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ABSTRACT

Mixtures with a large temperature glide can help reducing the exergy losses in the heat exchangers of 
heat pumps, for the charging step of Carnot Batteries, but also in other thermodynamic cycles. Although 
the heat exchanger performance may be well evaluated in such calculations, the overall picture might 
be wrong, because the efficiency of compressors significantly impacts the overall efficiency of heat 
pumps. The isentropic efficiency depends on different parameters, like the compressor speed, pressure 
level, pressure ratio or the working fluid composition. Despite this, many scientists use constant 
efficiencies within thermodynamic cycle calculations for evaluating different working fluids. Especially 
when assessing the influence of fluids and fluid mixtures on the compressor performance, detailed 
cycle-resolved physical models are needed to obtain good predictions, leading to time consuming
calculations. When optimizing fluid composition within thermodynamic cycles frequently, time-
intensive calls to the compressor model are necessary, thus faster alternatives are being sought. 
This work explores the use of surrogate models based on physical models of compressors in heat pumps.
The surrogate models are created through machine learning algorithms to reduce computation time and 
to access the importance of operation parameters. The investigated system consists of a ternary mixture 
of pentane, isobutane and propane of variable composition that is compressed at different pressure 
ratios. A fluid screening is established to verify the suitability of a certain fluid mixture and inlet 
condition prior to training, which already reduces the area of interest by 68 %. The resulting (non-)
suitability was systematically analysed with regard to resulting available temperature-glide and 
isentropic efficiency, volumetric efficiency, and outlet temperature. Based on this, a database is created 
to provide the data set for machine learning. Multilayer perceptrons (MLP) with hyperparameter 
optimization are selected as regressors based on their promising performance in previous work. To 
assess the influence of the different parameters, we trained several MLPs with different feature 
combinations and performed permutation feature importance analysis for the targets isentropic 
efficiency, volumetric efficiency, and outlet temperature. Using superheating temperature difference, 
inlet temperature, pressure ratio, and mole fractions as features, we found that the pentane mole fraction 
had the highest permutation feature importance for the isentropic efficiency. Replacing the mole 
fractions with the inlet density reduced the relevant features to pressure ratio, inlet temperature and 
density while still achieving excellent prediction accuracies, with an average relative deviation of 1.5 %
for the isentropic efficiency, 0.4 % for the volumetric efficiency and 0.56 % for the outlet temperature. 
The surrogate model reduces computational time by 99.4% for 100 000 data points compared to the 
semi-empirical model, including the database creation. This offers a significant advantage for 
computational optimization within the trained parameter space.

1 INTRODUCTION

The avoidance of entropy production is of particular importance for Carnot Batteries which combines 
the strengths but also weaknesses of heat pumps and power cycles. Therefore any avoidable loss must 
be minimized to achieve a sufficiently good round-trip-efficiency (Atakan, 2024). The utilisation of 
zeotropic mixtures in heat pumps and other thermodynamic cycle processes including Carnot Batteries 
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(e. g. in Bernehed (2021) or Koen et al. (2021)) offers an opportunity to reduce the exergy loss in heat 
exchangers indicated by temperature differences. For a heat pump, the coefficient of performance 
(COP) is usually used for assessment. Zühlsdorf et al. (2018) investigated binary mixtures of natural 
refrigerants and found an increased performance by up to 27 %. Guo et al. (2019) also studied 
subcritical binary mixtures, but extended the study to a cost estimate and concluded that off-the-shelf 
components can be used. Huang et al. (2023) extended the idea to use a novel configuration to actively 
adjust the mixture composition depending on the operating condition. In these studies, cited as 
examples, the focus was only on the advantage of temperature glide in the heat exchanger, but the 
variation of the compressor performance with fluid composition was not addressed. As Roskosch et al.
(2021) have shown, the compressor efficiencies are fluid- and composition-specific, which has a 
significant influence on the COP. Neumaier et al. (2023) have investigated this further by comparing 
COPs for different fluids with individually scaled and optimised piston compressors and found that the 
best-performing refrigerant is not even identified among the best ten refrigerants when constant 
isentropic efficiencies were assumed. Reliable models for determining fluid specific efficiencies can be 
computationally intensive. This is particularly problematic when computational optimisations are 
carried out with numerous calls. In addition to computationally efficient implementation in alternative 
programming languages (as carried out by Neumaier et al. (2023)), a physical model can be replaced 
by a surrogate model. Various machine learning (ML) methods are available for this purpose, which 
are used in literature and practice, e.g. for failure diagnosis and monitoring over time (e.g. for LNG 
compressors in Hidalgo-Mompeán et al. (2021) and for gas-turbines in Liu and Karimi (2020)). Also 
the performance prediction using ML (e.g. in Vering et al. (2024) and Wu et al. (2020)) and
optimization procedures (e. g. Joly et al. (2019), Masood et al. (2021) and Zhu et al. (2020)) were 
discussed recently in several publications. What distinguishes these approaches is the training data 
(experimental or simulated) and the use of regressors or classifiers or their combination. A fast 
prediction of the fluid-dependent compressor performance, as needed in optimization and fluid 
screening is not available in the literature and is addressed here. Also, the sensitivity of process and 
fluid parameters on the compressor performance it is not clear from the literature and is analysed here.
In this work, we aim to analyse the suitability and limitations of using multilayer perceptrons (MLP)
for a specific use case. A semi-empirical compressor model from literature is approximated by a
surrogate model using an MLP regressor for the prediction of the isentropic efficiency , volumetric 
efficiency , and the outlet temperature . Inlet parameters are selected appropriately for a heat 
pump process, which is also the charging process in Carnot Batteries, in order to limit the total 
optimisation effort to plausible parameter ranges. The resulting input parameter range is analysed with 
regard to the efficiency (isentropic and volumetric) and outlet temperature ranges that can actually be 
achieved. A permutation feature importance analysis is carried out to assess the relevance of different 
parameters and adapt the MLP. The predictions of the regressor are discussed and analysed regarding
consistency and computing time savings.

