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ABSTRACT

With the increasing demand for electrical energy storage to balance intermittent renewable energy

generation, there is a growing interest in efficient and cost-effective storage technologies. Compressed Air

Energy Storage (CAES) has emerged as a promising solution due to its long lifetime, low environmental

impact and mature technology base. This paper presents the modelling and the optimization of a

micro-scale Adiabatic CAES system. Accurately modelling the time-variant behaviour and off-design

performance of various components is necessary to estimate the system’s performance properly and,

consequently, to optimize the design. A model of a micro-CAES was developed using the open-source,

object-oriented, software OpenModelica. The storage system is coupled with a PV energy source and

an energy user. The model simulates plant behaviour over a year to properly account for the seasonal

variations. The model is employed to study the influence of the size of key components on system

performance in order to enhance its efficiency through optimized component sizing. The optimization

is performed using an external algorithm that guides and steers the optimization process. Six main

parameters are selected as design variables such as compressor and expander size, volume and maximum

bared pressure of the air storage, TES size, and photovoltaic installed power while round-trip efficiency

and energy coverage are selected as a metric for optimization. The sensitivity analysis has shown that

the mass of oil exhibits the least influence on system performance among the parameters examined,

suggesting its exclusion from the optimization procedure. Through optimization, parameters enabling the

achievement of maximal values for each variable have been identified. Additionally, it is shown the utility

of the surrogate model developed during optimization for expedited evaluation of system performance

throughout the design spectrum.

1 INTRODUCTION

In the last decades the production of electricity from renewable sources has increased constantly leading

to a growing need to develop electrical energy storage (EES) technologies (Mohler and Sowder, 2017).

Furthermore, there is a growing interest for the development of new small-scale energy storage solutions

to shift from centralized to distributed electricity generation, and to ensure energy needs of remote rural

areas. Currently, lithium-Ion batteries dominate the field of small and medium size energy storage, but

numerous other technologies exist at varying stages of development (T.-T. Nguyen et al., 2017). In this

scenario, there is a renewed focus on Compressed Air Energy Storage (CAES). This technology involves

compressing air during periods of low electric energy demand, storing it using various types of reservoir

volumes, such as salt caverns or pressure vessels, and later releasing it to drive an expander during periods

of high energy demand (Garvey and Pimm, 2016). In broad terms CAES systems typically include:
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a set of compressor and expander machines, chosen from various categories based on the plant’s size

(He, 2018); an air reservoir, and, for the so-called Adiabatic-CAES, a Thermal Energy Storage (TES)

system, responsible for storing thermal energy generated during the compression phase, to be released

during the expansion one (Zhou et al., 2019). CAES systems were traditionally developed for utility-scale

application (King et al., 2021) but it is a promising storage technology also at small-scale as it presents a

series of benefits if compared with batteries, such as longer lifetime, a far lower environmental impact,

a storing capacity that is not subject to degradation and the fact that CAES components are based on

mature technology (Dehghani-Sanĳ et al., 2019; Mucci et al., 2021). Based on this consideration CAES

can be considered a competitive alternative to batteries, notwithstanding a lower overall efficiency. Due to

its configuration (i.e. storing pressure progressively changing with time) and with the aim of integrating

them with renewable sources, small-scale CAES (SS-CAES) must work under transient and off-design

conditions (Guo et al., 2019). Nevertheless, as reported by Bazdar et al. (2022), most of the studies

presented in literature investigated the CAES performance under design conditions or steady-state mode

