2024 IEEE Symposium on Security and Privacy (SP 2024)

San Francisco, California, USA 20-23 May 2024

Pages 1-696

IEEE Catalog Number: CFP24020-POD **ISBN:**

979-8-3503-3131-8

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24020-POD
ISBN (Print-On-Demand):	979-8-3503-3131-8
ISBN (Online):	979-8-3503-3130-1
ISSN:	1081-6011

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE Symposium on Security and Privacy (SP) **SP 2024**

Table of Contents

Message from the General Chair	xl
Message from the Program Chairs	xliii
Organizing Committee	xlv
External Reviewers	xlvii

Track 1 - Session 1: Scams and Phishing

On SMS Phishing Tactics and Infrastructure	
Conning the Crypto Conman: End-to-End Analysis of Cryptocurrency-based Technical Support	
Scams	7
Bhupendra Acharya (CISPA Helmholtz Center for Information Security),	
Muhammad Saad (PayPal Inc.), Antonio Emanuele Cinà (Università di	
Genova), Lea Schönherr (CISPA Helmholtz Center for Information	
Security), Hoang Dai Nguyen (Louisiana State University), Adam Oest	
(PayPal Inc.), Phani Vadrevu (Louisiana State University), and	
Thorsten Holz (CISPA Helmholtz Center for Information Security)	
From Chatbots to Phishbots?: Phishing Scam Generation in Commercial Large Language Models 36	,
Sayak Saha Roy (University of Texas at Arlington, USA), Poojitha Thota	
(University of Texas at Arlington, USA), Krishna Vamsi Naragam	
(University of Texas at Arlington, USA), and Shirin Nilizadeh	

(University of Texas at Arlington, USA)

Track 2 - Session 1: Deep Fakes

A Representative Study on Human Detection of Artificially Generated Media Across Countries......55 Joel Frank (Ruhr-Universität Bochum), Franziska Herbert (Ruhr-Universität Bochum), Jonas Ricker (Ruhr-Universität Bochum), Lea Schönherr (CISPA Helmholtz Center for Information Security), Thorsten Eisenhofer (TU Berlin), Asja Fischer (Ruhr-Universität Bochum), Markus Dürmuth (Leibniz Universität Hannover), and Thorsten Holz (CISPA Helmholtz Center for Information Security)

AVA: Inconspicuous Attribute Variation-based Adversarial Attack bypassing DeepFake
Detection
Xiangtao Meng (Shandong University, China), Li Wang (Shandong
University, China), Shanqing Guo (Shandong University, China), Lei Ju
(Shandong University, China), and Qingchuan Zhao (City University of
Hong Kong, China)
 An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape 9 Sifat Muhammad Abdullah (Virginia Tech, USA), Aravind Cheruvu (Virginia Tech, USA), Shravya Kanchi (Virginia Tech, USA), Taejoong Chung (Virginia Tech, USA), Peng Gao (Virginia Tech, USA), Murtuza Jadliwala (UT San Antonio, USA), and Bimal Viswanath (Virginia Tech, USA)

Track 3 - Session 1: Privacy for Datasets

DP-Auditorium: A Large Scale Library for Auditing Differential Privacy William Kong (Google), Andres Muñoz Medina (Google), Monica Ribero (Google), and Umar Syed (Google)	. 110
Time-Aware Projections: Truly Node-Private Graph Statistics under Continual Observation Connor Wagaman (Boston University), Palak Jain (Boston University), and Adam Smith (Boston University)	127
Synq: Public Policy Analytics Over Encrypted Data Zachary Espiritu (MongoDB Research), Marilyn George (MongoDB Research), Seny Kamara (MongoDB Research and Brown University), and Lucy Qin (Brown University)	146

Track 1 - Session 2: Web Security

The Great Request Robbery: An Empirical Study of Client-side Request Hijacking Vulnerabilities on the Web Soheil Khodayari (CISPA Helmholtz Center for Information Security), Thomas Barber (SAP Security Research), and Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)	166
Break the Wall from bottom: Automated Discovery of Protocol-Level Evasion Vulnerabilities	405
in Web Application Firewalls	. 185
Qi Wang (Tsinghua University, China), Jianjun Chen (Tsinghua	
University and Zhongguancun Laboratory, China), Zheyu Jiang (Tsinghua	
University, China), Run Guo (Tsinghua University, China), Ximeng Liu	
(Fuzhou University, China), Chao Zhang (Tsinghua University and	
Zhongguancun Laboratory, China), and Haixin Duan (Tsinghua University and Zhongguancun Laboratory, China)	
Parse Me, Baby, One More Time: Bypassing HTML Sanitizer via Parsing Differentials David Klein (Technische Universität Braunschweig) and Martin Johns	. 203
(Technische Universität Braunschweig)	

Holistic Concolic Execution for Dyna	amic Web Applications via Symbolic Interpreter Analysis 222
Penghui Li (Zhongguancun Laborat	ory, China), Wei Meng (The Chinese
University of Hong Kong, China), N	Iingxue Zhang (Zhejiang University,
China), Chenlin Wang (The Chinese	University of Hong Kong, China), and
Changhua Luo (The Chinese Univer	sity of Hong Kong, China)

Where URLs Become Weapons: Automated Discovery of SSRF Vulnerabilities in Web Applications..... 239

Enze Wang (National University of Defense Technology & Tsinghua University, China), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory, China), Wei Xie (National University of Defense Technology, China), Chuhan Wang (Tsinghua University, China), Yifei Gao (National University of Defense Technology, China), Zhenhua Wang (National University of Defense Technology, China), Haixin Duan (Tsinghua University & Zhongguancun Laboratory, China), Yang Liu (Nanyang Technological University, Singapore), and Baosheng Wang (National University of Defense Technology)	
SINBAD: Saliency-informed detection of breakage caused by ad blocking	:58
C-FRAME: Characterizing and measuring in-the-wild CAPTCHA attacks	:77
 JASMINE: Scale up JavaScript Static Security Analysis with Computation-based Semantic Explanation	296