2 STRATEGY AND MODELS

The general modelling sequence is shown in Figure 1. The procedures and models will be explained in 
this order. The strategy here is to screen fluid mixture compositions within the interesting and accessible 
temperature and pressure bounds, evaluate the predictions of the physical model for exemplary points
within the feasible range, and to use these points to construct surrogate models from ML. The models 
were implemented as Python scripts.
The investigated parameter range is shown in Table 1. The superheating temperature difference is 
chosen to ensure a save compressor operation without condensation. The pressure ratio is limited to 8
to ensure high volumetric efficiencies. The inlet temperature was determined regarding our use case 
that is explained in the next section. We investigate a ternary mixture of pentane (subscript C5), 
isobutane (C4) and propane. The mole fractions and are only limited between 0 and 1 prior to 
the analysis, together with the condition that all mole fractions are positive and sum up to 1. The data 
points are uniformly distributed in the parameter range using Saltelli’s extension of the Sobol’ sequence 
(Herman and Usher, 2017; Iwanaga et al., 2022).
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Table 1: Chosen parameter range ( limited after fluid screening).

2-15 K 2-8 273-308 K 0-1 (0-0.65) 0-1

2.1 Fluid screening
The analysed piston compressor is planned to be used in the charging heat pump cycle of a Carnot 
Battery, which is operated with pairs of high-temperature (s2, s3) and low-temperature (s1, s4) storage 
tanks and charging/discharging can therefore be regarded as quasi steady-state. It is operated with 
zeotropic fluids with a temperature glide, to reduce the temperature difference between the working 
fluid and the sensible storage fluid. The process is shown in the T- diagram in Figure 2. The state-
change of the secondary fluids is also shown in the diagram. Four isobars for the pressures , ,

and are shown as dashed lines. The state points of the heat pump process are numbered from 
1 to 4 and will be used in the further explanation. State points 3 and 4 are further subdivided into 3a and 
3b, 4a and 4b respectively, depending on whether they are cooled down to the saturated vapor state with 
quality or to environmental temperature . This results in three requirements for the fluid to 

Figure 1: Overview of the procedure and interaction of the individual modelling steps.

Figure 2: Qualitative representation of a heat pump cycle with zeotropic mixture and sensible 
storage in quasi-stationary operation in T- -diagram and flow chart.
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ensure a safe and stable operation of the cycle. Firstly, the cycle is designed to be subcritical, so the 
higher pressure must not exceed the critical pressure .

(1)

Secondly, the minimum allowable pressure is set to to prevent the entrance of air in case 
of a leakage. The maximum pressure depends on the chosen components and is for the 
given set-up. Equation (2) summarizes the requirement.

(2)

Thirdly, the lower storage temperature of the high-temperature storage Ts3 and the higher storage 
temperature of the low temperature storage Ts1 should be close to environmental temperature 

to allow a simple start-up of the system and avoid unnecessary losses during standstill. As both 
are directly related to the corresponding temperatures of the working fluid at saturation state, the latter 
is used to express the third requirement in equation (3).