(Cheayb et al., 2022 Karapekmez et al., 2020). It is also common practice to characterize the system

behaviour based on a full charging phase (i.e. from empty reservoir to the point of maximum allowable

pressure) and a consequent full discharge. As the actual performance are highly dependent on the actual

operation dictated by energy availability/request alternation, the development of time dependent CAES

models, is necessary to study the system behaviour over time. Moreover, due the presence of various

sub-systems, it is crucial to correctly optimize the system by properly sizing the various components, to

avoid CAES under/over-sizing and reduced system’s profitability (Heidari et al., 2021).Various design

approaches have been proposed to find the optimal size for CAES; some of them are based on analytical

procedure (Jannelli et al., 2014) while others are based on the use of optimization algorithms, mainly

genetic ones (Congedo et al., 2022; Yao et al., 2016). It is worth to notice that few of proposed approaches

try to handle with the dimension of all the components at the same time, as an increased number of

parameters significantly affects the capabilities and required time of this approaches. The present work

tries to deal with this aspect, showing a system modelling and optimizing procedure that is structured

in three main stages. In the first one, a sensitivity analysis is carried out, in order to isolate the main

parameters affecting the overall performance of the system, allowing to neglect the others in the following

treatment; in the second stage, an optimization procedure is executed based on the Efficient Global

Optimization method. This method relies on the use of a Kriging surrogate model to facilitate the

optimization process. In the last stage the developed surrogate model is used to investigate the behaviour

of the system with a much increased speed, so to deepen the analysis of the system performance and

identify optimum configurations when additional constraints are imposed. The application of the paper

stays in the description of a methodology that combines different mathematical approaches, to reach

a reliable and time-efficient description of the investigated CAES system. The paper is structured as

follows: initially, the thermodynamic model is briefly described. Subsequently, the coupling between

the thermodynamic solver and the algorithm used for sensitivity analysis and optimization is explained,

specifying the mathematical solutions adopted in this phase. Finally, the obtained results are reported.

2 SYSTEM DESCRIPTION

The considered system is an adiabatic micro-CAES; a schematic representation of the plant is shown

in 1 It is mainly composed of a three-stages reciprocating compressor, a thermal energy storage system

(TES), a series of high-pressure vessels, a lamination valve, and a series of three scroll expanders. The

compression phase is intercooled through three heat exchangers that release heat to the oil contained in a

reservoir that stores the thermal energy and supplies it back to the air during the discharge phase, and heat

sinks that dissipate heat to the ambient. The air is stored in isochoric vessels, causing the compressor

outlet pressure to vary based on vessels pressure, while the lamination valve ensures that the pressure at

the inlet of the first expander is not higher than a certain allowable value, set at 45 bar. The compressor is

driven by an electric motor with variable speed, powered by a series of photovoltaic panels, while the
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expanders drive an electric generator that provides power to the users. Further details about the load

profile are provided in subsequent sections. The system layout is analogue to the one proposed in a

previous work of the authors (Tumminello et al., 2023), where the simplicity of the plan configuration and

the use of standard components were a constraint of the work. No innovation is here proposed for the

plant layout since the aim of this article is to explore the possibility to build an optimization procedure

rather than to propose a novel system configuration.

Figure 1: : Scheme of theCAESplant: (1) electricmotor, (2) compressor, (3) thermal storage, (4)heatsinks,
(5)high-pressure vessels, (6) regulation valve, (7) expander, (8) generator.

3 THERMODYNAMIC MODEL

The system model was developed using the open-source software OpenModelica (Fritzson et al.,

2005). This software was selected for its capability to simulate time-evolving systems. The model

was developed considering the dynamic and off-design performance of each component to achieve an

accurate characterization of the entire plant. The components sub-models are parameterized based on

their characteristic dimensions to enable sensitivity analysis based on components size. The considered

sub-models represent generic components, albeit of a specific typology (i.e. scroll expanders), modelled

using state-of-the art relations, so as to keep the treatment, as well as the procedure’s applicability, as

general as possible. The main equations are summarized in Table 1. The compression and expansion

processes are simulated as adiabatic transformations, characterized by an isentropic efficiency 𝜂𝑖𝑠 that
depends on the operating point of the machines. Regarding the outlet compression temperature, a

maximum value of 150°C was imposed, to mimic the characteristic limitations of standard machines.