Track 2 - Session 2: Security in the Real World

A Tale of Two Industroyers: It was the Season of Darkness	. 312
Luis Salazar (University of California, Santa Cruz), Sebastian Castro	
(University of California, Santa Cruz), Juan Lozano (University of	
California, Santa Cruz), Keerthi Koneru (University of California,	
Santa Cruz), Emmanuele Zambon (Einanoven University of Technology), Ding Hugun (The Huginggrift, of Tenes et Angelin), Doog Deldick (The	
Ding Huung (The University of Texus at Austin), Ross Dalaick (The University of Texas at Austin) Marina Krotofil (Information Systems	
Security Partners) Alonso Rojas (Axon Group) and Alvaro Cardenas	
(University of California, Santa Cruz)	
AquaSonic: Acoustic Manipulation of Underwater Data Center Operations and Resource	
Management	331
Jennifer Sheldon (University of Florida), Weidong Zhu (University of	
Florida), Adnan Abdullah (University of Florida), Sri Hrushikesh Varma	
Bhupathiraju (University of Florida), Takeshi Sugawara (The University	
of Electro-Communications), Kevin Butler (University of Florida),	
Jahidul Islam (University of Florida), and Sara Rampazzi (University	
of Florida)	

"Watching over the shoulder of a professional": Why hackers make mistakes and how they fix them	0
Irina Ford (Arizona State University), Ananta Soneji (asoneji@asu.edu), Faris Bugra Kokulu (Arizona State University), Jayakrishna Vadayath (Arizona State University), Zion Leonahenahe Basque (Arizona State University), Gaurav Vipat (Arizona State University), Adam Doupe (Arizona State University), Ruoyu Wang (Arizona State University), Gail-Joon Ahn (Arizona State University), Tiffany Bao (Arizona State University), and Yan Shoshitaishvili (Arizona State University)	
 A Picture is Worth 500 Labels: A Case Study of Demographic Disparities in Local Machine Learning Models for Instagram and TikTok	9
MAWSEO: Adversarial Wiki Search Poisoning for Illicit Online Promotion	8
 Poisoning Web-Scale Training Datasets is Practical	7
Don't Shoot the Messenger: Localization Prevention of Satellite Internet Users	6
 The Dark Side of Scale: Insecurity of Direct-to-Cell Satellite Mega-Constellations	5

Track 3 - Session 2: Crypto with Others

 GAuV: A Graph-Based Automated Verification Framework for Perfect Semi-Honest Security of Multiparty Computation Protocols	84
Don't Eject the Impostor: Fast Three-Party Computation With a Known Cheater	03
Scalable Mixed-Mode MPC	23
Asterisk: Super-fast MPC with a Friend	42
Efficient Actively Secure DPF and RAM-based 2PC with One-Bit Leakage	61
 MPC-in-the-Head Framework without Repetition and its Applications to the Lattice-based Cryptography	78
Orca: FSS-based Secure Training and Inference with GPUs	97

Track 1 - Session 3: Humans

 Security, Privacy, and Data-sharing Trade-offs When Moving to the United States: Insights from a Qualitative Study Mindy Tran (Paderborn University, The George Washington University), Collins W. Munyendo (The George Washington University), Harshini Sri Ramulu (Paderborn University, The George Washington University), Rachel Gonzalez Rodriguez (The George Washington University), Luisa Ball Schnell (The George Washington University), Cora Sula (The George Washington University), and Yasemin Acar (Paderborn University, The George Washington University), University) 	617
 SoK: Safer Digital-Safety Research Involving At-Risk Users	635
Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution Kasra EdalatNejad (EPFL, Switzerland), Wouter Lueks (CISPA Helmholtz Center for Information Security, Germany), Justinas Sukaitis (International Committee of the Red Cross, Switzerland), Vincent Graf Narbel (International Committee of the Red Cross, Switzerland), Massimo Marelli (International Committee of the Red Cross, Switzerland), and Carmela Troncoso (EPFL, Switzerland)	655
SoK: Technical Implementation and Human Impact of Internet Privacy Regulations Eleanor Birrell (Pomona College), Jay Rodolitz (Northeastern University), Angel Ding (Wellesley College), Jenna Lee (University of Washington), Emily McReynolds (Future of Privacy Forum), Jevan Hutson (Hintze Law PLLC), and Ada Lerner (Northeastern University)	673
Digital Security — A Question of Perspective. A Large-Scale Telephone Survey with Four At-Risk User Groups Franziska Herbert (Ruhr University Bochum, Germany), Steffen Becker (Ruhr University Bochum, Germany; Max Planck Institute for Security and Privacy, Germany), Annalina Buckmann (Ruhr University Bochum, Germany), Marvin Kowalewski (Ruhr University Bochum, Germany), Jonas Hielscher (Ruhr University Bochum, Germany), Yasemin Acar (Paderborn University, Germany), Markus Dürmuth (Hannover University, Germany), Yixin Zou (Max Planck Institute for Security and Privacy, Germany), and M. Angela Sasse (Ruhr University Bochum, Germany)	697
No Easy Way Out: the Effectiveness of Deplatforming an Extremist Forum to Suppress Hate and Harassment	717

Withdrawing is believing? Detecting Inconsistencies Between Withdrawal Choices and	
Third-party Data Collections in Mobile Apps	735
Xiaolin Du (Fudan University), Zhemin Yang (Fudan University), Jiapeng	
Lin (Fudan University), Yinzhi Cao (Johns Hopkins University), and Min	
Yang (Fudan University)	
The Role of User-Agent Interactions on Mobile Money Practices in Kenya and Tanzania	752
Karen Sowon (Carnegie Mellon University), Edith Luhanga (Carnegie	
Mellon University-Africa), Lorrie Faith Cranor (Carnegie Mellon	
University), Giulia Fanti (Carnegie Mellon University), Conrad Tucker	
(Carnegie Mellon University), and Assane Gueye (Carnegie Mellon	
University-Africa)	

Track 2 - Session 3: LLMs and Security

You Only Prompt Once: On the Capabilities of Prompt Learning on Large Language Models to Tackle Toxic Content	'70
Moderating New Waves of Online Hate with Chain-of-Thought Reasoning in Large Language Models	'88
Nishant Vishwamitra (University of Texas at San Antonio, USA), Keyan Guo (University at Buffalo, USA), Farhan Tajwar Romit (University of Texas at San Antonio, USA), Isabelle Ondracek (University at Buffalo, USA), Long Cheng (Clemson University, USA), Ziming Zhao (University at Buffalo, USA), and Hongxin Hu (University at Buffalo, USA)	
Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models	07
On Large Language Models' Resilience to Coercive Interrogation	26
PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification	45
LLMs Cannot Reliably Identify and Reason About Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks	62

