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ABSTRACT

The current high costs of district heating systems set limits regarding the minimum heat demand density 
required for economic network expansions. Optimized routing with ideal pipe sizing offers a potential 
for cost reduction. Therefore, this paper introduces a two-phase method for district heating network 
expansion planning. This method consists of consecutive optimizations, starting with a mixed-integer 
linear programming followed by a nonlinear optimization. During the mixed-integer linear 
programming, the district heating system is optimized with continuous diameters, and the nonlinear 
pressure and temperature dependencies must be linearized. The resulting topology and the continuous 
diameters are afterward handed over to a nonlinear sparse sequential quadratic programming. During 
this second phase, the continuous diameters have to be discretized. This study investigates a rational 
approximation of material properties and a tangent hyperbolic penalization method. Different versions 
of these methods with varying diameter ranges (two and three available diameters) and penalization 
directions are studied. The results of this study indicate that methods without changing penalization 
methods within the same optimization problem provide higher accuracy in the discretization of the 
pipe’s diameter. Moreover, if the accuracy of the discretized diameter should be emphasized during the 
optimization, penalization methods considering only two diameters should be preferred over 
penalization methods considering three diameters. Vice-versa, if obtaining the lowest possible 
diameters is prioritized over the accuracy of the discretization, methods considering three diameters 
should be preferred.

1 INTRODUCTION

In 2020, 85 % of the CO2-emissions in German households resulted from space heating and hot water 
usage (Umweltbundesamt, 2023). Moreover, on a European level, 50 % of the final energy demand in 
2015 was used for the heating and cooling sector (Fleiter et al., 2017). District heating can play a 
significant role in replacing the mostly fossil-based provision of heat with renewable energy sources 
due to numerous advantages over a building-specific heat supply (Werner, 2017). Those include the 
utilization of additional renewable energy sources, such as deep geothermal energy, the integration of
seasonal energy storages, the possibility of waste heat recycling, higher heat generation efficiencies,
and simultaneity factors occurring within the network while planning for production capacities (Jodeiri 
et al., 2022). To overcome the high initial investment costs of district heating systems (Nussbaumer and 
Thalmann, 2016), an optimized topology with ideal pipe sizing could offer one possibility to aid 
decision-makers in finding well-suited areas for district heating systems and aid to speed up the heating 
sector’s transformation. The following paragraphs briefly overview different optimization techniques 
used for district heating systems. Those include mixed-integer linear programming (MILP), mixed-
integer nonlinear programming (MINLP), heuristics, and nonlinear programming (NLP) using the 
adjoint method.

Sporleder et al. (2022) evaluated 51 publications and found that around 80 % use MILP or linear models 
to optimize district heating systems. This arises from the discrete nature of the optimization problem, 
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as shown in (Söderman, 2007), where the pipe’s concave investment cost function is approximated by 
a fixed and a size-dependent part. Söderman and Pettersson (2006) implement a MILP to optimize a 
distributed energy system, including district heating and storage. Dorfner and Hamacher (2014) use a
similar approach to optimize the topology of a single-commodity flow network. Dorfner et al. (2017)
expand their work to consider district cooling systems and to incorporate redundancy constraints against 
the unavailability of each considered cooling station. In both studies, the optimization is reduced to a 
network power flow, neglecting, e.g., mixing effects at junctions and pressure dependencies. Résimont 
et al. (2021) improve the problem formulation of Dorfner et al. (2017) by removing redundant 
definitions of decision variables. Moreover, based on Dorfner et al. (2017), Röder et al. (2021) introduce 
a new model with fewer binary variables. In the second step of the optimization procedure, pressure 
losses are estimated in the network at the heat demand's peak load, and the pipe diameters are sized 
accordingly. However, none of these methods can depict the nonlinear effects of district heating 
networks. Flow patterns in systems with multiple spatial distributed producers, mixing temperatures at 
junctions or loops, can hardly be linearized while respecting the physical interrelations.

Deng et al. (2017) propose a MINLP to consider the nonlinearities within the district heating network 
and to solve an operational-based optimal scheduling strategy to minimize the daily operational cost of 
an energy station with a heating and cooling demand and storage. However, the heat distribution by a 
district heating network is neglected, and the network's topology is not optimized. A nonlinear discrete 
representation of a steady-state district heating system is solved by (Mertz et al., 2016). Mertz et al.
(2017) apply the same method to a small network with 19 consumers. In contrast to MILP, MINLP is 
often limited to smaller districts due to the nonlinear equations in combination with integer variables. 
Wack et al. (2023b) can show that solving the full MINLP leads to exponentially scaling computational 
costs with increasing network size during the discrete topology optimization.

