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ABSTRACT 

The optimization of the sizes and operation of energy conversion and storage units in multi-energy 
systems with time horizons of years is strongly dependent on the variable timeseries of the grid 
electricity price. Thus, the optimization could be carried out considering representative timeseries 
obtained by unsupervised (e.g., clustering) or supervised (e.g., artificial neural networks) techniques. 
However, these techniques have mainly been combined to improve the accuracy of the timeseries 
prediction without then using these timeseries in an optimization problem. The objective is to evaluate 
whether unsupervised techniques can be properly combined with supervised techniques to obtain a 
representative set of typical days of the grid electricity price, the impact of which is assessed on the 
optimal total cost of a multi-energy system. This paper proposes a novel and preliminary hybrid 
approach that combines multi-year clustering and a feedforward Backpropagation artificial Neural 
Network (BPNN), and then compares it with a state-of-the-art multi-year clustering. Both approaches 
are fairly applied to the same “past” dataset (2005-2014), where the multi-year clustering identifies 
clusters containing similar timeseries, while the hybrid approach is based on training the BPNN with 
the timeseries labelled according to the representative clusters found by the multi-year clustering. The 
multi-year clustering approach finds a representative set of typical days in the “past” dataset and 
considers it in a “future” dataset (2015-2020), while the hybrid approach finds a representative set by 
classifying the days of the “future” dataset according to the training of the BPNN in the “past”. 
Subsequently, a stochastic programming model is used to optimize the design-operation of the system 
by minimizing its life cycle (investment and operational) costs in the “future” dataset, using separately 
the two different representative sets of typical days of the electricity price. The optimal life cycle costs 
based on the typical days of the multi-year clustering and hybrid approaches show errors of 3% and 5%, 
respectively, compared to “perfect knowledge” solutions based on data really occurred. Preliminary 
results show the validity of the proposed hybrid approach and point to further improvements.  
 
Keywords: multi-energy system, design-operation optimization, clustering, artificial neural network, 
stochastic programming 
 