LLMIF: Augmented Large Language Model for Fuzzing IoT Devices	
Jincheng Wang (The Hong Kong Polytechnic University, China), Le Yu (
Nanjing University of Posts and Telecommunications, China), and Xiapu	
Luo (The Hong Kong Polytechnic University, China)	
SneakyPrompt: Jailbreaking Text-to-image Generative Models	897
SneakyPrompt: Jailbreaking Text-to-image Generative Models Yuchen Yang (Johns Hopkins University), Bo Hui (Johns Hopkins	
SneakyPrompt: Jailbreaking Text-to-image Generative Models Yuchen Yang (Johns Hopkins University), Bo Hui (Johns Hopkins University), Haolin Yuan (Johns Hopkins University), Neil Gong (Duke	897

Track 3 - Session 3: Differential Privacy

Eureka: A General Framework for Black-box Differential Privacy Estimators Yun Lu (University of Victoria), Malik Magdon-Ismail (Rensselaer Polytechnic Institute), Yu Wei (Purdue University), and Vassilis Zikas (Purdue University)	913
Casual Users and Rational Choices within Differential Privacy Narges Ashena (University of Zurich), Oana Inel (University of Zurich), Badrie L. Persaud (University of Zurich), and Abraham Bernstein (University of Zurich)	. 932
Lower Bounds for Rényi Differential Privacy in a Black-Box Setting Tim Kutta (Ruhr-University Bochum), Önder Askin (Ruhr-University Bochum), and Martin Dunsche (Ruhr-University Bochum)	. 951
Bounded and Unbiased Composite Differential Privacy Kai Zhang (Swinburne University of Technology), Yanjun Zhang (University of Technology Sydney and CSIRO's Data61), Ruoxi Sun (CSIRO's Data61), Pei-Wei Tsai (Swinburne University of Technology), Muneeb Ul Hassan (Deakin University), Xin Yuan (CSIRO's Data61), Minhui Xue (CSIRO's Data61), and Jinjun Chen (Swinburne University of Technology)	.972
Cohere: Managing Differential Privacy in Large Scale Systems Nicolas Küchler (ETH Zurich, Switzerland), Emanuel Opel (ETH Zurich, Switzerland), Hidde Lycklama (ETH Zurich, Switzerland), Alexander Viand (Intel Labs, Switzerland), and Anwar Hithnawi (ETH Zurich, Switzerland)	. 991
DPI: Ensuring Strict Differential Privacy for Infinite Data Streaming Shuya Feng (University of Connecticut, USA), Meisam Mohammady (Iowa State University, USA), Han Wang (University of Kansas, USA), Xiaochen Li (Zhejiang University, China), Zhan Qin (Zhejiang University, China), and Yuan Hong (University of Connecticut, USA)	1009
Budget Recycling Differential Privacy Bo Jiang (TikTok Inc.), Jian Du (Tiktok Inc.), Sagar Sharma (TikTok Inc), and Qiang Yan (TikTok Inc.)	1028

Measure-Observe-Remeasure: An Interactive Paradigm for Differentially-Private Exploratory	
Analysis	. 1047
Priyanka Nanayakkara (Northwestern University, USA), Hyeok Kim	
(Northwestern University, USA), Yifan Wu (Northwestern University,	
USA), Ali Sarvghad (University of Massachusetts Amherst, USA), Narges	
Mahyar (University of Massachusetts Amherst, USA), Gerome Miklau	
(University of Massachusetts Amherst, USA), and Jessica Hullman	
(Northwestern University, USA)	

Track 1 - Session 4: Software Supply Chain

 Everyone for Themselves? A Qualitative Study about Individual Security Setups of Open Source Software Contributors
Measuring the Effects of Stack Overflow Code Snippet Evolution on Open-Source Software Security 1083 Alfusainey Jallow (CISPA Helmholtz Center for Information Security, Germany), Michael Schilling (CISPA Helmholtz Center for Information Security, Germany), Michael Backes (CISPA Helmholtz Center for Information Security, Germany), and Sven Bugiel (CISPA Helmholtz Center for Information Security, Germany)
 Shedding Light on CVSS Scoring Inconsistencies: A User-Centric Study on Evaluating Widespread Security Vulnerabilities
 TROJANPUZZLE: Covertly Poisoning Code-Suggestion Models
Poisoned ChatGPT Finds Work for Idle Hands: Exploring Developers' Coding Practices with Insecure Suggestions from Poisoned AI Models

 Signing in Four Public Software Package Registries: Quantity, Quality, and Influencing Factors
More Haste, Less Speed: Cache Related Security Threats in Continuous Integration Services 1179 Yacong Gu (Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS, China), Lingyun Ying (QI-ANXIN Technology Research Institute; Tsinghua University-QI-ANXIN Group JCNS, China), Huajun Chai (QI-ANXIN Technology Research Institute, China), Yingyuan Pu (QI-ANXIN Technology Research Institute, China), Haixin Duan (BNRist & Institute for Network Science and Cyberspace, Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS, China), and Xing Gao (University of Delaware, USA)
Patchy Performance? Uncovering the Vulnerability Management Practices of IoT-Centric Vendors

Track 2 - Session 4: ML Attacks

Need for Speed: Taming Backdoor Attacks with Speed and Precision Zhuo Ma (Xidian University), Yilong Yang (Xidian University), Yang Liu (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), and Zhan Qin (Zhejiang University)	1217
Multi-instance Adversarial Attack on GNN-Based Malicious Domain Detection	1236
Dropout Attacks Andrew Yuan (Northeastern University, USA), Alina Oprea (Northeastern University, USA), and Cheng Tan (Northeastern University, USA)	1255
BounceAttack: A Query-Efficient Decision-based Adversarial Attack by Bouncing into the Wild Jie Wan (Zhejiang University), Jianhao Fu (Zhejiang University), Lijin Wang (Zhejiang University), and Ziqi Yang (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center)	1270

 LOKI: Large-scale Data Reconstruction Attack against Federated Learning through Model Manipulation
Test-Time Poisoning Attacks Against Test-Time Adaptation Models
Attacking Byzantine Robust Aggregation in High Dimensions
CaFA: Cost-aware, Feasible Attacks With Database Constraints Against Neural Tabular Classifiers