In large combinatorial problems, where finding an optimal solution is difficult, heuristics can be an 
approach to finding an approximate solution. Heuristic approaches commonly use nature-inspired 
algorithms like the ant colony optimization or the genetic algorithm. Allen et al. (2022) investigate a 
particle swarm optimization to find the best subset of buildings that should be connected to the district 
heating network. Moreover, a minimum spanning tree heuristic was applied to find a network topology
(Allen et al., 2022). Merlet et al. (2022) find the optimal sizing of pipe diameters using a genetic 
algorithm to generate a set of Pareto-optimal sizing choices. On the downside, heuristics may provide 
a sufficiently good solution to an optimization problem while not always guaranteeing a local or global 
optimum. This becomes especially difficult with scaling dimensions of the optimization problem.

Wack et al. (2023a) propose a nonlinear optimization method where intermediate diameters are 
penalized, and the optimization problem is solved with an adjoint optimization method. The adjoint 
method is a numerical method for efficiently computing a function's gradient during an optimization 
problem. Pizzolato et al. (2018) use the adjoint method to optimize robust hydraulic district heating 
systems while neglecting thermal aspects within the network.

Based on the penalization method of Wack et al. (2023a) and the previous work of Lambert and 
Spliethoff (2023) and Lambert et al. (2024), this paper investigates different penalization methods to 
discretize continuous diameters from a MILP in a subsequent NLP. Moreover, the penalization’s benefit
is investigated and compared to a simple rounding up to the next larger discrete diameter. Therefore, a 
rational approximation of material properties approach and a solid isotropic material-like penalization 
approach are applied to the nonlinear district heating model.

2 A TWO-PHASE NONLINEAR THERMO-HYDRAULIC TRANSPORT MODEL

Lambert and Spliethoff (2023) introduce a hybrid optimization strategy consisting of two optimization 
phases and a single optimization time step (the maximal peak load case) to determine a district heating 
system's routing and pipe sizing. A detailed description of both optimization phases is shown in Lambert 
and Spliethoff (2023). The district is optimized in the first phase with a MILP and continuous diameters. 
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Based on the continuous diameter determined by the MILP, the choice of the available diameter in the 
subsequent sequential quadratic programming (SQP) is limited. Moreover, the flow direction is set 
according to the direction optimized by the MILP. The continuous diameters are discretized during the 
second phase of the optimization, and a nonlinear thermo-hydraulic flow model is calculated. In this 
paper, the considered heat carrier medium is water. It is assumed to be liquid and, therefore, 
incompressible. Additionally, by assuming temperature changes smaller than 40 °C, temperature 
dependencies of the fluid properties (e.g., density , heat capacity and dynamic viscosity ) are 
neglected, because the variations in the property values are small for the considered parameter range. 
The fluid properties of water are constant and determined at 70 °C. In order to calculate the pressure 
loss between two nodes and with an inner pipe diameter of length , the pressure loss is 
calculated with the fluid’s velocity according to Darcy-Weißbach:

(1)

The friction factor with the Reynold’s number is given by the Moody equation with the pipe 
roughness : (Moody, 1947)

(2)

Next, the temperature loss through an insulated pipe buried underground is considered. Therefore, the 
temperature difference between the water temperature in the pipe and the outside temperature 
is introduced. Here, is set to -20 °C. This can be seen as a worst-case scenario, where the district 
heating network still must be able to supply the required heat to each customer. The exit temperature 

of a pipe segment due to heat loss to its environment with an entry temperature 
is given by:

(3)

In equation (3),  the combined thermal resistance of the pipe and the soil per unit length is calculated 
with the ratio between the pipe’s outer and inner diameter, the heat conductivity of the ground and 
the insulation material of the pipe , and the depth of the buried pipe: (Blommaert et al., 2020)

(4)

2.1 First Phase: Mixed Integer Linear Programming Optimization
Equation (1) is used to calculate a maximal thermal power flow for each considered piping diameter
under consideration of a maximal length-specific pressure drop. Subsequently, this power flow is used 
to linearize the investment cost and the pipes’ heat losses (using equation (3)). The thermal power in-
and output ( ) of each pipe are modeled according to the network’s directed graph. In 
order to allow flows in the opposite direction, every potential pipe is also modeled in the direction .
In the following, only the equations in direction are discussed below. The heat balance of each pipe
connecting node and is given by:

(5)
The thermal losses in equation (5) are determined by the linear regression coefficients and 

. The binary variable represents the flow direction of each pipe. Moreover, to enforce zero 
thermal power flow if the direction is not used, the following constraint with a sufficiently large 
constant power is modeled . Each consumer connection to the district 
heating grid is modeled as unidirectional. Moreover, energy conservation is assumed in every node
under consideration of the consumer's heat demand ( ) and the heat source's feed-in ( ):

(6)
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To ensure a unidirectional use of a pipe, an additional constraint preventing the simultaneous use of the 
direction and is used ( ). The thermal power output of each producer is 
constrained by the installed thermal capacity of the source , where . The annuity 
method distributes investment costs of pipes or heat sources over the defined life span . Without 
discounting, the annuity is calculated with an interest rate as:

(7)

Finally, the objective function minimizes the district heating network's total investment and operational 
costs. The investment costs are determined by the linear regression factors and . By introducing 
full load hours for the heat demands of consumers, the investment and fuel costs ( and )
are weighted:

(8)

The initially assumed flow direction in the graph can be corrected according to and : The pipe is 
not used and can be deleted from the graph ( and ). The assumed flow direction in the 
graph is correct ( and ) or the flow direction in the graph is the opposite of the assumed 
one and needs to be corrected ( and ).

2.2 Second Phase: Nonlinear Programming Optimization
To account for more complex dependencies, such as pressure or temperature drops, a nonlinear 
optimization model has to be developed. By combining equations (1) and (2), the pressure loss between 
nodes and connected by a pipe with the mass flow can be calculated as:

(9)

Analogical to the thermal power flow calculation, a maximal length specific pressure
is imposed. Moreover, in each node, mass conservation must be fulfilled. Inside each node 

of the district heating system, perfect mixing of the incoming fluids is assumed. Therefore, all outgoing 
flows depart from the node with the corresponding node temperature, and energy is conserved. The heat 
losses in a pipe are determined by equation (3). However, a fixed ratio between the outer and inner 
diameter of a pipe is assumed. Here, is set according to the upper and lower allowed inner diameter, 
where is the mean of the ratio of both thresholds. Overall, during the nonlinear optimization, the 
following equation is minimized, comprised of the pumping, the fuel, and the pipe’s investment costs:

(10)

The investment costs are linearly interpolated between the upper and lower diameter’s 
investment costs ( and ):

(11)

3 DISCRETIZATION METHODS FOR LINEAR PIPING DIAMETERS

This section presents different methods to discretize the continuous pipe diameters obtained by the 
MILP during the nonlinear optimization. In structural optimization, it can be desirable to substitute the 
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discrete variables with continuous variables and identify a means to iteratively force the solution 
towards a discrete solution (Deaton and Grandhi, 2014). Therefore, intermediate diameters have to be 
penalized. The first introduced penalization is the rational approximation of material properties, and the 
second is a solid isotropic material-like penalization approach using a tangent hyperbolic.

3.1 Rounding Continuous diameters
The simplest discretization method is rounding the continuous diameters up to the next upper 
commercially available diameter ( ). This method does not rely on the second phase of the 
optimization. It is used in this study as a base case to compare the effectiveness of the nonlinear 
modeling and the different discretization methods. Alternatively, rounding to the nearest DN (and 
choosing potentially smaller diameters as the continuous diameter) could lead to invalid diameter 
choices, which do not respect all imposed constraints (e.g., the maximal length specific pressure drop).
This method is usually performed after MILP optimization to get discrete diameters, for example, in
Röder et al. (2021).

3.2 Rational Approximation of Material Properties
Sigmund (2001) introduces the rational approximation of material properties method (RAMP) as an 
alternative to the solid isotropic material with penalization method (SIMP) (Deaton and Grandhi, 2014).
Unlike SIMP, the RAMP method has a nonzero sensitivity when the variable is forced towards 0. 
Therefore, the RAMP model has been shown to alleviate some numerical problems at void conditions 
(Deaton and Grandhi, 2014). For a variable the RAMP penalization is calculated with the 
penalization factor as followed: (Sigmund, 2001)

(12)

Depending on the value in equation (12), the direction of the penalization can be controlled (sub or 
above linear). Based on the continuous diameter determined by the MILP, the choice of the available 
diameter in the subsequent SQP is limited to the nearest commercially available diameter ( ) and 
the next larger one ( ). In order to use the RAMP projection, the continuous diameter variable in 
equations (3) and (9) are substituted with the projected diameter :

(13)

The importance of the penalization's direction should be shown for the pressure loss calculation
(equation (9)). As for a choice of , the penalization of leads to an increased pressure loss for 
non-discrete diameters while to a decreased pressure loss. In Figure 1(a), the projected 
diameter using equation (12) is shown, and Figure 1(b) depicts the influence of the penalization 
direction on the pressure loss equation. All investigated penalization methods using the RAMP method 
are summarized in Table 1. 