1  INTRODUCTION 
1.1 Literature review 
Nowadays the pressing climatic and environmental issues require the optimal design of sustainable 
energy systems that can provide affordable renewable energy to different end users (EU, 2021). In this 
context, Multi-Energy Systems (MES) driven mainly by renewable energy can meet the various energy 
demands of different end-users. A MES consists of a set of energy conversion and storage units that 
exploit the interaction between multiple energy vectors (e.g., electricity, heating, cooling, fuels, etc.), 
at different geographical scales (e.g., neighbourhood, district, municipality, city, etc.), to find the best 
match between demand and generation (Mancarella, 2014, Guelpa et al., 2019). Mancò et al. (2023) 
showed how nonlinearities of model constraints, the type of optimization (i.e., synthesis, design and 
operation), the uncertainty in input parameters and the flexibility strategies (e.g., storage units, demand 
response programs) affect the formulation of the optimization model of MES. 
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The search for the optimal sizes and operation of energy conversion and storage unit of a MES requires 
a design-operation optimization problem with a time horizon of at least one year with hourly resolution, 
assuming that the year is representative of the whole lifetime of the system (Zheng et al., 2021). 
However, solving the optimization based on all input daily timeseries in one year leads to a high 
computational burden, which could be avoided by an optimization based on representative timeseries 
of the year (Kannengießer et al., 2019), obtained by applying Machine Learning (ML) techniques such 
as unsupervised clustering and supervised Artificial Neural Network (ANN) models.  
Clustering approaches are usually applied to annual historical datasets to group similar timeseries into 
the same clusters based on the similarity of their features (i.e., weather data, energy demands, energy 
prices, etc.), thus obtaining a representative timeseries for each cluster (Kotzur et al., 2018). Hoffmann 
et al. (2020) reviewed the main clustering techniques to identify representative timeseries. Hoffmann 
et al. (2021) found that the type of the optimization problem (i.e., operation or design-operation) affects 
the choice between the typical time steps (e.g., hours) and the typical periods (e.g., days or weeks) in 
the optimization of MES. Some works carried out the design and operation optimization of MES 
considering typical days of years obtained by clustering. Fazlollahi et al. (2014) carried out a one-year 
multi-objective optimization based on 7 typical days of different parameters (e.g., solar irradiance, 
energy demands, etc.), obtained by a centroid-based clustering algorithm (Fazlollahi et al., 2012), to 
achieve the optimal design and operation of a MES consisting of thermal storage, cogeneration units 
and a solar thermal plant. Bahl et al. (2018) and Bahl et al. (2017) selected the best sets of typical days 
among alternative sets generated by K-medoids and K-means clustering, respectively, for a design-
operation optimization of a MES by finding the minimum error between the optimal objective function 
based on typical days and that based on the full annual data.  
An Artificial Neural Network (ANN) is a computational model consisting of interconnected nodes that 
can learn complex relationships between input and output data to perform classification or regression 
tasks (Fausett, 2006). Some ANN models were mainly used to forecast the energy demands of different 
users, taking multi-year historical datasets as input. Runge et al. (2019) reviewed ANN models in terms 
of selection of their architecture (e.g., the number of neurons for each layer of the ANN) and algorithms 
used to train an ANN. Del Real et al. (2020) developed a deep neural network, combining a 
convolutional neural network and a feedforward Backpropagation ANN (BPNN), to forecast the 
national electricity demand in France. Petrucci et al. (2022) optimized the operation of the energy 
storage units of an Energy Community (EC), which is an aggregation of users sharing renewable 
electricity (Bartolini et al., 2020), using a day-ahead electricity demand of the EC predicted by an ANN.  
Some works combined different ML techniques. Giannuzzo et al. (2024) presented a methodology to 
estimate the shared energy among the members of a Renewable Energy Community (REC). They first 
applied K-means clustering to identify the typical profiles of the total electricity demand, and then used 
a Random Forest algorithm to assign these profiles to the REC members according to their monthly 
consumption data. Few works specifically used both clustering and ANN approaches to obtain accurate 
forecasts of different variables. Erilli et al. (2011) proposed a BPNN that takes, as input, data classified 
according to the results of a fuzzy clustering algorithm, and gives, as output, the optimal number of 
clusters. Ząbkowski et al. (2023) applied hierarchical clustering to obtain typical demand patterns of 
commercial users, and then used these patterns as input to a BPNN to forecast the total electricity 
demand of the Polish power system. They found that the higher the number of clusters, the higher the 
accuracy in estimating the total demand of the country. Luo (2020) proposed a methodology to 
accurately predict the day-ahead cooling demand of buildings, depending on typical patterns of weather 
data and building operating schedules. They implemented K-means clustering to identify different 
groups of weather timeseries in an annual dataset, and then used each group separately as input in the 
training of an ANN to predict the day-ahead cooling demand. Du et al. (2022) predicted the thermal 
performance of solar collectors by first applying a hierarchical clustering to identify outliers in 
experimental data of weather and fluid parameters, and then using the filtered data to train a BPNN.  
It should be noted that most of the ANN models were mainly used to forecast energy demands and not 
energy prices, the variability of which can strongly influence the total cost (investment and operational 
costs) of a MES. On the other hand, this paper evaluates different ML techniques (i.e., clustering and 
ANN) to obtain typical days of the grid electricity price. These typical days are used in the design and 
operation optimization of a MES meeting the energy demand of an EC.  
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1.2 Goals and novelty 
Unsupervised clustering techniques have mainly been integrated with supervised ANNs to improve the 
accuracy of predicting typical days of different timeseries (e.g., energy demands), without investigating 
whether these typical days can lead to a good accuracy of the optimal design-operation solution of a 
MES compared to a “perfect knowledge” solution based on the knowledge of all timeseries. The 
objective is to evaluate whether a novel and preliminary hybrid approach, which combines multi-year 
clustering and a feedforward Backpropagation ANN (BPNN), is successful in identifying a 
representative set of typical days of the grid electricity price, the impact of which is assessed on the 
optimal total cost of a MES. In addition, the proposed hybrid approach is compared with a state-of-the-
art approach based only on multi-year clustering.  
The multi-year clustering approach finds a representative set of typical days of prices in a “past” dataset 
(2005-2014) and considers the same set in a “future” dataset (2015-2020), whereas the proposed hybrid 
approach finds this set in the “future” by using a BPNN that is trained in the “past” according to the 
clusters found by the multi-year clustering approach. Subsequently, the two different sets of typical 
days are used separately as input to a Stochastic Programming (SP) model (Teichgraeber et al., 2020) 
to optimize the design and operation of the MES and to evaluate their impact on the optimal total cost 
of the system. The paper is organized as follows. Section 2 presents the methodology. Section 3 presents 
the results. Section 4 summarizes the main findings and conclusions. 
 