(3)

After the fluid screening, operation points are labelled as either suitable, or according to the reason of 
the infeasibility, by fail: pl, fail: ph, fail: Tenv, and fail: other (includes ).

2.2 Semi-physical compressor model
The semi-physical piston-compressor model of Roskosch et al. (2017) is used with the (constant)
parameters as given in the reference to investigate the influence of different fluids and operation
parameters and to generate a database. The cycle-resolved model for reciprocating compressors uses 
fluid properties from REFPROP (Huber et al., 2018) and semi-physical correlations to calculate valve
losses. One value of an experimental operating point is needed to fit two parameters. The time 
dependent energy and mass balances are solved. The heat transfer to and from the walls is evaluated,
and finally the output state, the integral work, and the mass flow rate are calculated. The model was 
compared to 63 measured points of different compressors and fluids, including isobutane and propane,
and showed mean prediction errors of 3.0 % for the isentropic efficiency and 2.3 % for the volumetric 
efficiency, as described in the reference.
The input state and the pressure ratio are input variables, together with the fluid composition. Here, 
a compression expansion cycle is resolved in 3600 steps. The calculation is repeated for several cycles, 
until the difference of and the temperature of the thermal mass of the compressor between the 
first and last cycle step is below a prescribed deviation (see equation (4)). In some cases, the model 
does not converge due to oscillations of the system pressure around the discharge pressure. 4 % of the 
operating points did not converge after 100 iterations; these values were not considered for further 
evaluations. Typical calculation times per condition are in the range of 7 to 8 minutes.

(4)

2.3 Surrogate Models from machine learning models
Because the computation times for the physical model are considerable, surrogate models, also called 
meta-models, were developed based on the physical model. The ML models implemented in the open 
source library scikit-learn (Pedregosa et al., 2011) for Python are used here.
An MLP is a fully interconnected neural network. For each neuron, the inputs are multiplied by the 
weights and added to the bias vector . The result is then processed in an activation function like the 
rectified linear unit function (ReLU), the logistic sigmoid function, or the hyperbolic tangent function.
(Geron, 2022)
For each of the three target variables a separate MLP was trained. The features were scaled to a feature 
range between 0 and 1 before training and transformed back for evaluation. Hyperparameters were 
optimized using a randomized search, sampling 100 combinations each and using 3-fold cross-
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validation. The maximum number of iterations is limited to 2000. 20 % of the data is withheld for 
testing. The coefficient of determination and the root-mean-square error are used for scoring, 
whereby only the latter is used to refit the model. The hyperparameter range, with the best values 
highlighted, is shown in Table 2. Along this work different input parameters were used, as indicated in 
the top row, leading to the models MLP 1-3.

Table 2: Parameter selection and results of MLP hyperparameter optimization.
in bold, in italics, underlined.

MLP 1 MLP 2 MLP 3

Hidden layers 2, 3, 4 2, 3, 4 2, 3, 4
Neurons 75, 100 75, 100 75,100

Activation function ReLU, Tanh, logistic ReLU, Tanh, logistic ReLU, Tanh, logistic
Alpha 0.001, 0.01 0.001, 0.01 0.001, 0.01
Solver Adam, lbfgs, sgd Adam, lbfgs, sgd Adam, lbfgs, sgd

Batch size 20, 50, 100, 200 20, 50, 100, 200 20, 50, 100, 200
Learning rate Adaptive, constant Adaptive, constant Adaptive, constant

Initial learning rate 0.001, 0.01 0.001, 0.01 0.001, 0.01

2.4 Feature importance as measure of sensitivity
The feature importance of complex computational models can be used to calculate sensitive measures
as an alternative to a global sensitivity analysis (like Saltelli et al. (2008)). It can be assessed with 
permutation based variable importance indices, as presented for RF by Antoniadis et al. (2021).
The importance for feature is calculated times, whereby the columns of the data set get 
randomly shuffled, and is then compared to the reference value of the model. In this way the 
contribution of each feature to a model’s performance is assessed. The permutation feature importance 
can be determined for untrained data and surpass impurity-based importance for strongly biased and
high cardinality features. (Pedregosa et al., 2011)

(5)

Here, the MLPs described in the previous section are used and the feature importance is assessed for 
evaluating the . The investigated input parameters were chosen because they 
are independent from each other, which is not the case for and ,which are not included. The 
function permutation_importance implemented in scikit-learn was used with 100 permutation per 
feature.