The expander, on the other hand, was considered adiabatic. The efficiency curves of compressor and

expanders were modelled using the analytical expression proposed by Declaye et al. (2013) reported in

Equation (2): 𝜉 is a parameter setting the shape of the efficiency curve; for the expanders, this coefficient
was taken from the cited paper, while for the compressor stages, it was derived by fitting in-house retrieved

experimental data. Each compression stage is modelled by means of characteristic curves of the isentropic

and volumetric efficiency, both expressed as a function of pressure ratio and rotational speed. Figure 2

shows these curves, and the meaning of the coefficients reported in Equation (2), (3), (4) is graphically

explained in Figure 2.b. During the simulation of the charging phase, the model starting from the pressure

inside the air storage iteratively query the look-up tables, containing the information of characteristic

curves, to determine the operating point of each stage. In this way, a value of pressure ratio for each stage

and a common rotating speed is calculated like those that make the compressor dispose of the instantly

available power without exceeding the maximum allowable velocity. An analogous approach is used for

the expander, so that it provides the required power, or the maximum that it can provided according to
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its dimension. The heat exchangers are modelled using the "𝜀-NTU" approach, which is based on the
calculation of the heat exchanger effectiveness 𝜀 as a function of the number of transfer units, NTU, the
heat capacity rate ratio and the flow arrangement in the heat exchanger; this method is widely accepted

and used in the literature (Grazzini and Milazzo, 2011). As for the oil and air reservoirs, energy balances

were imposed, taking into account the dissipation to the external environment. The temperature inside the

tanks is considered uniform throughout the volume. For sake of brevity the equations used to model the

expander are not reported in Table 1 since the same approach of the compressor was used.

Table 1: Main equations describing the behavior of CAES components
Component Equations

Compressor 𝑤𝑠,𝑖 = 𝜂𝑖𝑠,𝑖 ·
𝛾

𝛾−1 · 𝑅 · 𝑇𝑐,𝑖𝑛,𝑖 ·

(
𝛽

𝛾
𝛾−1

𝑐,𝑖 − 1

)
(1)

𝜂𝑖𝑠 = sin(𝜉 · arctan(𝐵 · (𝛽 − 𝛽0) − 𝐸 · (𝐵 · (𝛽 − 𝛽0) − arctan(𝐵 · (𝛽 − 𝛽0))))) (2)

𝐵 = 𝛿
𝜉 ·𝜂𝑚𝑎𝑥

(3)

𝐸 =
𝐵· (𝛽−𝛽0−tan(

𝜋
2𝜉 ) )

𝐵· (𝛽𝑚𝑎𝑥−𝛽0−arctan(𝐵· (𝛽𝑚𝑎𝑥−𝛽0 )
(4)

Heat exchanger ℎℎ,𝑖𝑛 − ℎℎ,𝑜𝑢𝑡 = 𝜀 · (ℎℎ,𝑖𝑛 − ℎℎ,𝑇𝑐 ) (5)

𝜀 = 1 − 𝑒𝑁𝑇𝑈 (6)

𝑁𝑇𝑈 = 𝑈𝐴
𝑐𝑝 · �𝑚

(7)

Air reservoir 𝑑𝑈
𝑑𝑡 = �𝑚𝑖𝑛 · ℎ𝑖𝑛 − �𝑚𝑜𝑢𝑡 · ℎ𝑜𝑢𝑡 + �𝑄𝑎𝑚𝑏 (8)

TES 𝑇 = 𝑇0 +
𝑄ℎ𝑒𝑥+𝑄𝑎𝑚𝑏

𝑀 ·𝑐𝑝
(9)

The temporal evolution of the system is driven by the trend of power output from the photovoltaic plant

and the power demand from the user. The model simulates the variation of irradiance over time through

the OpenModelica library "PhotoVoltaics" (Brkic et al., 2019) which analytically calculates irradiance

based on location, data, hour and some date regarding the PV modules (e.g. angle of inclination with

respect to the horizontal plane). Figure 3 shows the daily irradiance profile for the selected locality

(Florence) for a certain day of January and July. From the irradiance data, the available power is derived by

considering the installed peak power and the efficiency of the photovoltaic system (𝑃𝑃𝑉 = 𝜂𝑃𝑉 · 𝐼 · 𝑘𝑊𝑝).