2  METHODOLOGY 
Figure 1 shows that an available historical dataset (2005-2020) is divided into a “past” dataset (2005-
2014) and a “future” dataset (2015-2020) by shifting the “present” moment back to 2015. This 
assumption is required to fairly apply the multi-year clustering and hybrid approaches to the same “past” 
dataset, making the two approaches comparable to each other, since the BPNN of the hybrid approach 
is trained in the “past” based on the classification made by the multi-year clustering (which is applied 
in the “past”). The design of the system can take place in any year after 2020, based on the optimal 
design found in each year of the “future” dataset with the typical days obtained by the two approaches. 
The multi-year clustering approach is applied to the whole “past” dataset to identify a representative set 
of typical days of prices, assuming then the same set in the “future” dataset. On the other hand, the 
hybrid approach uses the days in the “past” dataset for the training, validation and testing of the BPNN, 
where these days are labelled according to the clusters of the representative set of typical days found by 
the multi-year clustering approach. The representative set of typical days of prices according to the 
hybrid approach is identified by testing the BPNN in the “future” dataset. Subsequently, a Stochastic 
Programming (SP) (Infanger, 1992) model is used to optimize the design and operation of the Multi-
Energy System (MES) for each year of the “future” dataset by minimizing its life cycle cost (investment 
and operational costs), using separately as input the two different representative sets of typical days. To 
assess their accuracy, the optimal life cycle costs are compared with those of a Mixed-Integer Linear 
Programming (MILP) optimization, based on the “perfect knowledge” of all timeseries in each year of 
the “future” dataset. Sections 2.1, 2.2, 2.3 and 2.4 present the optimization model of the system, the 
multi-year clustering approach, the proposed hybrid approach and the input data, respectively. 
 
2.1 Optimization model of the multi-energy system 
Figure 2 shows the Multi-Energy System (MES) that meets the energy demands of a Renewable Energy 
Community (REC) including residential (Res) and public (Pub) prosumers, and commercial (Com) and 
tertiary (Ter) consumers. The energy conversion and storage units that can be installed are solar 
Photovoltaic plants (PV), Heat Pumps (HP), Gas Boilers (GB), Electrical Energy Storage (EES) and 
Thermal Energy Storage (TES). A Stochastic Programming (SP) model and a Mixed-Integer Linear 
Programming (MILP) model are used to optimize the sizes and operation of the units, based on a set of 
typical days and the “perfect knowledge” of all 365 days of a year, respectively. The typical days of 
electricity prices are obtained by the multi-year clustering approach or the proposed hybrid approach 
(Sections 2.2 and 2.3, respectively). The time horizon of the optimization is one year, assuming that the 
system operation is the same for each year of its life cycle. The decision variables and constraints refer 
to consumers c or prosumers p in hour t of day d. 
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Figure 1: Application of the multi-year clustering approach and the proposed hybrid approach (red 
boxes) to obtain two different representative sets of typical days of prices, the impact of which is 

evaluated on the optimal life cycle cost of the system.

Figure 2: MES of the REC with the residential (Res), public (Pub), tertiary (Ter) and commercial 
(Com) members.

The design decision variables are the capacities of the PV ( ), HP ( ), EES and TES (
for a general storage unit). The capacity of the GB of a consumer c ( ) is directly calculated from 
its input heating demand. The operational decision variables are: the heating power generated by the HP 
( ) and the binary variable indicating its on-off operational state ( ); the energy stored by the 
Energy Storage (ES) unit ( ), its charging/discharging power ( / ) and the binary variable 
indicating its charging/discharging state ( ); the energy imported/exported from/to the electrical 
grid ( / ); the shifted electricity demands of users ( and ). The constraints 
associated with each prosumer p are reported below. Energy and power variables have, respectively, 
[kWh] and [kW] as units of measurement.
The electricity balance of a prosumer p is:

(1)

where /, , , / , , and are the energy imported/exported 
from/to the electrical grid, the electrical power generated by PV, the power discharged/charged 
from/into EES, the electrical power consumed by HP, the step of one hour in the optimization and the 
shifted electricity demand of prosumer p, respectively.
The heating balance of a prosumer p is:

(2)

where , / and are the heating power generated by HP, the power 
discharged/charged from/into TES and the heating demand of prosumer p.
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The energy balance of an ES (i.e., EES or TES) of a prosumer p is: 
    (3) 

where , SD, /  and /  are the state of charge [% of capacity], the self-discharge 
[% of the state of charge in each hour], the charging/discharging power and the charging/discharging 
efficiency [-] of ES, respectively. Other constraints of ES are: 
   (4) 
   (5) 
   (6) 
   (7) 
   (8) 
   (9) 
   (10) 
   (11) 

where  [kWh] is the capacity,  is the binary variable associated with the charging (1) or 
discharging (0) state of ES,  and  [kW/kWh] are the specific input and output capacity. The 
auxiliary variables  and  and the M parameter are used to avoid bilinear constraints. 
The characteristic curve of the HP of a prosumer p is: 
  

 
(12) 

where , , ,  and , and  are the electrical power consumed, the heating power 
generated, the binary variable indicating the on-off operational state of the HP, the constant coefficients 
[-] that linearize the characteristic curve and the coefficient of performance in ideal conditions (Carnot 
equation) (Dal Cin et al., 2023), respectively. Other constraints of the HP are: 
   (13) 
   (14) 
  minHP  (15) 

where  [kW] is the capacity and minHP [% of the capacity] is the minimum part load of the HP. 
The auxiliary variable  and the M parameter are used to avoid bilinear constraints. 
For a prosumer p, the electrical power generated by PV is: 
   (16) 

where  is the power generated,  [m2] is the capacity (considering also the efficiency of PV) 
and  [kW/m2] is the global solar irradiance (on a tilted surface). 
The hourly electricity demand of each member i of the EC can be shifted as follows: 
  

 
 

(17) 

   (18) 
   (19) 

where  [kWh],  [kWh],  [kWh] and  [kWh], and  are, respectively, the 
input electricity demand, the shifted electricity demand in hour t of day d, the minimum and maximum 
of the input electricity demand in day d, and the hourly maximum fraction of the load that can be shifted. 
The objective function to be minimized is the life cycle cost of the system referring to one year: 
   (20) 

where  and  are the investment and operational costs, with the investment cost 
actualized to one year of operation.  
The investment cost of the system is: 
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(21) 

where u identifies a specific energy technology (U is the set of technologies), a [%] is the interest rate, 
ltu [years] is the lifetime of the technology u,  [% of the investment cost] is the operation and 
maintenance cost of the technology u,  [€/kW or €/kWh] is the investment cost,  is the 
capacity [kW or kWh] of the technology u owned by member i and N is the number of EC members. 
The annual operational cost, based on a set of typical days (in the SP model) or 365 days (in the MILP 
model) of one year is: 
  

 

  
 
 

(22) 

where K, wd,  [kWh],  [€/kWh],  and  [€/kWh],  [kWh] and  [€/kWh] are 
the number of days considered in one year (i.e., typical days in the SP model or 365 days in the MILP 
model), the weight of day d (i.e., the number of days in the year represented by the typical day d in the 
SP model or 1/365 in the MILP model), the energy consumed by GB of consumers c (C is the set 
representing the consumers), the price of natural gas, the grid purchase and sale prices, the shared energy 
and the incentive of the REC, respectively. The shared energy is calculated as the hourly minimum 
between the total net energy withdrawn from and injected to the grid by the REC according to the Italian 
legislation (ARERA, 2022, ARERA, 2023). The first term of the summation in Eq. (22) represents the 
cost of natural gas consumed by the boilers. The second and third terms are the cost for the electricity 
imported from the grid and the revenue for the electricity exported to the grid. The last term is the 
revenue associated with the shared energy. 
 
2.2 Multi-year clustering approach 
The implemented multi-year clustering approach is based on the K-means algorithm (Hoffmann et al., 
2020), which is applied to the entire “past” dataset to obtain typical days of electricity prices, increasing 
the number of clusters generated (containing similar timeseries) from 2 to 30. Thus, 29 alternative sets 
of typical days (i.e., the representative of the clusters) are generated, each consisting of 2 up to 30 typical 
days. The typical day of each cluster is selected as the real day with the lowest value of the Euclidean 
distance from the centroid of the cluster (Zatti et al., 2019). However, this procedure could neglect the 
extreme days of the electricity prices. Thus, following the “additional cluster center” criterion (Kotzur 
et al., 2018), the two extreme days characterized by the minimum and maximum daily sums of the 
hourly grid electricity prices are set as typical days of two new clusters added in each of the 29 
alternative sets. Subsequently, all daily timeseries of electricity prices are assigned again to the different 
clusters, as the 29 alternative sets now contain 4 up to 32 clusters, and the typical days of all clusters 
are updated. Each typical day is considered in the SP model (Section 2.1) with a weight corresponding 
to the frequency of its cluster divided by the 10 years of the “past” dataset (i.e., the number of days in 
a year represented by that typical day). The daily timeseries of solar irradiance, ambient temperature, 
electricity and heating demands are considered on the same days of the typical days of electricity prices 
to preserve the chronological correlation between the different daily timeseries. 
The representative set of typical days of electricity prices is found by searching for the lowest Root 
Mean Squared Error (RMSE) of the optimal life cycle costs (Eq. (20), Section 2.1) obtained by solving 
the SP and MILP models over the years of the “past” dataset (2005-2014). The RMSE is (Mosavi et al., 
2019): 
 