3 RESULTS

The results are presented in the following section, starting with the screening of fluid mixtures with 
respect to the prescribed pressures and temperatures. For the fluids with the wanted thermal properties, 
the physical compressor model is run to create the database for ML. This is followed by creating ML
models. The regressor is trained as a surrogate for the physical model. In the permutation feature 
importance analysis, the most important parameters for ML are analysed. The total data set prior to 
screening with limited consists of 1729 points, among which 556 are classified as suitable and used 
for the MLP regressor.
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3.1 Fluid Screening
The three components pentane, isobutane and propane were selected for the ternary mixture based on
their saturation pressures for the desired compressor inlet temperature range. Figure 3 shows the results 
of the fluid screening for the range of parameters in Table 1. The pentane mole fraction is plotted 
versus the isobutane mole fraction , while the propane mole fraction can be derived from the others.
In the legend, the subdivision is defined according to suitability or non-suitability. It can clearly be seen
that mole fractions of pentane above 65 % lead to evaporation pressures below the minimum pressure, 
which was expected from the saturation vapor pressure curve. The parameter range of pentane is 
therefore limited to in the following tasks, which already significantly reduces the 
calculation time. Still, 52 % of the points analysed are not suitable due to the lower pressure criterion.
Only 32 % of the uniformly distributed parameter combinations are suitable for operation under the 
given boundary conditions. The other requirements lead to the exclusion of 16 % of the data points, but
no clear boundaries can be determined that would allow a further refinement of the parameter range. 
However, a fluid screening prior to the optimization process can significantly reduce the computational
effort by avoiding calculations for inaccessible operating points.
The main motivation for using zeotropic mixtures instead of pure substances is the temperature glide 
during phase change. Figure 4 visualizes the dependence of the temperature glide at on the pressure 

Figure 3: Results of the fluid screening with suitability of the mixture composition for present 
problem definition, limited.

Figure 4: Dependance of temperature glide during phase change at from pressure ratio (left), inlet 
temperature (centre) and lower pressure (right), only suitable-classified data points shown.
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ratio, the inlet temperature, and the inlet pressure for the suitable mixtures. The mixture composition is 
indicated by the colour, the size, and the shape of the data points. The temperature glide increases with 
the pentane mole fraction, while large isobutane mole fractions result in lower temperature glides, with
the combination of pentane and propane appearing to be advantageous. The pressure ratio has no strong 
effect on the temperature glide under the given boundary conditions. However, increasing compressor
inlet temperatures tend to lead to higher temperature glides. The inlet pressure has the greatest influence: 
only at pressures below 300 kPa the temperature glides exceed 30 K. What was not taken into account 
in the screening was the uniformity of the temperature glide, which is however an important measure 
to assess the temperature difference between working and secondary fluid in a heat exchanger. But this 
will not be addressed here, where we focus on the compressor performance.

3.2 Results of the physical model
The different parameter combinations are now used as inputs of the semi-physical compressor model,
which ran in parallel on different cores. To analyse the impacts and interdependencies in detail, the 
entire parameter range whether suitable or not is calculated and shown first. Figure 5 shows the 
isentropic efficiency , the volumetric efficiency , and the outlet temperature as a function 
of the pressure ratio. The color shows the dependence on inlet temperature and density for the 
suitable data points. Unsuitable data points are shown in grey and their shape indicates the respective 

Figure 5: , and over . Colour shows inlet temperature (left) or density (right) for 
suitable data points. Unsuitable points in grey, the shapes indicate the failing criterion.
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criteria. The isentropic efficiency varies between 13.8 % and 74.3 %, showing a wide variety depending 
on the pressure ratio, the inlet pressure, and the inlet density. The density dependency has been 
explained in literature, leading to the conclusion that the use of constant isentropic efficiencies without 
taking the actual fluid properties into account leads to significant errors (Roskosch et al. (2021)). The 
isentropic efficiency strongly increases with the inlet density. Almost all suitable parameter 
combinations show an isentropic efficiency above 45.2 %. Conditions leading to lower efficiencies are 
eliminated mainly because of the minimum pressure criterion. The fluids leading to the highest 
efficiencies above 69.9 % violate the maximum pressure criterion. Low pressure ratios can lead to too 
low outlet temperatures of the condenser and are therefore not suitable. It should be noted that these 
conclusions depend on the used compressor and might be shifted to other levels and fluids, depending 
on its design points. The centre figures show the volumetric efficiency, which strongly falls with the 
pressure ratio and varies between 39.7 % and 84.9 %. The inlet temperature and the inlet density only 
have a minor impact, as they influence the value by about 5 % for a fixed pressure ratio. In contrast to 
the isentropic efficiency, high densities have a negative effect on the volumetric efficiency. A direct 
dependency between the suitability and the volumetric efficiencies is not seen, although the unsuitable 
data points show the lowest volumetric efficiencies. In the plots on the bottom, the outlet temperatures
are plotted, which increase with the pressure ratio and depend on the inlet temperature. The outlet 
temperature varies by about 25 K for a fixed pressure ratio. Data points that violate the minimum 
pressure criterion exit at the highest outlet temperatures. No dependency on the density is found.