(a) Projected diameter using RAMP. (b) Pressure loss calculation using RAMP.
Figure 1: Penalization of intermediate piping diameters using RAMP.
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Table 1: Investigated penalization methods using the RAMP method
Name Choice of diameters q for in equation (9) q for in equation (4)

Ramp_1 2 {0, -0.67, -0.87} {0, -0.67, -0.87}
Ramp_2 2 {0, 2, 6} {0, -0.67, -0.87}

Moreover, in equation (10) is substituted by the following penalized investement calculation:

(14)

3.3 A Solid Isotropic Material-like Penalization Approach using a Tangent Hyperbolic
Another method to penalize intermediate diameters is the use of tangent hyperbolics, approximating a 
smooth heavyside function. This method is adapted from Wack et al. (2023a). Here a variable 
is projected onto the discrete set of by using:

(15)

In equation (15), the steepness of the projection is controlled by , while the direction is controlled by 
. Similar to equation (13), the choice of the available diameter in the subsequent SQP is 

limited to the nearest commercially available diameter and the following larger one:

(16)

Moreover, the possibility of providing more than two discrete diameters to the subsequent NLP should 
be investigated. Therefore, based on Wack et al. (2023a), equation (16) is expanded to consider three 
discrete diameters. The three available diameters are: the nearest discrete diameter ( ), the next 
upper discrete diameter ( ), and the next lower discrete diameter ( ):

(17)

The minimum and maximum functions in equation (17) must be smoothly approximated. Therefore, a 
Boltzmann operator is used:

(18)

In equation (18), if , approximates a maximum of . If , approximates 
a minimum of . Finally, the maximum and minimum function can be approximated with:

(19)

(20)

All investigated penalization methods using a tangent hyperbolic are summarized in Table 2. The 
penalized investment costs are determined analogical to section 3.2.

Table 2: Investigated penalization methods using tangent hyperbolic
Name Choice of diameters a in equation (9) a in equation (4)

TH_1 2 0 0
TH_2 2 1 0
TH_3 3 0 0
TH_4 3 1 0
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4 APPLICATION TO FOUR REAL-WORLD DISTRICTS

This section presents the resulting inner diameters for four different real-world districts with an 
increasing number of consumers. The data for each district is taken from Lambert and Spliethoff (2024).
All calculations are performed on an Intel© dual Xeon© E5-2699 v3 CPU with 2.3 GHz, 18 physical 
cores, and 256 GB of RAM. During the first phase, the optimization is solved with Gurobi© 10.0.2  
(Gurobi Optimization, 2023) and a required minimum relative MIP-Gap of 0.1 %. The standard seed
and settings of Gurobi© 10.0.2 are used during the optimization, and the problem formulation is done 
in Pyomo (Hart et al., 2011). The second phase is formulated with pyoptsparse (Wu et al., 2020) and 
solved with the SQP solver SNOPT 7.7.7 (Stanford Business Software Inc, 2021). The optimization is 
performed with boundary conditions, shown in Table 3. The investment costs for piping diameters
(ranging from DN 20 to DN 400) are adapted from Nussbaumer and Thalmann (2016).

Table 3: Boundary parameters considered in the optimization
Parameter Value Reference

Full Load hours (referenced to kWpeak) 2500 h (European Commission, 
2018)

Heat production costs 0.08 €/kWh (AGFW, 2024)
Service life of pipes 40 a o.a.
Interest rate for district heating pipes 8 % (AGFW, 2024)
Electricity Costs 0.2 €/kWh o.a.
Pumping Efficiency 70 % o.a.
Feed temperature at the producer 90 °C o.a.
Return temperature at each consumer 55 °C o.a.
Penalization factor RAMP {0, 2, 6}, {0, -0.67, -0.86} (Krogh et al., 2017)
Penalization factor Heaviside function {0, 1.5, 4} o.a.
Factor for smooth max and min 3 o.a.
o.a. is an abbreviation for own assumption