 
  

(23) 

where  and , and  are, respectively, the optimal life cycle costs found by solving the SP 
model for year  with  typical days (varying from 4 to 32) and the MILP model for year , and the 
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number of years considered (10), respectively. This representative set of typical days in the “past” 
dataset (Figure 1) is then used to solve the SP model for each year of the “future” dataset (2015-2020).

2.3 Hybrid approach: multi-year clustering combined with an artificial neural network
The novel hybrid approach consists of a feedforward Backpropagation Neural Network (BPNN) (Runge 
et al., 2019) that uses the representative clusters obtained by the multi-year clustering approach (Section 
2.2) in the “past” (2005-2014) to find a representative set of typical days of grid electricity price directly 
in the “future” (2015-2020). The architecture of the BPNN includes an input layer, hidden layers and 
an output layer, the latter consisting of nodes representing the output classes (e.g., a class represents
days characterized by similar profiles of the grid electricity price). Each node i of a general hidden layer 
j is associated with an output , which is calculated as:

(24)

where , n, , and are the activation function (i.e., representing the non-linear relationship 
between input and output data), the number of nodes in the layer j, the weights of the connections 
between the nodes of different layers, the output of the previous hidden layer j-1 and the bias function
(representing the noise) in layer j, respectively. Figure 3 shows the chosen BPNN, which consists of an 
input layer with 24 variables (e.g., the hourly grid electricity prices in a day), 3 hidden layers with 100 
nodes each, and an output layer with 16 nodes. The number of hidden layers and their neurons was 
chosen by trial-and-error procedures according to the dimension of the “past” training dataset. The 
nodes of the output layer represent the output classes to which the daily timeseries of grid electricity 
price can be assigned to, and their number was chosen equal to the number of representative clusters
found from the multi-year clustering approach.
The BPNN is trained with a dataset of daily timeseries of the grid electricity price, which are labelled
according to input classes, i.e., the representative clusters of the multi-year clustering approach. The 
training of the BPNN updates iteratively the weights and biases by minimizing an error function
between the computed output class (i.e., in Eq. (24)) and the corresponding input class for each daily 
timeseries. In each training step, the BPNN calculates the probabilities of belonging to the different 
classes for each daily timeseries, which is assigned to the class with the highest probability. 
The training of the BPNN is composed of two phases. In one phase, the daily timeseries in the first 60%
part of the “past” dataset are used to train the BPNN, while in the other phase the consequent 20% and 
the remaining 20% of the “past” dataset are used to validate and test the BPNN, respectively. The two 
phases are performed simultaneously to prevent overfitting and ensure a high generalization ability of 
the network. Subsequently, the BPNN is tested to predict the classes of the daily timeseries of prices in 
the “future” dataset. According to the proposed hybrid approach (Figure 1), the representative set of 
typical days of electricity prices includes real days in the “future” dataset with the lowest Euclidean 
distance from the centroid of each group of days with the same output class. This representative set of 
typical days is then used to solve the SP model for each year of the “future” dataset.