3.3 Accuracy and feature importance of MLP
The first surrogate model (MLP 1) is trained with the features from Table 1. The targets were the three
from the previous section for all three surrogate models discussed. First, the accuracy of the prediction 
is analysed. Then, the influence of each parameter is identified using the permutation feature analysis 
and the MLP is adapted. Table 3 shows the metrics , the root-mean-square error , and 
additionally the average relative error for all MLPs analysed during this section. All MLPs were trained 
by optimizing and , while only the latter was used for refitting. The first structure with 

and as features shows a very high between 0.980 and 1.000. The shows
excellent agreement with deviations of 0.8 % for , 0.5 % for , and 0.2 K for . The average 
relative error is between 0.03 % and 1.1 %. The hyperparameter optimisation takes 459 s, while the 

Table 3: , , and average relative error for MLP with different features. 

Av. rel. error

MLP 1 0.980 0.8 % 1.1 %

MLP 2 0.962 1.2 % 1.7 %

MLP 3 0.972 1.0 % 1.5 %

MLP 1 0.997 0.5 % 0.6 %

MLP 2 0.993 0.7 % 0.9 %

MLP 3 0.999 0.3 % 0.4 %

MLP 1 1.000 0.2 K 0.03 %

MLP 2 0.965 2.6 K 0.54 %

MLP 3 0.965 2.5 K 0.56 %
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calculation of one point with the surrogate model is reduced to ca. 9 μs. The results of the permutation 
feature importance analysis are shown in black in Figure 6 for MLP 1. The analysis was performed on
the test set for each of the target parameters, using the negative as the accuracy metric. The 
largest increase in and therefore the largest influence on the isentropic efficiency is the pentane 
mole fraction with 10.2 % ± 0.6 %, followed by the inlet temperature with 6.7 % ± 0.4 %, and the 
isobutane mole fraction with 2.6 % ± 0.2 %, and the pressure ratio with 2.5 % ± 0.2 %. The volumetric 
efficiency mainly depends on the pressure ratio with a mean accuracy decrease of 11.4 % ± 0.5 %, 
which has already been deducted from Figure 5. The outlet temperature is strongly dependant on the 
pressure ratio, which increases the by 17.0 K ± 0.8 K, and to some extend on the inlet 
temperature with 8.2 K ± 0.7 K and the mole fractions. Surprisingly, the isobutane mole fraction has a 
minor impact throughout. Therefore, and because of the significant influence of the inlet density 
reported in the literature, the second analysis was performed with an MLP regressor, where the mole 
fractions were replaced by the inlet density as input (MLP 2). is increased to 1.2 % for , to 
0.7 % for , and to 2.6 K for The average relative error increases slightly by 0.6 % for , by 
0.3 % for the volumetric efficiency, and by 0.5 % for , as expected. The calculation time is reduced 
to 399 s. Looking at the permutation feature importance of MLP 2 (shown in grey in Figure 6), the
significant influence of on the isentropic efficiency is demonstrated with a mean increase in RMSE 
of 7.0 % ± 0.4 %, but this is below the values of the mole fractions. Interestingly, the inlet temperature 
becomes almost insignificant, while the pressure ratio feature importance remains almost constant. For 
the volumetric efficiency, feature relevance remains unchanged. The influence of the inlet density on 
the outlet temperature is with 1.1 K ± 0.2 K significantly smaller than the influence of the mole fractions
in MLP 1. The smaller decrease in prediction accuracy when using instead of the mole fractions 
explains why the prediction accuracy of MLP 2 decreases. The permutation feature importance analysis 
for the features revealed that the superheating temperature difference does not have an 
impact on the target values once the mole fractions are replaced. A possible explanation might be that 
the features are not independent from each other. By performing the fluid-screening, the former 
uniformly distributed parameter space is restricted (see also Figure 4). Therefore, a possible correlation 

Figure 7: Results of MLP over result from physical model, colour indicates relative error.