Table 4 shows the number of potential pipes and consumers in the four districts. Each consumer has to 
be connected to the district heating grid, regardless of the profitability of the individual connection. The 
number of pipes is shown for the initial district and the optimized district after the first phase. During 
the first phase, the topology of each district is optimized, and an initial guess for pipe sizing is provided 
for the nonlinear optimization. The full nonlinear thermo-hydraulic model is solved iteratively during 
the second phase with increasing penalization factors, shown in Table 3. In order to initialize the 
nonlinear optimization, the penalization factor 0 indicates the use of the continuous diameter variables 
and the use of the non-penalized equations (3) and (9).

Table 4: Number of pipes and consumers in each considered district after the first optimization phase
District Number of Pipes (Initial) Number of Pipes (After Phase 1) Number of Consumers

District 1 788 725 400
District 2 1038 985 567
District 3 1695 1499 794
District 4 1972 1798 959

In Figure 2, the orange point represents the heat source, gray nodes junctions, and blue nodes consumer 
within the district heating system. Figure 2(a) shows the initial district heating system given to the 
MILP. The district consists of 1038 edges, reduced to 726 edges during the first phase, and 400 
consumers with a total heat demand of 4403.57 kWpeak. Figure 2(b) shows the resulting final district 
heating system with the discretized diameters. Here, the thickness of a pipe corresponds to the size of a 
pipe.
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(a) Initial district heating (b) Optimized district heating system
Figure 2: Initial and optimized district heating system (District 1, TH_1).

Figure 3 shows the resulting nonlinear pressure and temperature profiles of District 1 after the second 
phase. The highest cumulative pressure losses can be observed at the most remote consumer, defining 
the pressure level at the heat source. As every consumer has to be connected to the grid, a considerable 
temperature drop can be observed in some pipes. This is due to those consumers' very low heat demand 
and the choice of available diameters. The smallest possible pipe is DN 20 (corresponding to an inner 
diameter of 0.0216 m), which is often oversized for those small heat loads.

(a) Temperature profile. (b) Pressure profile.
Figure 3: Resulting nonlinear temperature and pressure profile (feed line, district 1).

4.1 Deviation from Discrete Diameters
In this section, the deviation from discrete diameters is presented. To determine the deviation from the 
nearest commercially available pipe diameters , the mean absolute percentage error is used:

(21)

Moreover, the mean deviation is used to characterize the error made during the penalization: 

(22)

Table 5 shows each penalization method and district's and . Here, the methods that only 
consider two diameters outperform, in most cases, the methods that consider three different diameters. 
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Moreover, the methods with changing penalization directions, for example, Ramp_2 or TH_2, cannot 
discretize the diameters as well as the counterparts without changing penalization directions. Ramp_2, 
TH_2, and TH_4 are also more likely to slightly discretize the pipe diameter below the discrete value, 
while Ramp_1, TH_1, and TH_3 tend to discretize the piping diameter above the discrete value.

Table 5: Mean absolute error and relative deviation for each district and penalization method
District Ramp_1 Ramp_2 TH_1 TH_2 TH_3 TH_4

MAPE MD MAPE MD MAPE MD MAPE MD MAPE MD MAPE MD
1 0.39 1.01 1.56 0.99 0.60 1.01 1.84 0.99 1.55 1.01 2.62 1.00
2 0.41 1.01 2.14 0.99 0.65 1.01 4.24 0.99 2.08 1.01 3.07 0.99
3 0.34 1.01 1.74 1.01 0.53 1.01 1.56 0.99 2.55 1.02 1.68 0.98
4 0.43 1.01 1.92 0.99 0.77 1.01 2.24 0.99 2.08 1.01 2.03 0.98

Figure 4 shows the considered penalization method's absolute percentage error for each pipe in all of 
the four districts. Overall, TH_3 and TH_4 discretize the piping diameter with the most significant
absolute percentage error distribution, while Ramp_1 and TH_1 achieve the smallest one. The median 
of the absolute percentage error for the studied penalization methods is near zero. Therefore, continuous 
diameters close to an upper or lower bound are often discretized pretty accurately. This is often the case 
for pipes connecting consumers to the main district heating grid. For penalization methods, considering 
three different diameters, especially the intermediate diameters exhibit the highest discretization 
errors, and, thus, TH_3 and TH_4 have the largest error distribution.

