zero).

IV - There is one equation for every thermodynamic variable i . Although constitutive equations 
linking two or more i and j can be possibly used to decrease the rank of system (5), it is also possible 
to recur to experimentally derived correlations (an example in section 6 below is the introduction of the 
polytropic efficiency). Once the system is properly posed, it is indeed easily verified that, if 

n=fn,m( m), = .

5 – PRELIMINARY COMMENTS ON THE PROPOSED MODEL
Equation (5) has the same form as the Ginzburg-Landau eqtn.(1), but its physical meaning is 
substantially different. Replacing the Helmholtz free energy2 in the rGL with the non-equilibrium 
exergy has two consequences: 
a) The irreversible entropy generation in the equilibration process is automatically accounted for; 
b) One degree of freedom is eliminated, because the initial value of E at the inflow boundary is 

completely defined in terms of the initial H(x,t=0) and S(x,t=teq).; 
c) Eqtn. (5) guarantees that the non-equilibrium exergy decreases throughout the process: if there is 

only one parameter , (1) reduces to = , with K a positive number.  It follows: == < 0.

Expanding on a comment made by Öttinger [20, p.22], the formalism expressed by eqtn. (5) includes 
both the “reversible” portion of the equilibration process and its “irreversible” one: in this sense, it may 
be seen as a simplification of the GENERIC formalism. The need for introducing two separate matrices, 
one to account for the reversible effects and one for the irreversible ones, is avoided here by using the 
exergy function: the problem of correctly addressing both parts of the phenomena is solved by the 
function rather than by the matricial formalism. 
The link between a “driver” q and the non-equilibrium exergy E is explicit, since each row of the 
matrix P in eqtn. (6) can be calculated by introducing proper transport equations for the j and deriving 
the local value E(x,t). Notice that no LEA is invoked here: the local pressures, temperatures, 

1 Actually, the function E(t) is exactly the non-equilibrium exergy function defined in [11,22,23,24].
2 For an open system, it is the Gibbs free energy [9] that must be substituted by the non-equilibrium exergy.
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concentrations etc. are determined by their own transport equation, so that each point in the domain is 
not necessarily in equilibrium conditions throughout the evolution.3 As it will be clear in the following 
examples of application, “equilibrium constitutive equations” are never used. The model is thus a 
genuine non-equilibrium paradigm and can be applied to the most general types of system evolution, 
provided the assumptions listed in sections 1 and 3 are valid. 

6 - ADIABATIC EXPANSION OF A GAS IN A TURBINE CASCADE
Consider the expansion of a real gas, initially at p1, T1, that flows through an axial cascade generating 
mechanical work (fig. 1). The (sub- or supersonic) adiabatic expansion takes place gradually along the 
channel and depends on the variation of the relative angle x and of the channel area A(x) along the 
centreline s4. Boundary layer- and turbulence effects are neglected, and p(x) and T(x) are assumed to be 
uniform on the planes (in this quasi-2D model, lines) perpendicular to s at each x. At each station x
along the centreline, the gas experiences a pressure drop dp(x), with a corresponding dT(x), and delivers 
an ideal work dWid=U2d , where U is the peripheral velocity of the cascade and = Vt/U the head 
coefficient [25]. 
With reference to figures 1 and 2, let us define the following quantities:
- The local pressure ratio (x)=p(x)/p0

- The local temperature  ratio5 (x)=T(x)/T0

- The local area ratio (x)=A(x)/A1

- The flow coefficient  ( ) = ( )
- The head coefficient ( ) = 1 + ( ) ( ) with ( ) = cot[ ( )]  
Along the passage, the density of the gas is allowed to change, so that the corresponding meridional 
velocity also varies along the centreline: ( ) = ( ) ( ) = ( )( ) ( ) . The following 
assumptions are made:
i) The variation of the relative angle (x) and of the “area” A(x) (in this quasi 2-D example, a 

segment) are known, and so is the inlet area A1; 
ii) The initial conditions of the gas are assigned: p1, T1, R, =cp/cv

iii) The specific heats are a function of T, but a =f(p,T) is adopted for simplicity; 
iv) Pressure, temperature and velocity are constant across the passage at each x-station (i.e., they 

depend only on x and not on y). 

Two different equations describe the exergy drop for the statoric and the rotoric cascade.