As for the required power, a typical domestic load profile is considered, with a peak of approximately 11

kW to simulate multiple users, as shown in Figure 4. This profile is cyclically repeated for each day of

the year, without considering seasonal variations in load but considering an average load (Joshi, 2017).

The compressor’s absorbed power and the expanders’ generated power are adjusted to align with the load

profile, determined by the difference between the PV output and user load curves, by adjusting their

rotational speed within the permissible range. However, the presence of limitations on rotational speed

and the maximum allowable pressure inside the pressure vessel constrains the ability to store the entire

amount of the available energy produced by the PV panels. Two performance indicators were used to

assess system’s performance: Round-Trip Efficiency (RTE), defined as the ratio of energy produced during

the expansion phase to that absorbed by the compressor over a reference period of one year (Eq. (10)), and

the Energy Coverage Percentage (ECP), which is defined as the ratio between the total released energy by

CAES and the total energy shortage during the same period (Eq. (11)).

𝑅𝑇𝐸 =
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
(10)

𝐸𝐶𝑃 =
𝐸𝑜𝑢𝑡

𝐸𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
(11)
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(a) (b)

(c) (d)

Figure 2: Machines efficiency curves as function of pressure ratio: (a) compressor 𝜂𝑖𝑠, (b) expander 𝜂𝑖𝑠,
(c) compressor 𝜂𝑣𝑜𝑙 , (d) expander 𝜂𝑣𝑜𝑙

Figure 3: Daily solar irradiance in Florence Figure 4: User load profile

4 NUMERICAL METHOD

4.1 Sensitivity analysis
Both the sensitivity analysis and the optimization process were performed by coupling OpenModelica with

Dakota, an open-source toolkit that provides an interface between simulation codes and iterative analysis

methods (Adams et al., 2020). Dakota’s execution is configured through an input file that defines the

analysis type and specifies the file names linked to the user’s simulation code. While in operation, Dakota

automatically executes the user’s simulation code by creating a separate external process. The sensitivity

analysis aims to evaluate which parameters of the system most significantly impact its performance (RTE

and ECP), to evaluate the possibility of excluding some parameters from the optimization process reducing

its computational cost. The independent parameters studied in the sensitivity analysis are summarized in

Table 2 together with their considered range of variation. The displacements shown in the table refer to

the first compression/expansion stage; the volumetric ratio between the various stages is kept constant

during the sensitivity analysis and it is based on preliminary evaluation. It has to be pointed out that

at least one parameter for each component has been considered, mainly characterizing its size. Other
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parameters characterizing the CAES thermodynamic cycle (i.e. max TES temperature, max compressor

outlet temperature, . . . ) have not been considered, as they are detailed by each component technology

level. For this reasons, the maximum compressor temperature and expander inlet pressure have been set

to 150°C and 45 bar respectively, as characteristic values for the considered typology of components;

for the same reasons the maximum value of the machines efficiency curves have been set as shown

in Figure 2. The sensitivity analysis was performed by using the method developed by Morris (1991)

with the correction proposed by Campolongo et al. (2007). This method allows to rank the parameters

influence on the output, and it was selected since it allows to deal with non-monotonic relationship and to

consider interaction between variables differently from simpler approach (e.g. method Spearman and

Pearson correlation coefficient). At the same time, it guarantees a low computational cost (i.e. number of

simulated points) if compared with others global sensitivity methods based on variance decomposition,

such as Sobol index, at a slightly reduced accuracy (Iooss and Lemaître, 2015). As the goal of this stage

is to achieve a quick qualitative comparison between the impact of different parameters, the method

was considered well suited for it. This method involves a sampling strategy that allows to compute the

elementary effect of each input on the output 𝐸𝑖; the final outputs of the method are the modified mean 𝜇∗𝑖
and variance 𝜎𝑖 of the elementary effect. The mean 𝜇∗𝑖 is a measure of influence of the i-th parameter
on the output. The grater it is, the more the i-th input contributes to the dispersion of the output. The

variance 𝜎𝑖 is a measure of non-linearity and interaction effects of the inputs: low value suggests a linear

relationship between input and output while a large value will indicate non-linear effects, or interaction

with at least one other variable. Due to the goals described above and to limit the required time, the

thermodynamic model was here simulated for a time range of one month, performing the sensitivity

analysis for both a winter month (January) and a summer month (July).