Figure 4: Absolute percentage error for each pipe in the four districts for each penalization method.

If the accuracy of the discretized diameter should be emphasized during the optimization, penalization 
methods considering two diameters should be preferred over penalization methods considering three 
diameters. Moreover, changing penalization directions in different equations within the same 
optimization problem leads to a lower discretization accuracy.

4.2 Investment Costs and Mean Diameter
In order to compare the effectiveness of the discretization methods, each penalization method should 
be compared to a simple rounding up to the next diameter. Therefore, the mean diameter of the 
pipes in the district heating system is used, calculated with the total length of the district heating 
system:

(23)
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If a discretization method did not converge to a fully discrete value, the nearest discrete diameter is 
used in equation (23). Table 6 shows the mean diameter for each district and penalization method 
compared to rounding the continuous diameters up to the next upper commercially available diameter. 
Each considered penalization method can find a lower mean diameter than the rounding method (excpet 
for TH_2 in district 2). However, the penalization methods considering three diameters (TH_3 and 
TH_4) achieve the lowest mean diameter. On the one hand, this is due to the larger selection of 
diameters from which the optimizer can choose. As the choice of the available diameter is limited to 
the following commercially available diameter and the following larger one for Ramp_1 and TH_1, it 
can sometimes be beneficial to consider one additional smaller diameter. The heat losses are 
overestimated for small diameters in the linearization during the optimization’s first phase. This trend 
is reversed starting at DN 65. Therefore, depending on the initial diameter and the pipe position within 
the network, the pipe diameter can sometimes be best adjusted with three possible diameters. On the 
other hand, by considering only two diameters, the optimization can get stuck more easily in one of the 
two considered boundaries.

Table 6: Mean diameter for each district and penalization method
in m Rounding RAMP_1 RAMP_2 TH_1 TH_2 TH_3 TH_4

District 1 0.0473 0.0422 0.0465 0.0422 0.0466 0.0406 0.0423
District 2 0.0509 0.0470 0.0507 0.0470 0.0525 0.0437 0.0492
District 3 0.0458 0.0415 0.0439 0.0414 0.0453 0.0399 0.0454
District 4 0.0466 0.0422 0.0453 0.0422 0.0450 0.0398 0.0466

In Table 7, the investment costs for each district and penalization methods are shown. As the mean 
diameters of a district correlate with the pipe’s total investment costs, the lowest costs are determined 
by TH_3. Due to the changing penalization direction, the investment costs determined by TH_4 are 
higher than by Ramp_1 and TH_1. Overall, the highest relative reduction of 6.15 % is achieved in 
District 2 by TH_3.

Table 7: Investment costs for each district and penalization method
in € Rounding RAMP_1 RAMP_2 TH_1 TH_2 TH_3 TH_4

District 1 477,656 459,015 474,666 458,998 475,333 453,915 459,517
District 2 677,448 656,755 669,469 656,755 679,243 635,762 668,521
District 3 939,550 914,211 929,500 914,211 936,601 902,942 936,993
District 4 1,421,084 1,373,320 1,408,253 1,373,320 1,405,552 1,351,481 1,419,541

If obtaining the lowest possible diameters is emphasized over the discretization accuracy, methods 
considering three diameters should be preferred over penalization methods, which only consider two 
diameters.

5 CONCLUSIONS

In this study, different penalization methods for discretizing continuous diameters are investigated in 
four real districts with an increasing number of edges and consumers. Two different penalization 
methods (RAMP and tangent hyperbolic) are applied on continuous diameters, obtained by a mixed 
integer linear programming optimization, and compared to the achieved accuracy of the final discretized 
diameters. In order to study the behavior of the optimization on changing penalization directions, each 
method is implemented once with the same penalization direction and once with changing penalization 
direction depending on the equation in which the penalization is used. The results of this study indicate 
that, based on the four considered district heating networks, all penalization methods can find a district 
heating configuration with a lower mean diameter and investment costs compared to rounding the 
continuous diameters up to the next upper commercially available diameter. Methods without changing 
penalization methods are shown to provide higher accuracy in the discretization of the linear pipe 
diameters. If the accuracy of the discretized diameter should be emphasized during the optimization, 
penalization methods considering two diameters should be preferred over penalization methods 
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considering three diameters. Vice-versa, if obtaining the lowest possible diameters is prioritized over 
the accuracy of the discretization, methods considering three diameters should be preferred. Moreover, 
gradient-based nonlinear optimization always converges into a local optimum; a global optimum is not 
guaranteed. Therefore, how different possible local minima can be compared to one another and how 
the optimization can efficiently choose between the various local minima that occurred during the 
optimization should be investigated. One possibility is the optimization with different starting values 
for the nonlinear phase.

