2024 IEEE 12th International Conference on Healthcare Informatics (ICHI 2024)

Orlando, Florida, USA 3-6 June 2024

IEEE Catalog Number: CFP2444U-POD **ISBN:**

979-8-3503-8374-4

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP2444U-POD
ISBN (Print-On-Demand):	979-8-3503-8374-4
ISBN (Online):	979-8-3503-8373-7
ISSN:	2575-2626

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 12th International Conference on Healthcare Informatics (ICHI) ICHI 2024

Table of Contents

Message from the General Chairs	xxii
Message from the Program Chairs	xxiii
Organizing Committee	xxv
Program Committee	
Sponsors	

Patient Similarity and Physical Activities

Fine-Grained Patient Similarity Measuring Using Contrastive Graph Similarity Networks
Representing Outcome-Driven Higher-Order Dependencies in Graphs of Disease Trajectories 11 Steven Krieg (University of Notre Dame, USA), Nitesh V. Chawla (University of Notre Dame, USA), and Keith Feldman (University of Missouri-Kansas City School of Medicine, USA)
Sequence-Walking Decision Tree for Multivariate Healthcare Data
 Developing a Computational Representation of Human Physical Activity and Exercise Using Open Ontology-Based Approach: a Tai Chi use Case

Medical Image Analysis

Cascaded Network for Multiscale Feature Extraction Muhammad Zubair Khan (University of Central Missouri, USA), Muazzam Ali Khan (Quaid-i-Azam University, Pakistan), and Belinda Copus (University of Central Missouri, USA)	46
Semantic Neural Network for Micro-Vessels Extraction Muhammad Zubair Khan (University of Central Missouri, USA), Muazzam Ali Khan (Quaid-i-Azam University, Pakistan), and Belinda Copus (University of Central Missouri, USA)	51
Multiple Multi-Modal Methods of Malignant Mammogram Classification Christopher N. Vattheuer (University of Manitoba, Canada / UCLA, USA), Nguyen Duy Thong Jase Tran (University of Manitoba, Canada), Carson K. Leung (University of Manitoba, Canada), and Connor C.J. Hryhoruk (University of Manitoba, Canada)	57

Healthcare Delivery and Genomics

Inhomogeneous Poisson Process for Ambulance Dispatch Félicien Hêche (University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland), Oussama Barakat (University of Bourgogne-Franche-Comté, France), Thibaut Desmettre (Hôpitaux Universitaires de Genève (HUG), Switzerland), and Stephan Robert-Nicoud (University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland)	67
Classifying Cancer Stage with Open-Source Clinical Large Language Models Chia-Hsuan Chang (Drexel University, USA), Mary M. Lucas (Drexel University, USA), Grace Lu-Yao (Thomas Jefferson University, USA), and Christopher C. Yang (Drexel University, USA)	76
End-to-End Risk-Aware Reinforcement Learning to Detect Asymptomatic Cases in Healthcare Facilities	83
An Average-Case Efficient two-Stage Algorithm for Enumerating all Longest Common Substrings of Minimum Length k Between Genome Pairs Mattia Prosperi (University of Florida, USA), Simone Marini (University of Florida, USA), and Christina Boucher (University of Florida, USA)	.93
SparseHE: an Efficient Privacy-Preserving Biomedical Prediction Approach Using Sparse Homomorphic Encryption	103

Disease Modeling and Prediction

 Node2VecFuseClassifier: Bridging Perspectives in Modeling Transplantation Attitudes Among

 Dialysis Patients

 Rafaa Aljurbua (Temple University), Avrum Gillespie (Temple

 University), Jumanah Alshehri (Temple University), Abdulrahman Alharbi

 (Temple University), Nouf Albarakati (Temple University), and Zoran

 Obradovic (Temple University)

Hypergraph Convolutional Networks for Fine-Grained ICU Patient Similarity Analysis and 123 Risk Prediction 123 Yuxi Liu (Flinders University, Australia), Zhenhao Zhang (Northwest 123 A&F University, China), Shaowen Qin (Flinders University, Australia), Flora D. Salim (UNSW, Australia), Antonio Jimeno Yepes (RMIT University, Australia), Jun Shen (UOW, Australia), and Jiang Bian (University of Florida, USA)
 ICD Codes are Insufficient to Create Datasets for Machine Learning: An Evaluation Using All of Us Data for Coccidioidomycosis and Myocardial Infarction
Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series 135 Yuxi Liu (Flinders University, Australia), Zhenhao Zhang (Northwest A&F University, China), Shaowen Qin (Flinders University, Australia), and Jiang Bian (University of Florida, USA)
 Applying Reinforcement Learning to Epidemic Management: Strategic Influenza Control in Multiple Scenarios

Predictive Modeling

 Sleep and Arousal Scoring for In-Home EEG Signals: A Multitask Learning Approach
 An ExplainableFair Framework for Prediction of Substance Use Disorder Treatment Completion 157 Mary M. Lucas (Drexel University, USA), Xiaoyang Wang (Drexel University, USA), Chia-Hsuan Chang (Drexel University, USA), Christopher C. Yang (Drexel University, USA), Jacqueline E. Braughton (Hazelden Betty Ford Foundation, USA), and Quyen M. Ngo (Hazelden Betty Ford Foundation, USA)
 Machine Learning Based Acute Kidney Injury Sub-Phenotyping With Time Series Serum Creatinine Data
Attention-Based Imputation of Missing Values in Electronic Health Records Tabular Data