Table 2: Studied independent parameters in sensitivity analysis
Parameter Symbol Range

Compressor displacement 𝐶𝑐𝑐 500 ÷ 4000 𝑐𝑚3

Expander displacement 𝐸𝑥𝑐𝑐 10 ÷ 60 𝑐𝑚3

Pressure vessels volume V 10 ÷ 50 𝑚3

Thermal oil mass M 2000 ÷ 6000 kg

Max air pressure inside vessels 𝑃𝑚𝑎𝑥 40 ÷ 200 bar

PV installed power kW 30 ÷ 150 kW

4.2 Optimization process
Subsequently to the sensitivity analysis, two optimization processes were carried out to identify the plant

configuration that maximizes the RTE and the ECP separately. The design parameters that are varied

during the optimization process are the same as those examined in the sensitivity analysis, except for those

identified as negligible in the sensitivity analysis results. The optimization algorithm used to minimize

the objective function (𝐹𝑜𝑏 𝑗) is based on the Efficient Global Optimization (EGO) methodology. This
method was firstly proposed by Jones et al. (1998) to facilitate the minimization of expensive implicit

response functions by using a surrogate model of the real one; this method allows to reduce the number of

iterations to be carried out compared to other optimization algorithms (A. T. Nguyen et al., 2014). The

optimization process is depicted in Figure 5 and here briefly described:

1. Firstly, a set of sample points is generated in the design space using the Optimal Latin Hypercube

Sampling (OLHS) providing a good representation of the design space (Park, 1994); the number of

initial points is chosen by the algorithm based on the number of variables. For these points the

object function is evaluated through the thermodynamic model creating a starting database.

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND

ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE – 4 JULY, 2024, RHODES, GREECE

29 https://doi.org/10.52202/077185-0003



Paper ID: 134, Page 7

2. The data available in the database are used to build a Gaussian process (GP) approximation for

𝐹𝑜𝑏 𝑗 , so it can be approximated by an analytical formulation. (Schulz et al., 2018)
3. The EGO process looks for the point in the design space that maximize an Expected Improvement

(EI) function, defined as the expectation that each configuration will provide a better solution than

the current best, based on both the expected values and variances computed by the GP model (i.e.

points with parameters values that are “far” from the investigated ones will bear a higher uncertainty,

thus potentially present a high EI even if the predicted 𝐹𝑜𝑏 𝑗 is lower than the current minimum).
4. Modelica analysis is then performed for the parameters that maximize the EI to evaluate the real

value of 𝐹𝑜𝑏 𝑗 in this point.
5. Finally, a convergence check is performed at each iteration, if the criterion is met the loop ends,

otherwise the optimization loop is continued, and the database is updated with the value computed

in the previous step, to create an updated surrogate. The convergence criteria here used is based on

the value of EI being lower than 0.001 for two consecutive iteration.

Figure 5: Optimization process workflow

5 RESULTS

5.1 Results of the sensitivity analysis
The sensitivity analysis results are depicted in Figure 6 using the Morris plot in which the values obtained

for each output are represented in a 𝜇∗ − 𝜎 plane. The plots show that, for both outputs the parameters

with the greatest influence are the installed power and the compressor displacement, while the least

influential parameter for both outputs, in both seasons, is the mass of the thermal oil. Other parameters

exhibit a different behaviour between seasons. For instance, the influence of the expander displacement is

the second least influential parameter concerning the round-trip efficiency in the summer months, but