REFERENCES

AGFW, 2024. Pauschalierte Kennwerte. https://www.fw704.de/hauptmenue/kennwerte/pauschalierte-
kennwerte (accessed 22 February 2024).

Allen, A., Henze, G., Baker, K., Pavlak, G., Murphy, M., 2022. An optimization framework for the 
network design of advanced district thermal energy systems. Energy Conversion and Management 
266, 115839. https://doi.org/10.1016/j.enconman.2022.115839.

Blommaert, M., Wack, Y., Baelmans, M., 2020. An adjoint optimization approach for the topological 
design of large-scale district heating networks based on nonlinear models. Applied Energy 280, 
116025. https://doi.org/10.1016/j.apenergy.2020.116025.

Deaton, J.D., Grandhi, R.V., 2014. A survey of structural and multidisciplinary continuum topology 
optimization: post 2000. Structural Optimization 49, 1–38. https://doi.org/10.1007/s00158-013-
0956-z.

Deng, N., Cai, R., Gao, Y., Zhou, Z., He, G., Liu, D., Zhang, A., 2017. A MINLP model of optimal 
scheduling for a district heating and cooling system: A case study of an energy station in Tianjin. 
Energy 141, 1750–1763. https://doi.org/10.1016/j.energy.2017.10.130.

Dorfner, J., Hamacher, T., 2014. Large-Scale District Heating Network Optimization. IEEE Trans. 
Smart Grid 5, 1884–1891. https://doi.org/10.1109/TSG.2013.2295856.

Dorfner, J., Krystallas, P., Durst, M., Massier, T., 2017. District cooling network optimization with 
redundancy constraints in Singapore. Future Cities and Environment 3, 1. 
https://doi.org/10.1186/s40984-016-0024-0.

European Commission, 2018. Synthesis report on the evaluation of national notifications related to 
Article 14 of the Energy Efficiency Directive. Publications Office.

Fleiter, T., Elsland, R., Rehfeldt, M., Steinbach, J., Reiter, U., Catenazzi, G., Jakob, M., Rutten, C., 
Harmsen, R., Dittmann, F., Rivière, P., Stabat, P., 2017. Profile of heating and cooling demand in 
2015.

Gurobi Optimization, 2023. Gurobi Optimization. https://www.gurobi.com/ (accessed 22 February 
2024).

Hart, W.E., Watson, J.-P., Woodruff, D.L., 2011. Pyomo: modeling and solving mathematical programs 
in Python. Math. Prog. Comp. 3, 219–260. https://doi.org/10.1007/s12532-011-0026-8.

Jodeiri, A.M., Goldsworthy, M.J., Buffa, S., Cozzini, M., 2022. Role of sustainable heat sources in 
transition towards fourth generation district heating – A review. Renewable and Sustainable Energy 
Reviews 158, 112156. https://doi.org/10.1016/j.rser.2022.112156.

Krogh, C., Jungersen, M.H., Lund, E., Lindgaard, E., 2017. Gradient-based selection of cross sections: 
a novel approach for optimal frame structure design. Structural Optimization 56, 959–972.
https://doi.org/10.1007/s00158-017-1794-1.

Lambert, J., Ceruti, A., Spliethoff, H., 2024. Benchmark of Milp Formulations for District Heating 
Network Design.

Lambert, J., Spliethoff, H., 2023. A Nonlinear Optimization Method for Expansion Planning of District 
Heating Systems with Graph Preprocessing, in: 36th International Conference on Efficiency, Cost, 
Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023): Las Palmas 
de Gran Canaria, Spain, 25-30 June 2023. 36th International Conference on Efficiency, Cost, 
Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023), Las Palmas 
De Gran Canaria, Spain. 9/1/2020 - 9/5/2020. Curran Associates Inc, Red Hook, NY, pp. 2649–
2660.

Lambert, J., Spliethoff, H., 2024. Dataset for "A Two-Phase Nonlinear Optimization Method for 
District Heating Systems".

261 https://doi.org/10.52202/077185-0022



Paper ID: 8, Page 12

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Merlet, Y., Baviere, R., Vasset, N., 2022. Formulation and assessment of multi-objective optimal sizing 
of district heating network. Energy 252, 123997. https://doi.org/10.1016/j.energy.2022.123997.