Track 3 - Session 4: Passwords and Authentication

Universal Neural-Cracking-Machines: Self-Configurable Password Models from Auxiliary Data 136 Dario Pasquini (SPRING Lab; EPFL, Switzerland), Giuseppe Ateniese (George Mason University), and Carmela Troncoso (SPRING Lab; EPFL, Switzerland)	55
PassREfinder: Credential Stuffing Risk Prediction by Representing Password Reuse between Websites on a Graph	35
Jaehan Kim (Korea Advanced Institute of Science and Technology (KAIST), Korea), Minkyoo Song (Korea Advanced Institute of Science and Technology (KAIST), Korea), Minjae Seo (Korea Advanced Institute of Science and Technology (KAIST), Korea), Youngjin Jin (Korea Advanced Institute of Science and Technology (KAIST), Korea), and Seungwon Shin (Korea Advanced Institute of Science and Technology (KAIST), Korea)	
Breach Extraction Attacks: Exposing and Addressing the Leakage in Second Generation Compromised Credential Checking Services)5
A Security Analysis of Honey Vaults	24

Combing for Credentials: Active Pattern Extraction from Smart Reply
ARMOR: A Formally Verified Implementation of X.509 Certificate Chain Validation
DY Fuzzing: Formal Dolev-Yao Models Meet Cryptographic Protocol Fuzz Testing
To Auth or Not To Auth? A Comparative Analysis of the Pre- and Post-Login Security Landscape

Track 1 - Session 5: Being Secure Online

 Targeted and Troublesome: Tracking and Advertising on Children's Websites
Children, Parents, and Misinformation on Social Media
Understanding Parents' Perceptions and Practices Toward Children's Security and Privacy in Virtual Reality
The Times They Are A-Changin': Characterizing Post-Publication Changes to Online News 1573 Chris Tsoukaladelis (Stony Brook University, USA), Brian Kondracki (Stony Brook University, USA), Niranjan Balasubramanian (Stony Brook University, USA), and Nick Nikiforakis (Stony Brook University, USA)

The Inventory is Dark and Full of Misinformation: Understanding Ad Inventory Pooling in	
the Ad-Tech Supply Chain1	1590
Yash Vekaria (University of California, Davis), Rishab Nithyanand	
(University of Iowa), and Zubair Shafiq (University of California,	
Davis)	
Specious Sites: Tracking the Spread and Sway of Spurious News Stories at Scale	1609
Hans Hanley (Stanford University), Deepak Kumar (Stanford University),	

and Zakir Durumeric (Stanford University)

Track 2 - Session 5: ML Security for Audio and Video

 ALIF: Low-Cost Adversarial Audio Attacks on Black-Box Speech Platforms using Linguistic Features
FlowMur: A Stealthy and Practical Audio Backdoor Attack with Limited Knowledge
 Understanding and Benchmarking the Commonality of Adversarial Examples
 Scores Tell Everything about Bob: Non-adaptive Face Reconstruction on Face Recognition Systems

ODSCAN: Backdoor Scanning for Object Detection Models
Siyuan Cheng (Purdue University, USA), Guangyu Shen (Purdue
University, USA), Guanhong Tao (Purdue University, USA), Kaiyuan Zhang
(Purdue University, USA), Zhuo Zhang (Purdue University, USA),
Shengwei An (Purdue University, USA), Xiangzhe Xu (Purdue University,
USA), Yingqi Liu (Microsoft, USA), Shiqing Ma (University of
Massachusetts, Amherst, USA), and Xiangyu Zhang (Purdue University,
USA)
Transferable Multimodal Attack on Vision-Language Pre-training Models
Haodi Wang (Southeast University), Kai Dong (Southeast University),
Zhilei Zhu (Data Space Research Institute of Hefei Comprehensive
National Science Centre), Haotong Qin (Beihang University), Aishan Liu
(Beihang University), Xiaolin Fang (Southeast University), Jiakai Wang
(Zhongguancun Laboratory), and Xianglong Liu (Beihang University)

Track 3 - Session 5: Zero Knowledge

 Certifying Zero-Knowledge Circuits with Refinement Types	1
Ligetron: Lightweight Scalable End-to-End Zero-Knowledge Proofs. Post-Quantum ZK-SNARKs on a Browser	50
 Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs	7
Scalable Verification of Zero-Knowledge Protocols	94
Efficient Zero-Knowledge Arguments For Paillier Cryptosystem	.3
SwiftRange: A Short and Efficient Zero-Knowledge Range Argument For Confidential Transactions and More	32

Track 1 - Session 6: Fuzzing

Titan: Efficient Multi-target Directed Greybox Fuzzing
BENZENE: A Practical Root Cause Analysis System with an Under-Constrained State Mutation 1865 Younggi Park (Korea University, Korea), Hwiwon Lee (Korea University, Korea), Jinho Jung (Ministry of National Defense, Korea), Hyungjoon Koo (Sungkyunkwan University, Korea), and Huy Kang Kim (Korea University, Korea)
Predecessor-aware Directed Greybox Fuzzing
 AFGen: Whole-Function Fuzzing for Applications and Libraries
LABRADOR: Response Guided Directed Fuzzing for Black-box IoT Devices
Chronos: Finding Timeout Bugs in Practical Distributed Systems by Deep-Priority Fuzzing with Transient Delay
 Everything is Good for Something: Counterexample-Guided Directed Fuzzing via Likely Invariant Inference

SoK: Prudent Evaluation Practices for Fuzzing	
Moritz Schloegel (CISPA Helmholtz Center for Information Security),	
Nils Bars (CISPA Helmholtz Center for Information Security), Nico	
Schiller (CISPA Helmholtz Center for Information Security), Lukas	
Bernhard (CISPA Helmholtz Center for Information Security), Tobias	
Scharnowski (CISPA Helmholtz Center for Information Security), Addison	
Crump (CISPA Helmholtz Center for Information Security), Arash	
Ale-Ebrahim (CISPA Helmholtz Center for Information Security), Nicolai	
Bissantz (Ruhr University Bochum), Marius Muench (University of	
Birmingham), and Thorsten Holz (CISPA Helmholtz Center for Information	
Security)	