it is much more influential in the winter months. This is due to the different average inlet pressure to

the expander: in the summer, when a generally high inlet pressure is guaranteed by a higher PV power

excess, it manages to consistently operate nearly its design point. In contrast, during the winter months,

when the inlet pressure is generally lower, only low displacement values result in high enough rotational

speeds to guarantee a good efficiency; therefore its influence is considerable. In terms of energy coverage,

seasonal disparities are more pronounced. In winter, the most relevant parameter is the installed power,

since it is crucial to install a high power in order to accumulate enough energy to compensate for energy

shortages. In summer, on the other hand, the volume of the air tanks is more relevant, because when there

is plenty of energy available from PV, it is important to choose it correctly to ensure the correct capacity

of the system. Since 𝜇∗ and 𝜎 have the same order of magnitude for all parameters it can be deduced that

there are relevant interaction effects among the variables. This confirms how crucial it is to properly size

the system, considering the mutual relationships between components. Comparing the values that 𝜇∗

and 𝜎 assume for the two outputs a significant average difference can be noticed. This can be explained

by the fact that, within the explored range, the energy coverage exhibits a much higher variation (0.3 ÷
0.9) compared to the one of round-trip efficiency (0.15 ÷ 0.27). The RTE, in fact, depends heavily on

the efficiency of the machines, which is not a parameter that can be chosen during the plant design but

is rather due to technological limits of the machines. Based on the reported results, it was decided to
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exclude the oil mass from the parameters considered in the optimization process. Its effect is not entirely

negligible, but constantly lower than the one of the other parameters for every considered output and

month, therefore it can be excluded to reduce the complexity and duration of the process, assigning to

the mass the lowest value within the study range to minimize the cost without significantly affecting the

performance.

(a) (b)

Figure 6: Sensitivity analysis results in Morris plot: (a) RTE (b) ECP

5.2 Results of the optimization process
This section presents the results of the EGO optimization, while the potential utilization of the surrogate

model developed during the optimization phase is discussed in the subsequent section. The parameter

ensuring the best values for the objective functions are shown in Table 3. It can be seen that a maximum

ECP of 93% can be achieved; higher values could not be achieved, even with increased PV power, since a

small amount of energy, required at very low power, can not be provided, as the expander would need

to operate at a too low rotational speed, for its allowed limits. The optimized RTE value reaches 0.28;

although not particularly high, it is a quite common value when it comes to simple CAES systems and

higher values are generally reached only at the expense of non-conventional components (i.e. isothermal

operating compressor/expander, constant pressure storages) or complicated layouts (i.e. higher number

of compressor/expander stages) (T. Kim et al., 2022; Y. M. Kim et al., 2011). A few considerations

can also be made regarding the optimized parameters values. Obviously, a high installed PV power is

necessary to reach a high energy coverage, as well as a high maximum storage pressure, so to store the

maximum amount of energy. In terms of best RTE, both values significantly drops, so to reduce the

amount of energy that is stored at a pressure higher than 45 bar (i.e. maximum allowed inlet pressure at

the expander) and therefore the energy loss by lamination. Still, it has to be noted that the optimum 𝑃𝑚𝑎𝑥

value is higher than 45bar: storing at slightly higher pressure can be, in fact, beneficial, as a trade-off

between limiting the extent of lamination and letting the expander work at high pressure ratio, where

the maximum isentropic efficiency is achieved. The optimized storage volume value is the maximum

allowable when optimizing energy coverage, as its size is directly linked to the total energy capacity of the

storage. Conversely, a lower value is advantageous for optimizing RTE, as it ensures the machine operates

at an optimal pressure ratio for an extended duration throughout the year. Additional considerations

regarding compressor and expander size will be made in the following analyses. To check the convergence

of the optimization process, the evolution of the expected improvement is plotted on Figure 7, for sake of

brevity henceforth results are analysed only for the RTE optimization process, similar results are obtained

for energy coverage. Figure 7 shows that EI starts from a value above 0.035 and it decreases rapidly to

reach a value below the convergence limit in 41 iterations. The decrease of the EI is associated not only

with a reduction in the probability of finding an improved configuration, but also with a more correct
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prediction of the objective function by the surrogate model. This aspect is illustrated by Figure 8 that

shows the comparison between the value predicted by the surrogate model and the value calculated by the

thermodynamic model for each iteration. These results show that the optimisation process has achieved

adequate convergence and provides a reliable representation of the actual model.