Mertz, T., Serra, S., Henon, A., Reneaume, J.M., 2017. A MINLP optimization of the configuration and 
the design of a district heating network: study case on an existing site. Energy Procedia 116, 236–
248. https://doi.org/10.1016/j.egypro.2017.05.071.

Mertz, T., Serra, S., Henon, A., Reneaume, J.-M., 2016. A MINLP optimization of the configuration 
and the design of a district heating network: Academic study cases. Energy 117, 450–464. 
https://doi.org/10.1016/j.energy.2016.07.106.

Moody, L.F., 1947. An approximate formula for pipe friction factors.
Nussbaumer, T., Thalmann, S., 2016. Influence of system design on heat distribution costs in district 

heating. Energy 101, 496–505. https://doi.org/10.1016/j.energy.2016.02.062.
Pizzolato, A., Sciacovelli, A., Verda, V., 2018. Topology Optimization of Robust District Heating 

Networks. Journal of Energy Resources Technology 140, 020905. 
https://doi.org/10.1115/1.4038312.

Résimont, T., Louveaux, Q., Dewallef, P., 2021. Optimization Tool for the Strategic Outline and Sizing 
of District Heating Networks Using a Geographic Information System. Energies 14, 5575. 
https://doi.org/10.3390/en14175575.

Röder, J., Meyer, B., Krien, U., Zimmermann, J., Stührmann, T., Zondervan, E., 2021. Optimal Design 
of District Heating Networks with Distributed Thermal Energy Storages – Method and Case Study.
5-22 Pages / International Journal of Sustainable Energy Planning and Management, Vol. 31 (2021). 
https://doi.org/10.5278/ijsepm.6248.

Sigmund, O., 2001. Design of multiphysics actuators using topology optimization – Part I: One-
material structures. Computer Methods in Applied Mechanics and Engineering 190, 6577–6604. 
https://doi.org/10.1016/S0045-7825(01)00251-1.

Söderman, J., 2007. Optimisation of structure and operation of district cooling networks in urban 
regions. Applied Thermal Engineering 27, 2665–2676. 
https://doi.org/10.1016/j.applthermaleng.2007.05.004.

Söderman, J., Pettersson, F., 2006. Structural and operational optimisation of distributed energy 
systems. Applied Thermal Engineering 26, 1400–1408. 
https://doi.org/10.1016/j.applthermaleng.2005.05.034.

Sporleder, M., Rath, M., Ragwitz, M., 2022. Design optimization of district heating systems: A review. 
Front. Energy Res. 10, 971912. https://doi.org/10.3389/fenrg.2022.971912.

Stanford Business Software Inc, 2021. SNOPT. http://www.sbsi-sol-
optimize.com/asp/sol_product_snopt.htm (accessed 22 February 2024).

Umweltbundesamt, 2023. Kohlendioxid-Emissionen im Bedarfsfeld „Wohnen“.
https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/kohlendioxid-
emissionen-im-bedarfsfeld-wohnen (accessed 30 January 2024).

Wack, Y., Baelmans, M., Salenbien, R., Blommaert, M., 2023a. Economic topology optimization of 
District Heating Networks using a pipe penalization approach. Energy 264, 126161. 
https://doi.org/10.1016/j.energy.2022.126161.

Wack, Y., Serra, S., Baelmans, M., Reneaume, J.-M., Blommaert, M., 2023b. Nonlinear topology 
optimization of District Heating Networks: A benchmark of a mixed-integer and a density-based 
approach. Energy 278, 127977. https://doi.org/10.1016/j.energy.2023.127977.

Werner, S., 2017. International review of district heating and cooling. Energy 137, 617–631. 
https://doi.org/10.1016/j.energy.2017.04.045.

Wu, N., Kenway, G., Mader, C., Jasa, J., Martins, J., 2020. pyOptSparse: A Python framework for large-
scale constrained nonlinear optimization of sparse systems. JOSS 5, 2564.
https://doi.org/10.21105/joss.02564.

ACKNOWLEDGEMENTS

The authors thank Benedikt Schweiger for his valuable feedback and support. This work was supported 
by the "Bayerische Forschungsstiftung" in the framework of the project STROM [project no.: AZ-1473-
20]. The financial support is gratefully acknowledged.

262https://doi.org/10.52202/077185-0022