Track 2 - Session 6: ML Backdoors

 MM-BD: Post-Training Detection of Backdoor Attacks with Arbitrary Backdoor Pattern Types Using a Maximum Margin Statistic
BadVFL: Backdoor Attacks in Vertical Federated Learning
Distribution Preserving Backdoor Attack in Self-supervised Learning
Robust Backdoor Detection for Deep Learning via Topological Evolution Dynamics
DeepVenom: Persistent DNN Backdoors Exploiting Transient Weight Perturbations in Memories 2067

Kunbei Cai (University of Central Florida, USA), Md Hafizul Islam Chowdhuryy (University of Central Florida, USA), Zhenkai Zhang (Clemson University, USA), and Fan Yao (University of Central Florida, USA)

 BAFFLE: Hiding Backdoors in Offline Reinforcement Learning Datasets
 Exploring the Orthogonality and Linearity of Backdoor Attacks
 BELT: Old-School Backdoor Attacks can Evade the State-of-the-Art Defense with Backdoor Exclusivity Lifting

University, China), and Min Yang (Fudan University, China)

Track 3 - Session 6: Blockchain I

Formal Model-Driven Analysis of Resilience of GossipSub to Attacks from Misbehaving Peers 2142 Ankit Kumar (Northeastern University), Max von Hippel (Northeastern University), Panagiotis Manolios (Northeastern University), and Cristina Nita-Rotaru (Northeastern University)

NURGLE: Exacerbating Resource Consumption in Blockchain State Storage via MPT Manipulation..... 2180

Zheyuan He (University of Electronic Science and Technology of China, China), Zihao Li (The Hong Kong Polytechnic University, China), Ao Qiao (University of Electronic Science and Technology of China, China), Xiapu Luo (The Hong Kong Polytechnic University, China), Xiaosong Zhang (University of Electronic Science and Technology of China, China), Ting Chen (University of Electronic Science and Technology of China, China), Shuwei Song (University of Electronic Science and Technology of China, China), Dijun Liu (Ant Group), and Weina Niu (University of Electronic Science and Technology of China, China)

Nyx: Detecting Exploitable Front-Running Vulnerabilities in Smart Contracts
SMARTINV: Multimodal Learning for Smart Contract Invariant Inference
 Pulling Off The Mask: Forensic Analysis of the Deceptive Creator Wallets Behind Smart Contract Fraud
Towards Smart Contract Fuzzing on GPU2255Weimin Chen (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), and Haoyu Wang (Huazhong University of Science and Technology)
Large-Scale Study of Vulnerability Scanners for Ethereum Smart Contracts

Track 1 - Session 7: IoT Security

 Who Left the Door Open? Investigating the Causes of Exposed IoT Devices in an Academic 229 Takayuki Sasaki (Yokohama National University), Takaya Noma (Yokohama National University), Yudai Morii (Yokohama National University), Toshiya Shimura (Yokohama National University), Michel van Eeten (TU Delft/Yokohama National University), Katsunari Yoshioka (Yokohama National University), and Tsutomu Matsumoto (Yokohama National University) 	₹
 SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices	10

A Systematic Study of Physical Sensor Attack Hardness	.8
 Revisiting Automotive Attack Surfaces: a Practitioners' Perspective	.8
 From Virtual Touch to Tesla Command: Unlocking Unauthenticated Control Chains From Smart Glasses for Vehicle Takeover	16
MQTTactic: Security Analysis and Verification for Logic Flaws in MQTT Implementations	5
 Wear's my Data? Understanding the Cross-Device Runtime Permission Model in Wearables 240 Doguhan Yeke (Purdue University, USA), Muhammad Ibrahim (Purdue University, USA), Güliz Seray Tuncay (Google, USA), Habiba Farrukh (University of California Irvine, USA), Abdullah Imran (Purdue University, USA), Antonio Bianchi (Purdue University, USA), and Z. Berkay Celik (Purdue University, USA) 	4
 Video-Based Cryptanalysis: Extracting Cryptographic Keys from Video Footage of a Device's Power LED Captured by Standard Video Cameras	2

Track 2 - Session 7: ML Defenses I

SoK: Explainable Machine Learning in Adversarial Environments	41
GrOVe: Ownership Verification of Graph Neural Networks using Embeddings	160
Revisiting Black-box Ownership Verification for Graph Neural Networks	178
CoreLocker: Neuron-level Usage Control	197
 MEA-Defender: A Robust Watermark against Model Extraction Attack	;15
 Securing Graph Neural Networks in MLaaS: A Comprehensive Realisation of Query-based Integrity Verification	534
Australia), Minhui Xue (CSIRO's Data61, Australia), and Guangdong Bai (The University of Queensland, Australia) MEA-Defender: A Robust Watermark against Model Extraction Attack 25 Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese 25 Academy of Sciences, China), Hualong Ma (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China; School of Cyber Security, University of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shengzhi Zhang (Department of Computer Science, Metropolitan College, Boston University USA), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Aca	515 534

 SOPHON: Non-Fine-Tunable Learning to Restrain Task Transferability For Pre-trained Models 2553 Jiangyi Deng (Zhejiang University, China), Shengyuan Pang (Zhejiang University, China), Yanjiao Chen (Zhejiang University, China), Liangming Xia (Zhejiang University, China), Yijie Bai (Zhejiang University, China), Haiqin Weng (Ant Group, China), and Wenyuan Xu (Zhejiang University, China)
 FLShield: A Validation Based Federated Learning Framework to Defend Against Poisoning Attacks
Track 3 - Session 7: Crypto for Messaging and Storage
Secure Messaging with Strong Compromise Resilience, Temporal Privacy, and Immediate Decryption
 Private Hierarchical Governance for Encrypted Messaging
Enforcing End-to-End Security for Remote Conferencing
Injection Attacks Against End-to-End Encrypted Applications
Device-Oriented Group Messaging: A Formal Cryptographic Analysis of Matrix' Core
Multi-stage Group Key Distribution and PAKEs: Securing Zoom Groups against Malicious Servers without New Security Elements 2686 Cas Cremers (CISPA Helmholtz Center for Information Security, 2686 Germany), Eyal Ronen (Tel Aviv University, Israel), and Mang Zhao (CISPA Helmholtz Center for Information Security, Germany)
Holepunch: Fast, Secure File Deletion with Crash Consistency

INVISILINE: Invisible Plausibly-Deniable Storage	. 2722
Sandeep Kiran Pinjala (Stony Brook University), Bogdan Carbunar	
(Florida International University), Anrin Chakraborti (University of	
Illinois Chicago), and Radu Sion (Stony Brook University)	