6.1 – Stator
From the definition of exergy (omitting for the moment the dependence on the spatial coordinate x):= = ln + 0.5 (1 )            [kJ/kg]              (6)

Where is the friction loss factor and thermal recovery has been included.
Considering that = / : = + ln + 0.5 (1 )                    (7)

with = , where pol is the polytropic efficiency of the cascade  

3 There is a limitation here: if the system contains a fluid, the model can be applied as long as the motion of the fluid is described by an analytic 
equation: this excludes virtually all practical fluid processes, unless a “locally averaged velocity field” is somehow specified or the relevant 
equations are available (creeping flows, a restricted number of simple laminar flows, etc.). 
4 We are considering here a steady-state process for which all thermodynamic quantities are f(x), with x=U(x)*t
5 Both and are normalized to the usual reference conditions (=ambient T and p), T0=298K and p0=1 bar 
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Figure 1 – Representative scheme of the cascade
Legenda: 1=stator inlet; 2=stator outlet; W4=relative 
velocity at rotor outlet; U= R, peripheral velocity

Figure 2 – The expansion in the 
entropy/temperature plane

In line with eqtns. (1,2), and considering that in this particular application dx=V(x)dt, we can assume 
for the evolution of T along x an exponential decay:( ) =      (8) 
Imposing the b.c.: (x=0)= 1; (x=ls)= 2 we obtain a= 1, b=ln( 1/ 2)/ls 6.
The derivative   takes the form: = ( / )        (9) 
And is negative definite.
Imposing conservation of the total enthalpy we derive an equation for the velocity V(x) as a function of

(x): ( ) = [( ( )] .               (10) 
With = + 2 , and = 2 , .
And from mass conservation a correlation between T, V and A( ) =     (11)

With =
6 This is equivalent to saying that the coefficients “a” and “b” are derived “experimentally”
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The temperature, velocity and area profiles are displayed in figures 3 through 67. In line with the steady 
state assumption (see note 4) we can also use eqtn. (5) to obtain an implicit equation for the time 
evolution of the temperature:= = [ ( )] . ln ( )  ;              = ( )  (12)
Which, incidentally, may be interpreted as a way to calculate the coefficient P on the basis of 
“empirical” correlations (K1, K2, a, b).
For future notice, the above equation is valid in the case of a homogeneous temperature distribution 
(i.e., constant in y at every station x). Releasing this constraint leads to an equation of the type: = + = [ ( )] . ln +          (13)
That is much more complicated to solve and whose study exceeds the scope of the present paper.
We use eqtn. (10) to express the V2 term in eqtn. (7) as a function of T(x). The derivative of the local 
exergy w.r.t. the local temperature is then:=   = + +     (14) 
Notice that eqtn. (14) is definite positive. What we are interested in is the variation of the specific exergy 
along the blade. Recalling that in our 1-D model “x” denotes the coordinate along the central streamline 
of the blade passage:  = =  ( )   (15) 

That is the sought after relation, displayed in figure 5. 

Figure 3 – Temperature drop in the statoric 
passage, eqtn. (8)

Figure 4 – Dimensionless absolute velocity profile 
along the statoric passage, eqtn. (10)

Figure 5 – Exergy variation along the statoric 
passage, eqtn. (7)

Figure 6 – Dimensionless statoric area ratio, eqtn. 
(11) 

7 A more realistic profile for T(x) could of course be obtained by numerical simulation or physical experiment, which would be 
completely in line with the idea underlying the G-L approach.
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6.2 – Rotor 
The ideal expansion work is: = ( ) [kJ/kg]   
Let us assume that both the head and flow coefficients vary linearly along the rotor passage:( ) = ( ) ;              ( ) = ( )     (16) 
The real work includes the frictional losses and the recovery factor: mirroring the procedure adopted 
for the statoric calculations, the effects of friction can be introduced by considering that a portion wf of 
wid, is “used” to overcome viscous effects. This “lost” work is proportional via a drag coefficient to 
the square of the local velocity (for the sake of clarity we shall omit the reference to the x-coordinate 
here). Since the walls are assumed to be adiabatic, wf is transformed into an equivalent amount of heat = , a portion of which will result in an additional amount of mechanical work (this is the so-called 
recovery effect). = = + (1 ) = + ln + 0.5 1            (17) 

The low degree of reaction of the cascade (~0.1) allows to assume that the dimensionless area 
(x)=A(x)/A3 be constant along the rotoric passage and equal to R, whose value depends on 

V3m= 3*U. Using the isentropic relation we obtain: =     (18) 
With = and = Substituting in (17):= + ln + 0.5 1     (19) 
We now want to adopt the velocity as the relevant “order parameter”, ( ) = ( ) + ( ).
Using (16) and (17) we obtain an explicit expression for Er(x).    
The derivatives of V w.r.t. x and of E w.r.t. V are respectively:= ( ^ ^ )[ ( ) ( )]^ .      (20) 

With c1= 3; c2= 3- 4; c3= 3; c4= 3- 4. = 2. V( )[1. T ( )]     (21) 

Clearly, eqtn. (18) is negative definite and (19) positive (the loss coefficient is of 10  ). The 
variation of the exergy along the blade is: =            (22) 
The temperature, velocity, work and exergy profiles in the rotor are reported in figures 7 through 12.