Table 3: Optimal configurations predicted by EGO
𝐶𝑐𝑐 (𝑐𝑚

3) 𝐸𝑥𝑐𝑐 (𝑐𝑚
3) 𝑉 (𝑚3) 𝑃𝑉 (𝑘𝑊) 𝑃𝑚𝑎𝑥 (𝑏𝑎𝑟) 𝑅𝑇𝐸𝑚𝑎𝑥 (−) 𝐸𝐶𝑃𝑚𝑎𝑥 (−)

2833 21 36 88 54 0.28 -

3063 20 50 150 170 - 0.93

Figure 7: Evolution of expected improvement Figure 8: Comparison of predicted and exact
value of RTE

5.3 Use of the surrogate model
An useful characteristics of the adopted procedure is the fact that the surrogate model obtained at the

end of the optimisation can be utilized to preliminary evaluate, without relying on the thermodynamic

model (i.e. with significantly increased speed), the performance of the system in areas of the design

space different from the optimized configurations. To provide examples of possible applications, the

two Kriging models were used in combination to identify the Pareto frontier in the RTE-ECP space, as

shown in Figure 9. The curve allows to estimate the maximum achievable RTE of the system, once a

certain minimum ECP constraint is considered. For some configurations, the corresponding installed

kW value has been reported. The trend shows that moving from left to right along the curve, as the

installed kW increases, the energy coverage increases at the expense of a slight reduction in efficiency.

In this region, the increase in kW corresponds to an increase in volume, resulting in a slight change

in operating pressure levels. Beyond a certain limit, this is no more possible and a significant drop in

the RTE is achieved, to reach the maximum ECP values. Additionally, the Pareto curve can be used to

identify the configuration with the best trade-off between the two objective functions (red circle), defined

as the one that minimizes the distance from the ideal point characterized by the maximum value of both

parameters. This point represents the best system configuration in the absence of other assumptions

that would assign a decision weight to the two parameters. Table 4 shows the parameter values for this

configuration and the performance computed by both the surrogate models and the thermodynamic model

showing that the surrogate predicts the performance with an error lower than 1%. Another application

of the surrogate model is depicted in Figure 10. In this case it is used to evaluate the variation of the

performance parameters, once variation in compressor/expander size is enforced. To provide an effective

representation, the values of the other parameters have been fixed to the optimized values of Table 3;

therefore, the results show the sensitivity to machines choice for configurations aimed at maximizing

either the ECP (i.e. high solar power and storage pressure) or the RTE (i.e. limited solar power and storage
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Figure 9: ECP-RTE Pareto front of the CAES system derived from the surrogate model

(a) (b)

Figure 10: Map of the system performance for varying machines size - RTE (a) and ECP (b)

pressure). Concerning the RTE, the depicted curves allow to identify an area close to the maximum in

which there is minimum efficiency variation (20𝑐𝑚3 < 𝐸𝑥𝑐𝑐 < 30𝑐𝑚3; 2500𝑐𝑚3 < 𝐶𝑐𝑐 < 3500𝑐𝑚3),

this consideration would not have been derived from the EGO results without exploring the design space

more thoroughly. It is dutiful to note that the curves show how the surrogate predicts a maximum for

values slightly different from those obtained at the end of the optimisation process, however, the deviation

of the RTE value is negligible. Generally, the trend shows that a reduction in the displacement of the

expander allows an improvement in efficiency since by reducing its size the expander will operate at a

high rotation speed that is associated to a higher efficiency, especially due to the reduction of leakage