Track 1 - Session 8: Wireless Security and Privacy

Guessing on Dominant Paths: Understanding the Limitation of Wireless Authentication Using Channel State Information
MetaFly: Wireless Backhaul Interception via Aerial Wavefront Manipulation
 NFCEraser: A Security Threat of NFC Message Modification Caused by Quartz Crystal Oscillator
Secure Ranging with IEEE 802.15.4z HRP UWB
mimoCrypt: Multi-User Privacy-Preserving Wi-Fi Sensing via MIMO Encryption
Surveilling the Masses with Wi-Fi-Based Positioning Systems

SoK: The Long Journey of Exploiting and Defending the Legacy of King Harald Bluetooth	347
Jianliang Wu (Purdue University & Simon Fraser University), Ruoyu Wu	
(Purdue University), Dongyan Xu (Purdue University), Dave Tian (Purdue	
University), and Antonio Bianchi (Purdue University)	
Practical Obfuscation of BLE Physical-Layer Fingerprints on Mobile Devices	367
Practical Obfuscation of BLE Physical-Layer Fingerprints on Mobile Devices	367
Practical Obfuscation of BLE Physical-Layer Fingerprints on Mobile Devices	367

Track 2 - Session 8: ML Defenses II

It's Simplex! Disaggregating Measures to Improve Certified Robustness	6
Sabre: Cutting through Adversarial Noise with Adaptive Spectral Filtering and Input Reconstruction 290 Alec F. Diallo (The University of Edinburgh, UK) and Paul Patras (The University of Edinburgh, UK)	1
 Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks 2924 Xinyu Zhang (Zhejiang University, China; University of Connecticut, USA), Hanbin Hong (University of Connecticut, USA), Yuan Hong (University of Connecticut, USA), Peng Huang (Zhejiang University, China), Binghui Wang (Illinois Institute of Technology, USA), Zhongjie Ba (Zhejiang University, China), and Kui Ren (Zhejiang University, China) 	0
FCert: Certifiably Robust Few-Shot Classification in the Era of Foundation Models	9
Node-aware Bi-smoothing: Certified Robustness against Graph Injection Attacks	8
LACMUS: Latent Concept Masking for General Robustness Enhancement of DNNs	7
SoK: Unintended Interactions among Machine Learning Defenses and Risks	6

Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples	
Ziqi Zhou (Huazhong University of Science and Technology), Minghui Li	
(Huazhong University of Science and Technology), Wei Liu (Huazhong	
University of Science and Technology), Shengshan Hu (Huazhong	
University of Science and Technology), Yechao Zhang (Huazhong	
University of Science and Technology), Wei Wan (Huazhong University of	
Science and Technology), Lulu Xue (Huazhong University of Science and	
Technology), Leo Yu Zhang (Griffith University), Dezhong Yao	
(Huazhong University of Science and Technology), and Hai Jin (Huazhong	
University of Science and Technology)	

Track 3 - Session 8: Crypto

hinTS: Threshold Signatures with Silent Setup	4
Threshold ECDSA in Three Rounds 305 Jack Doerner (Technion, Israel; Reichman University, Israel; Brown 305 University, USA), Yashvanth Kondi (Silence Laboratories (Deel), USA), Eysa Lee (Brown University, USA), and abhi shelat (Northeastern University, USA) University, USA)	3
Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs	2
 Hyena: Balancing Packing, Reuse, and Rotations for Encrypted Inference	1
 Make Revocation Cheaper: Hardware-Based Revocable Attribute-Based Encryption	19
SoK: Efficient Design and Implementation of Polynomial Hash Functions over Prime Fields	8
 Springproofs: Efficient Inner Product Arguments for Vectors of Arbitrary Length	7

CryptoVampire: Automated Reasoning for the Complete Symbolic Attacker Cryptographic Model 3165

Simon Jeanteur (TU Wien), Laura Kovács (TU Wien), Matteo Maffei (TU Wien), and Michael Rawson (TU Wien)

Track 1 - Session 9: Applications of Privacy

Nebula: A Privacy-First Platform for Data Backhaul
Pudding: Private User Discovery in Anonymity Networks
Attacking and Improving the Tor Directory Protocol
 Real-Time Website Fingerprinting Defense via Traffic Cluster Anonymization
Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning 3257 Hongsheng Hu (CSIRO's Data61, Australia), Shuo Wang (Shanghai Jiao Tong University, China), Tian Dong (Shanghai Jiao Tong University, China), and Minhui Xue (CSIRO's Data61)
 Few-shot Unlearning

Track 2 - Session 9: Miscellaneous ML

DeepTheft: Stealing DNN Model Architectures through Power Side Channel
No Privacy Left Outside: On the (In-)Security of TEE-Shielded DNN Partition for On-Device ML
Ziqi Zhang (Peking University), Chen Gong (Peking University), Yifeng Cai (Peking University), Yuanyuan Yuan (HKUST), Bingyan Liu (Peking University), Ding Li (Peking University), Yao Guo (Peking University), and Xiangqun Chen (Peking University)
One for All and All for One: GNN-based Control-Flow Attestation for Embedded Devices
Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability 3365
Yechao Zhang (Huazhong University of Science and Technology),
Shengshan Hu (Huazhong University of Science and Technology), Leo Yu Zhang (Criffith University), Jumus Shi (Huazhong University of Science
and Technology), Minghui Li (Huazhong University of Science and
Technology), Xiaogeng Liu (Huazhong University of Science and
Technology), Wei Wan (Huazhong University of Science and Technology), and Hai Jin (Huazhong University of Science and Technology)
Backdooring Multimodal Learning

Track 3 - Session 9: Security for Democracy

Understanding the Privacy Practices of Political Campaigns: A Perspective from the 2020 US	• • • • •
Election Websites	3404
Kaushal Kafle (William & Mary, USA), Prianka Mandal (William & Mary,	
USA), Kapil Singh (IBM 1.J. Watson Research Center, USA), Benjamin	
Andow (Google, USA), and Adwait Nadkarni (William & Mary, USA)	
Thwarting Last-Minute Voter Coercion	3423
Rosario Giustolisi (IT University of Copenhagen, Denmark), Maryam	
Rosario Giustolisi (IT University of Copenhagen, Denmark), Maryam Sheikhi Garjan (IT University of Copenhagen, Denmark), and Carsten	
Rosario Giustolisi (IT University of Copenhagen, Denmark), Maryam Sheikhi Garjan (IT University of Copenhagen, Denmark), and Carsten Schuermann (IT University of Copenhagen, Denmark)	