Figure 6: Results of permutation feature importance, accuracy measure negative . Black: with 
mole fractions, grey: with inlet density.
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cannot be entirely excluded. Thus, we did not expect any loss of accuracy by omitting the feature and
trained the final MLP 3 with as only features. The results confirm this hypothesis and MLP 3
even outdoes the previous MLP 2, proving that the use of irrelevant features can even deteriorate a 
models prediction accuracy. 
The accuracy of MLP 3 with as features is visualised in Figure 7. The predicted result of 
MLP 3 on the test set is plotted versus the results from the semi-physical model. The good agreement 
between the ML model and the physical model can also be seen visually. For the isentropic efficiency, 
95 % of the data points show a relative deviation below 2.9 %; for the volumetric efficiency below 
0.98 % and for the outlet temperature even below 1.3 %. The agreement justifies the use of an MLP 
with reduced features to predict the results of the semi-physical compressor model in principle. 
Limitations and transferability are analysed and explained in more detail in the following section.
Overall, all models show excellent forecasting accuracy and thus meet our basic requirement for a 
surrogate model. The average relative error of the physical model is given as 3.0 % for the isentropic 
efficiency and 2.3 % for the volumetric efficiency. By using the MLP, the uncertainties are increased 
by 1.5 % for and by 0.4 % for , which seems well acceptable.

4 DISCUSSION

The surrogate model is capable to predict the target values with good accuracy. It is also of interest 
whether the three target values are consistent with each other and can be used to calculate other values 
for which the MLP 3 has not been trained. As an example, the consistency of the outlet entropy and 
enthalpy is checked. They are calculated using REFPROP from and .

(6)

The results are shown in Figure 8. The derived values are well predicted, although the MLP was not 
explicitly trained for them. The mean relative errors are with 0.7 % for and 0.6 % for within 
the same order of magnitude as for with 0.6 %. Thus, the ML results can be used for further 
evaluations, without adding much uncertainty.

Figure 8: Outlet enthalpy and entropy calculated in postprocessing with the MLP-results.

Reducing computation time was the second objective of this study, alongside accuracy. The 
computation of the 556 data points with the semi-physical model took 1.53 h. Training of the MLP 
regressor including hyperparameter optimization took only 383 s and predicting took less than 10.0 ms. 
The computation time for one data point was thus reduced by a factor of . Of course, including 
the time needed to generate the database, the procedure is only worthwhile if more points are included
in the analysis than are needed for the training. For example, when 100 000 data points are to be 
evaluated along an optimization, the computational time can be reduced by 99.4 %, allowing 
optimization over a large parameter space. Therefore, the examined procedure promises significant time 
savings.
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5 CONCLUSIONS

The compressor performance is crucial in heat pumps and Carnot Batteries, while detailed compressor 
models need relatively long computation times. Accurate surrogate models can on the one hand be used 
to reduce the computation time and on the other hand to determine the key features influencing the 
performance. This is especially interesting for fluid and fluid mixture selection and ranking. In this 
work, we investigated the use of ML-based surrogate models for regression and for interpretation of the 
feature sensitivity for a fixed compressor geometry but varying inlet and outlet conditions for different 
ternary alkane mixtures. Because several mixtures are not of interest for heat pump or Carnot Battery 
applications, due too high or too low pressures at some prescribed temperatures, we propose to exclude 
such mixtures in advance and to train the surrogate model only with appropriate mixtures. This 
systematic fluid screening prior to surrogate model development can already significantly reduce the 
computational effort. The permutation feature importance can be evaluated with the MLP for different 
input variables, showing for the specific case that the mole fraction of the compound with the lowest 
vapor pressure has the highest sensitivity on the isentropic efficiency, which in turn can be converted 
to the influence of the fluid density on isentropic efficiency. Thus, physical interpretations are possible 
in these cases. For higher accuracy, the use of a surrogate model, as applied here using the example of 
a multilayer perceptron regressor, provides reliable results within the set parameter range with 
significantly reduced computing time, with a very small reduction of accuracy compared to the physical 
compressor model. ML models moreover offer a time-saving alternative to other methods of sensitivity 
analysis and are not subject to any restrictions regarding the exact number of parameter combinations.
As is always the case with regression, one should not use the model beyond the trained regime.
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