effects, that are of main relevance for this type of expander. The displacement of the compressor is

optimal around 3000 𝑐𝑚3 as a smaller displacement would limit the stored energy (due to maximum

rotational speed limitations) and therefore the pressure that can be reached inside the pressure vessels,

causing the compressor to operate at sub-optimal pressure ratio. Concerning energy coverage, reducing

the displacements compromises the performance as it won’t be possible to accumulate all the necessary

energy, while increasing them too much would result in working at low rotational speeds associated

with sub-optimal efficiency. The surrogate model thus proves to be a suitable tool for quick preliminary

evaluations, beneficial for industrial applications where, following optimisation, one wishes to evaluate

the sensitivity of the system performance to the parameters choice, e.g. to estimate the performance that

could be achieved by using components available on the market.

Table 4: Optimal trade-off configuration predicted on Pareto front
𝐶𝑐𝑐 𝐸𝑥𝑐𝑐 𝑉 𝑃𝑉 𝑃𝑚𝑎𝑥 𝑅𝑇𝐸𝑠𝑢𝑟𝑟 𝐸𝐶𝑃𝑠𝑢𝑟𝑟 𝑅𝑇𝐸𝑡𝑚 𝐸𝐶𝑃𝑡𝑚

3361𝑐𝑚3 15𝑐𝑚3 37𝑚3 147kW 83bar 92.2% 27.3% 91.6% 27.3%
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6 CONCLUSIONS

This article presents an approach to modelling and optimising a micro-scale CAES system. A thermo-

dynamic model was developed using the open-source software OpenModelica to accurately represent

its off-design performance. The model was used to simulate the operation of the system in an off-grid

configuration, connected to a PV source and domestic users, for a full year. The model was coupled with

an external tool to perform both sensitivity analysis and optimisation. The sensitivity analysis highlighted

the significant impact of parameters such as compressor displacement and installed power on system

performance, while also revealing seasonal variations in parameter influence. It also identified thermal oil

mass as the less influential parameter, leading to its exclusion from the subsequent optimisation process.

The optimisation process, based on the EGO methodology, efficiently identifies optimal configurations

that maximise round-trip efficiency (RTE) or energy coverage (ECP) by using a surrogate that is iter-

atively updated with the output from the thermodynamic model. The optimisation process converges

to optimal solutions within a reasonable computational time and ensures an accurate representation of

the thermodynamic model. In addition, the study discusses the potential post-optimisation use of the

surrogate model, allowing rapid evaluation of system performance across the design space. The developed

procedure thus showed good application potential and could be used in further work to study the influence

of design parameters on other objective functions, e.g. the levelized cost of electricity (LCOE).

NOMENCLATURE

Latin Symbols
𝐸 Energy (J)

𝑐𝑐 displacement (m3)

𝑐𝑝 Constant pressure heat capacity (J/kgK)

ℎ Enthalpy (J)

𝐼 Irradiance (kW/m2)

𝑘𝑊𝑝 Installed photovoltaic peak power (kW)

�𝑚 Mass flow rate (kg/s)

𝑛 Rotational speed (rpm)

𝑅 Specific gas constant (J/kgK)

𝑇 Temperature (°C)
𝑈 Internal energy (J)

𝑈𝐴 Global heat transfer coefficient (W/K)

𝑤 Specific work (J/kg)

Greek Symbols
𝛽 Pressure ratio (-)

𝛽max Optimal pressure ratio (-)

𝛽0 Pressure ratio for which isentropic

efficiency is zero (-)

𝜂𝑃𝑉 Photovoltaic system efficiency (-)

𝛾 Heat capacity ratio (-)

𝛿 Isentropic efficiency slope where

isentropic efficiency is zero (-)

𝜉 Shape factor for efficiency curve (-)

Superscripts and Subscripts
0 Initial condition

amb Ambient

c Cold side

h Hot side

i i-stage

in Inlet

is Isentropic

out Outlet

surr Predicted by the surrogate

tm Computed by the thermodynamic model

vol Volumetric
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