Can we cast a ballot as intended and be receipt free?
Investigating Voter Perceptions of Printed Physical Audit Trails for Online Voting
E-Vote Your Conscience: Perceptions of Coercion and Vote Buying, and the Usability of Fake Credentials in Online Voting
NetShuffle: Circumventing Censorship with Shuffle Proxies at the Edge

Track 1 - Session 10: Provenance and Enterprise Security

R-CAID: Embedding Root Cause Analysis within Provenance-based Intrusion Detection
 KAIROS: Practical Intrusion Detection and Investigation using Whole-system Provenance
 FLASH: A Comprehensive Approach to Intrusion Detection via Provenance Graph Representation Learning
eAUDIT: A Fast, Scalable and Deployable Audit Data Collection System
Understanding and Bridging the Gap Between Unsupervised Network Representation Learning and Security Analytics

DrSec: Flexible Distributed Representations for Efficient Endpoint Security	3609
Mahmood Sharif (Tel Aviv University, Israel), Pubali Datta (University	
of Massachusetts Amherst, USA), Andy Riddle (University of Illinois	
Urbana-Champaign, USA), Kim Westfall (University of Illinois	
Urbana-Champaign, USA), Adam Bates (University of Illinois	
Urbana-Champaign, USA), Vijay Ganti (Google, USA), Matthew Lentz (Duke	
University, USA), and David Ott (VMware, USA)	
Do You Play It by the Books? A Study on Incident Response Playbooks and Influencing	
Factors	3625
Daniel Schlette (University of Regensburg, Germany), Philip Empl	
(University of Regensburg, Germany), Marco Caselli (Siemens AG,	
Germany), Thomas Schreck (HM Munich University of Applied Sciences,	
Germany), and Günther Pernul (University of Regensburg, Germany)	
Jbeil: Temporal Graph-Based Inductive Learning to Infer Lateral Movement in Evolving	
Enterprise Networks	3644
Joseph Khoury (Louisiana State University, USA), Đorđe Klisura	
(Louisiana State University, USA), Hadi Zanddizari (The University of	
Texas at San Antonio, USA), Gonzalo De La Torre Parra (The University	
of the Incarnate Word, USA), Peyman Najafirad (The University of Texas	
at San Antonio, USA), and Elias Bou-Harb (Louisiana State University,	
USA)	

Track 2 - Session 10: Hardware Sidechannels

Efficient and Generic Microarchitectural Hash-Function Recovery	1
BUSted!!! Microarchitectural Side-Channel Attacks on the MCU Bus Interconnect	9
 Architectural Mimicry: Innovative Instructions to Efficiently Address Control-Flow Leakage in Data-Oblivious Programs	7
 GPU.zip: On the Side-Channel Implications of Hardware-Based Graphical Data Compression 371 Yingchen Wang (The University of Texas at Austin), Riccardo Paccagnella (Carnegie Mellon University), Zhao Gang (The University of Texas at Austin), Willy Vasquez (The University of Texas at Austin), David Kohlbrenner (University of Washington), Hovav Shacham (The University of Texas at Austin), and Christopher Fletcher (University of Illinois Urbana-Champaign) 	6
CONJUNCT: Learning Inductive Invariants to Prove Unbounded Instruction Safety Against Microarchitectural Timing Attacks	5

Prune+PlumTree - Finding Eviction Sets at Scale Tom Kessous (Ben-Gurion University of the Negev, Israel) and Niv Gilboa (Ben-Gurion University of the Negev, Israel)	. 3754
Leaky Address Masking: Exploiting Unmasked Spectre Gadgets with Noncanonical Address Translation	. 3773
Mathé Hertogh (Vrije Universiteit Amsterdam, The Netherlands), Sander Wiebing (Vrije Universiteit Amsterdam, The Netherlands), and Cristiano Giuffrida (Vrije Universiteit Amsterdam, The Netherlands)	
Rethinking IC Layout Vulnerability: Simulation-Based Hardware Trojan Threat Assessment with High Fidelity <i>Xinming Wei (Peking University, China), Jiaxi Zhang (Peking University, China), and Guojie Luo (Peking University, China)</i>	. 3789

Track 3 - Session 10: Blockchain II

Routing Attacks on Cryptocurrency Mining Pools	;05
Sweep-UC: Swapping Coins Privately	22
 SoK: Security and Privacy of Blockchain Interoperability	40
Non-Atomic Arbitrage in Decentralized Finance	66
Optimal Flexible Consensus and its Application to Ethereum	85
 PriDe CT: Towards Public Consensus, Private Transactions, and Forward Secrecy in Decentralized Payments	04
POMABuster: Detecting Price Oracle Manipulation Attacks in Decentralized Finance	23

Track 1 - Session 11: Software Analysis

Efficient Detection of Java Deserialization Gadget Chains via Bottom-up Gadget Search and Dataflow-aided Payload Construction Bofei Chen (Fudan University), Lei Zhang (Fudan University, China), Xinyou Huang (Fudan University, China), Yinzhi Cao (Johns Hopkins University), Keke Lian (Fudan University, China), Yuan Zhang (Fudan University, China), and Min Yang (Fudan University, China)	3961
"False negative - that one is going to kill you." - Understanding Industry Perspectives of Static Analysis based Security Testing Amit Seal Ami (William & Mary, USA), Kevin Moran (University of Central Florida, USA), Denys Poshyvanyk (William & Mary, USA), and Adwait Nadkarni (William & Mary, USA)	3979
 AirTaint: Making Dynamic Taint Analysis Faster and Easier	3998
Undefined-oriented Programming: Detecting and Chaining Prototype Pollution Gadgets in Node.js Template Engines for Malicious Consequences	4015
APP-Miner: Detecting API Misuses via Automatically Mining API Path Patterns	4034
ERASAN : Efficient Rust Address Sanitizer JIun Min (UNIST), Dongyeon Yu (UNIST), Seongyun Jeong (UNIST), Dokyung Song (Yonsei University), and Yuseok Jeon (UNIST)	4053