Figure 3: Architecture of the chosen BPNN with the input layer (24 nodes), the three hidden layers 
(100 nodes each) and the output layer (16 nodes).
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2.4 Input data 
Table 1 shows the values of the techno-economic parameters ((Sterchele et al., 2020), DEA (2023)). 
The interest rate  of the investments and the lifetime  of each technology u (Eq. (21)) are assumed 
to be 0.05 [-] and 20 years, respectively. Solar irradiance and ambient temperature refer to the location 
of Padova (Italy) and are taken from (PVGIS, 2022). The daily timeseries of the grid electricity price 
are based on a historical dataset (2005-2020) of the day-ahead market price in Italy (GME, 2022), where 
the grid sale price is assumed to be half of the day-ahead market price and the grid purchase price is 
calculated as the grid sale price plus 0.2 €/kWh. The electricity and heating demands of different users 
are taken from (DOE, 2023). Moreover, the maximum hourly fraction of the load that can be shifted 
(constraints (19) in Section 2.1) is equal to 0.1. The price of natural gas is equal to 0.098 €/kWh. The 
incentive for shared energy is 0.12 €/kWh. 
 
Table 1: Input techno-economic parameters of the optimization models (Sterchele et al., 2020, DEA, 

2023). 

Technology “u” Parameter Value 
GB [-] 0.97 

  [€/kWth] 300 
  [% of ] 4.9 

PV  [€/kWel] 1250 
  [% of ]  1.1 

HP  [-] 1.7961, 2.6527 
  [% of capacity] 50  
  [€/kWth] 1500 
  [% of ] 2.8 

EES(TES)  [% of the state of 
charge in each hour] 0.04(2.1) 

  [-] 0.95(0.99), 
0.95(0.99) 

  [kW/kWh] 0.5(0.7), 3(0.7) 
  [€/kWh] 1500(400) 
  [% of ] 1(4) 

 
3 RESULTS 

Figure 4(a) and (b) show the representative sets of 16 and 15 typical days of the grid electricity (sale) 
price obtained by the multi-year clustering approach in the “past” dataset (2005-2014) and by the hybrid 
approach in the “future” dataset (2015-2020), respectively. Although the hybrid approach uses the 16 
representative clusters of the multi-year clustering approach as input classes to the BPNN to predict the 
class of each daily timeseries in the “future” (Section 2.3), no timeseries is assigned to the class 
represented by the extreme profile with the highest prices (shown in red in Figure 4(a)). Consequently, 
the daily timeseries of prices in the “future” dataset are assigned to 15 classes, resulting in 15 typical 
days (Figure 4(b)). The two sets of typical days are used separately to solve the SP model for each year 
of the “future” dataset, leading to different optimal life cycle costs that are compared with those found 
by the MILP model with “perfect knowledge” (Section 2).  
The representative set of typical days according to the multi-year clustering approach is found by 
searching for the minimum RMSE of the optimal life cycle costs obtained by solving the SP model and 
the MILP model based on typical days and all 365 days, respectively. Figure 5 shows the RMSE for 29 
different sets of typical days found by the multi-year clustering approach, with a number ranging from 
4 to 32 (Section 2.2). The calculated RMSE is characterized by large deviations around 50 [k€], with 
several local minima for 10, 16, 23 and 29 typical days. Among these sets, that with 16 typical days 
(Figure 4(a)) is chosen as the most representative, as it leads to the lowest average relative error in the 
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optimal life cost in the “future” dataset (2015-2020). Table 2(a) shows the optimal life cycle costs 
obtained by solving the SP model for the representative set of 16 typical days, found with the multi-
year clustering approach, and the MILP model for all days over the years of the “future” dataset. The 
average relative error in the optimal life cycle cost obtained by solving the SP model compared to the 
MILP model is 3.07%. 
Table 2(b) shows the optimal life cycle costs obtained by solving the SP model for the representative 
set of 15 typical days, found with the hybrid approach, and the MILP model for all days over the years 
of the “future” dataset. The average relative error in the optimal life cycle cost obtained by solving the 
SP model compared to the MILP model is 5.21%, which is acceptable but slightly higher than that of 
the multi-year clustering approach. This result could have two main reasons. First, the hybrid approach 
is based on training the BPNN on the “past” dataset. This process introduces an error related to the 
ability of the BPNN to classify all the daily timeseries of the “past” dataset according to the given input 
classes. This error, in turn, affects the prediction of the classes of the daily timeseries in the “future” 
dataset. Second, the representative set of 15 typical days found by the hybrid approach (Figure 4(b)) 
does not contain a real extreme daily timeseries of the grid electricity price. In fact, the BPNN fails in 
finding daily timeseries of the “future” dataset that can be classified according to the extreme profile 
with the highest prices of the “past” dataset (which is instead included in the representative set found 
by the multi-year clustering approach).  
 

 
a) 

 
b) 

Figure 4: Representative set of a) 16 typical days (extreme profile is red) and b) 15 typical days of 
the grid electricity price, obtained by the multi-year clustering and hybrid approaches, respectively. 