Figure 7 – Temperature variation along the 
rotoric passage, eqtn. (16)

Figure 8 – Velocity profile along the rotoric 
passage

354https://doi.org/10.52202/077185-0030



Paper ID: ###, Page 9 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Figure 9 – Exergy variation along the rotoric 
passage, eqtn. (17)

Figure 10 – Work generation along the rotoric 
passage, eqtn. (15)

Figure 11 – Derivative of the absolute velocity 
along the rotoric passage, eqtn. (20)

Figure 12 – Derivative of the Exergy along the 
rotoric passage, eqtn. (22)

7 – DISCUSSION
The crucial point of the procedure described in the previous sections is that it is possible to obtain an 
analytical expression for the exergy drop in a turbine cascade starting from general Thermodynamic 
principles. In fact, the geometry and the type of fluid evolution are arbitrary, and thus the model can be 
extended to a whatever fluid/machine interaction, provided the posited assumptions are abided by. In 
particular, the simplified 1-D approach taken here can be extended to a 2-D channel at the cost of some 
conceptual and algebraic complication. 
The turbine example is interesting because it is amenable to a relatively simple demonstration of the 
application of the model to real cases. Assume the data reported in Table 1 refer to the cascade depicted 
in figure 1, with a subsonic flow throughout, a =2, i.e. an impulse rotor with a pressure drop due 
almost exclusively to the frictional losses. The is equal to the “optimal” value reported in the literature 
[25]. All properties are for air, with enthalpies and specific heats calculated by MiniRefProp (except in 
the derivation of eqtns. 7 & 11 where an average cp was used).

Table 1: Turbine stage 1-D design specs
U=0.5 D, 

m/s
T0, K p0, bar R, 

J/(kgK)
p lstator

m
lrotor

m
300 1757 15 287 1.4 2 2. 0.85 0.25 0.18

section Vm Vt V T p c Ma E
1 240 0 240 1757 1519500 3.01 840 0.28
2 240 600 646 1488 767424 1. 8 773 0.31
3 240 600 646 1488 767424 1.8 773 0.31
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4 216 0 228 1463 714472 1.7 767 0.30

8 – CONCLUSIONS
The Ginzburg-Landau real equation, besides being an interesting piece of mathematical modeling, 
embodies an extremely important phenomenological assumption: the evolution of a non-equilibrium 
system is deterministically driven by an “action”. Similarly to Hamilton’s principle, this intuition allows 
to formulate general models for the motion of the system in its state space, provided of course that: a) 
the correct “cause” is posited and b) that some experimental evidence connects the model to the 
perceived physical reality. Notice that, unlike the Hamiltonian, the “action” does not need to be a 
conserved quantity.
In this work, we argue that exergy is a proper descriptor of a non-equilibrium evolution is exergy and 
that the “order parameters” (in the G-L sense) are the relevant variables that describe the state of the 
evolving system. The exergy of a system is per se a non-equilibrium quantity (it retains a meaningful
value both for equilibrium and non-equilibrium states) and is expressed in terms of the usual 
thermodynamic properties (pressure, temperature, velocity, electrical charge etc.). In this work, we have 
applied the G-L model to the simplified 1-D evolution of a gas in a realistic first stage of a modern gas 
turbine. The results show the variation of the exergy along the blade passage. The example is extremely 
simple, but it can be expanded to 2-D and possibly 3-D at the cost of a non-negligible algebraic 
complication: while our 1-D application neglects diffusion effects normal to the direction of motion (as 
a consequence of our assumption of homogeneous fluid properties along each plane perpendicular to 
the line of motion), in 2- and 3-D cases differential diffusion equations ought to be added both in y and 
z, and ( T)2, ( p)2 and the related transport terms would appear in the exergy equation. 
The importance of adopting the G-L model to describe the evolution of a system resides in the 
possibility of adopting exergy as “the universal driver” and leads to a simplification and unification of 
most of the existing theories about non-equilibrium Thermodynamics. 
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