"Len or index or count, anything but v1": Predicting Variable Names in Decompilation Output with Transfer Learning
Kuntal Kumar Pal (Arizona State University, USA), Ati Priya Bajaj
(Arizona State University, USA), Pratyay Banerjee (Arizona State
University, USA), Audrey Dutcher (Arizona State University, USA),
Mutsumi Nakamura (Arizona State University, USA), Zion Leonahenahe
Basque (Arizona State University, USA), Himanshu Gupta (Arizona State
University, USA), Saurabh Arjun Sawant (Arizona State University,
USA), Ujjwala Anantheswaran (Arizona State University, USA), Yan
Shoshitaishvili (Arizona State University, USA), Adam Doupe (Arizona
State University, USA), Chitta Baral (Arizona State University, USA),
and Ruoyu Wang (Arizona State University, USA)
SrcMarker: Dual-Channel Source Code Watermarking via Scalable Code Transformations 4088
Borui Yang (Shanghai Jiao Tong University), Wei Li (Shanghai Jiao Tong
University), Liyao Xiang (Shanghai Jiao Tong University), and Bo Li
(Hong Kong University of Science and Technology)

Track 2 - Session 11: TEE and Hardware Security

UnTrustZone: Systematic Accelerated Aging to Expose On-chip Secrets
On (the Lack of) Code Confidentiality in Trusted Execution Environments
 SoK: SGX.Fail: How Stuff Gets eXposed
Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes
Obelix: Mitigating Side-Channels through Dynamic Obfuscation
Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

WESEE: Using Malicious #VC Interrupts to Break AMD SEV-SNP	4220
Benedict Schlüter (ETH Zurich, Switzerland), Supraja Sridhara (ETH	
Zurich, Switzerland), Andrin Bertschi (ETH Zurich, Switzerland), and	
Shweta Shinde (ETH Zurich, Switzerland)	
Sticky Tags: Efficient and Deterministic Spatial Memory Error Mitigation using Persistent	
Memory Tags	4239
Floris Gorter (Vrije Universiteit Amsterdam), Taddeus Kroes (Vrije	
Universiteit Amsterdam), Herbert Bos (Vrije Universiteit Amsterdam),	
and Cristiano Giuffrida (Vrije Universiteit Amsterdam)	

Track 3 - Session 11: ORAM and PIR

BULKOR: Enabling Bulk Loading for Path ORAM
Distributed & Scalable Oblivious Sorting and Shuffling
PIANO: Extremely Simple, Single-Server PIR with Sublinear Server Computation
PIRANA: Faster Multi-query PIR via Constant-weight Codes
Communication-efficient, Fault Tolerant PIR over Erasure Coded Storage
More is Merrier: Relax the Non-Collusion Assumption in Multi-server PIR
Group Oblivious Message Retrieval
PolySphinx: Extending the Sphinx Mix Format With Better Multicast Support

Track 1 - Session 12: Network Security

Where Are the Red Lines? Towards Ethical Server-Side Scans in Security and Privacy 4405 Research 4405 Florian Hantke (CISPA Helmholtz Center for Information Security), 5 Sebastian Roth (TU Wien), Rafael Mrowczynski (CISPA Helmholtz Center 6 for Information Security), Christine Utz (ČISPA Helmholtz Center for 1 Information Security), and Ben Stock (CISPA Helmholtz Center for 1 Information Security) 1
Cerberus: Enabling Efficient and Effective In-Network Monitoring on Programmable Switches 4424 Huancheng Zhou (Texas A&M University) and Guofei Gu (Texas A&M University)
Pryde: A Modular Generalizable Workflow for Uncovering Evasion Attacks Against Stateful Firewall Deployments
 TUDOOR Attack: Systematically Exploring and Exploiting Logic Vulnerabilities in DNS Response Pre-processing with Malformed Packets
DNSBOMB: A New Practical-and-Powerful Pulsing DoS Attack Exploiting DNS Queries-and-Responses 4478 Xiang Li (Tsinghua University), Dashuai Wu (Tsinghua University), 4478 Haixin Duan (Tsinghua University; Zhongguancun Laboratory; Quan Cheng Laboratory), and Qi Li (Tsinghua University)
TCP Spoofing: Reliable Payload Transmission Past the Spoofed TCP Handshake
Practical Attacks Against DNS Reputation Systems
Leveraging Prefix Structure to Detect Volumetric DDoS Attack Signatures with Programmable Switches

Track 2 - Session 12: Systems Security

Automated Synthesis of Effect Graph Policies for Microservice-Aware Stateful System Call Specialization
 SoK: A Comprehensive Analysis and Evaluation of Docker Container Attack and Defense Mechanisms
Tabbed Out: Subverting the Android Custom Tab Security Model4591Philipp Beer (TU Wien), Marco Squarcina (TU Wien), Lorenzo Veronese(TU Wien), and Martina Lindorfer (TU Wien)
P4Control: Line-Rate Cross-Host Attack Prevention via In-Network Information Flow Control Enabled by Programmable Switches and eBPF
To Boldly Go Where No Fuzzer Has Gone Before: Finding Bugs in Linux' Wireless Stacks through VirtIO Devices
SATURN: Host-Gadget Synergistic USB Driver Fuzzing
 SyzGen++: Dependency Inference for Augmenting Kernel Driver Fuzzing
Side-Channel-Assisted Reverse-Engineering of Encrypted DNN Hardware Accelerator IP and Attack Surface Exploration 4678 Cheng Gongye (Northeastern University, USA), Yukui Luo (Northeastern 4678 University, USA), Xiaolin Xu (Northeastern University, USA), and Yunsi Fei (Northeastern University, USA)

Track 3 - Session 12: Privacy and ML

 SoK: Privacy-Preserving Data Synthesis	5
Preserving Node-level Privacy in Graph Neural Networks	1
From Principle to Practice: Vertical Data Minimization for Machine Learning	3
BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transformers	3
 SHERPA: Explainable Robust Algorithms for Privacy-Preserved Federated Learning in Future Networks to Defend Against Data Poisoning Attacks	2
 Please Tell Me More: Privacy Impact of Explainability through the Lens of Membership Inference Attack	l
 From Individual Computation to Allied Optimization: Remodeling Privacy-Preserving Neural Inference with Function Input Tuning)
Protecting Label Distribution in Cross-Silo Federated Learning	3

Author Index