 

 
Figure 5: RMSE as the number of typical days in the “past” dataset increases from 4 to 32. The 

dashed green circle identifies the most representative set of typical days of the grid electricity price 
according to the multi-year clustering approach. 
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Table 2: Optimal life cycle costs of the system obtained by solving the SP model for the 

representative set of a) 16 typical days (multi-year clustering approach) and b) 15 typical days (hybrid 
approach), and the MILP model for all days over the years of the “future” dataset. 

a) 
 Years 

 2015 2016 2017 2018 2019 2020 
SP: life cycle costs [k€] 383.03 387.07 369.60 362.14 392.86 357.87 

MILP: life cycle costs [k€] 370.70 377.46 375.75 375.65 374.90 367.15 
Relative errors [%] 3.33 2.54 1.64 3.60 4.79 2.53 

 
b) 

 Years 
 2015 2016 2017 2018 2019 2020 

SP: life cycle costs [k€] 354.93 358.42 344.12 377.61 355.18 338.62 
MILP: life cycle costs [k€] 370.70 377.46 375.75 375.65 374.90 367.15 

Relative errors [%] 4.25 5.05 8.42 0.52 5.26 7.77 
 

4 CONCLUSIONS 
This paper focuses on finding typical days of the grid electricity price, the variability of which can 
strongly influence the optimal life cycle cost (investment and operational costs) of a Multi-Energy 
System (MES) within a Renewable Energy Community (REC). The analysed REC consists of 
residential and public prosumers who could install solar photovoltaic plants, heat pumps, electrical and 
thermal energy storage units, and tertiary and commercial users who could install natural gas boilers. 
The application of a novel hybrid approach, combining multi-year clustering and a feedforward 
Backpropagation artificial Neural Network (BPNN), is proposed to identify a representative set of 
typical days of the grid electricity price and assess their impact on the optimal life cycle cost of the 
system. In addition, the hybrid approach is compared with a state-of-the-art multi-year clustering. 
The methodology implemented is based on splitting an available historical dataset (2005-2020) of daily 
timeseries of grid electricity prices into a “past” dataset (2005-2014) and a “future” dataset (2015-2020) 
by shifting the “present” moment back to 2015 to achieve a fair comparison between the multi-year 
clustering and hybrid approaches. Indeed, the multi-year clustering approach applies K-means 
clustering to the “past” to identify a representative set of typical days, assuming then the same set in the 
“future”. On the other hand, the novel hybrid approach uses the clusters of the representative set of 
typical days found by the multi-year clustering approach in the “past” to train a BPNN. Then, the 
representative set of typical days according to the hybrid approach is found in the “future” by testing 
the BPNN to predict the class of each daily timeseries. Subsequently, the two different representative 
sets of typical days are used separately in a Stochastic Programming (SP) model to optimize the design 
and operation of the system by minimizing its life cycle cost for each year of the “future” dataset.  
Preliminary results show that the representative sets of typical days of the grid electricity price 
according to the multi-year clustering and hybrid approaches are accurate. In fact, the optimal life cycle 
costs of the system obtained by solving the SP model in the “future” show average errors of 3% (multi-
year clustering approach) and 5% (hybrid approach), respectively, compared to the solution of a Mixed-
Integer Linear Programming (MILP) model based on the “perfect knowledge” of all 365 daily 
timeseries over years. The main advantage of the proposed hybrid approach over the multi-year 
clustering approach lies in the selection of a representative set of typical days of prices, which considers 
the actual values of the daily timeseries in the “future” (where the BPNN is tested) and does not neglect 
the relationships with those in the “past” (where the BPNN is trained). Although the proposed hybrid 
approach leads to an acceptable error in the optimal life cycle cost of the system, future work will focus 
on further reducing this error by improving the accuracy i) in the classification of the daily timeseries 
in the “past” dataset during the training of the BPNN and ii) in the selection of extreme daily timeseries 
of prices in the “future” dataset during the testing of the BPNN. 
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NOMENCLATURE 

ANN Artificial Neural Network 
BPNN  Feedforward Backpropagation Neural Network 
EC Energy Community 
MES Multi-Energy System 
MILP Mixed-Integer Linear Programming 
REC Renewable Energy Community 
RMSE  Root Mean Squared Error  
SP Stochastic Programming  
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