TCPNet: A Novel Tumor Contour Prediction Network Using MRIs	183
Shraddha Agarwal (Data Science and Engineering, IISER Bhopal, India),	
Vinod K. Kurmi (Data Science and Engineering, IISER Bhopal, India),	
Abhirup Banerjee (University of Oxford, UK), and Tanmay Basu (Data	
Science and Engineering, IISER Bhopal, India)	

Social Determinants of Health and Mental Health

 Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups Richard Li Xu (Weill Cornell Medicine, USA), Song Wang (The University of Texas at Austin, USA), Zewei Wang (Weill Cornell Medicine, USA), Yuhan Zhang (Weill Cornell Medicine, USA), Yunyu Xiao (Weill Cornell Medicine, USA), Jyotishman Pathak (Weill Cornell Medicine, USA), David Hodge (Tuskegee University, USA), Yan Leng (The University of Texas at Austin, USA), S. Craig Watkins (The University of Texas at Austin, USA), Ying Ding (The University of Texas at Austin, Peng (Weill Cornell Medicine, USA) 	189
Measures of Reading Ease and NOVA Food Processing Classification on Ingredients Lists in the United States	200
Mobility-Based Community Analysis for Early Detection of Complex Psychiatric Disorders	205
Personalized Impact of Lifestyle on Type 1 Diabetes Patients: A Comprehensive Regression Analysis	214

Patient Representation

A Multi-Graph Fusion Framework for Patient Representation Learning	222
Yuxi Liu (Flinders University, Australia), Zhenhao Zhang (Northwest	
A&F University, China), Shaowen Qin (Flinders University, Australia),	
and Flora D. Salim (UNSW, Australia)	

Data Distribution Dynamics in Real-World WiFi-Based Patient Activity Monitoring for Home

Healthcare
Mahathir Monjur (University of North Carolina, NC), Jia Liu
(University of Texas Health Science Center, TX), Jingye Xu (University
of Texas, TX), Yuntong Zhang (University of Texas, TX), Xiaomeng Wang
(University of Texas Health Science Center, TX), Chengdong Li (Florida
State University, FL), Hyejin Park (Florida State University, FL), Wei
Wang (University of Texas, TX), Karl Shieh (University of North
Carolina, NC), Sirajum Munir (Bosch Research and Technology Center,
PA), Jing Wang (Florida State University, FL), Lixin Song (University
of Texas Health Science Center, TX), and Shahriar Nirjon (University
of North Carolina, NC)
Selection Bias from Data Processing in N3C
Mohammad Qodrati (George Mason University, Virginia), Hua Min (George
Mason University, Virginia), Timothy Leslie (George Mason University,
Virginia), Cara Frankenfeld (Center for Interdisciplinary & Population
Health Research GeorMaineHealth Institute for Research, Maine), Nirup
M Menon (George Mason University, Virginia), and Janusz Wojtusiak
(George Mason University, Virginia)
Assertion Detection in Clinical Natural Language Processing Using Large Language Models 242 Yuelyu Ji (University of Pittsburgh, USA), Zeshui Yu (University of

Pittsburgh, USA), and Yanshan Wang (University of Pittsburgh, USA)

Natural Language Processing

Using Generative Large Language Models for Hierarchical Relationship Prediction in Medical Ontologies
Automated Concept Indexing for Health Measurement Scale Items Through Prompt Learning with
Pre-Trained Language Models
Jie Hao (Chinese Academy of Medical Science & Peking Union Medical
College, China), Zhen Guo (Chinese Academy of Medical Science & Peking
Union Medical College, China), Qinglong Peng (Harbin Engineering
University, China), Meng Zhang (Harbin Engineering University, China),
Liu Shen (Chinese Academy of Medical Science & Peking Union Medical
College, China), Shan Cong (Harbin Engineering University, China),
Jiao Li (Chinese Academy of Medical Science & Peking Union Medical
College, China), and Haixia Sun (Chinese Academy of Medical Science &
Peking Union Medical College, China)
Investigating Large Language Models and Control Mechanisms to Improve Text Readability of
Biomedical Abstracts
Zihao Li (Manchester Metropolitan University; The University of
Manchester), Samuel Belkadi (University of Manchester), Nicolo
Micheletti (University of Manchester), Lifeng Han (University of
Manchester), Matthew Shardlow (Manchester Metropolitan University),
and Goran Nenadic (University of Manchester)

Constructing Cross-Lingual Consumer Health Vocabulary with Word-Embedding from Comparable
User Generated Content
Chia-Hsuan Chang (Drexel University, USA), Lei Wang (Drexel
University, USA), and Christopher C. Yang (Drexel University, China)
Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery

NLP and Multimodal Systems

A Mispronunciation-Based Voice-Omics Representation Framework for Screening Specific Language Impairments in Children	94
Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language 30 Aokun Chen (University of Florida, USA), Daniel Paredes (University of 30 Florida, USA), Zehao Yu (University of Florida, USA), Xiwei Lou (University of Florida, USA), Roberta Brunson (UF Health Shands Hospital, USA), Jamie N. Thomas (UF Health Shands Hospital, USA), Jamie N. Thomas (UF Health Shands Hospital, USA), Robert J. Lucero (University of California Los Angeles, USA), Tanja Magoc (University of Florida, USA), Laurence M. Solberg (Geriatrics Research, Education, and Clinical Center, USA), Urszula A. Snigurska (University of Florida, USA), Sarah E. Ser (University of Florida, USA), Mattia Prosperi (University of Florida, USA), Jiang Bian (University of Florida, USA), Ragnhildur I. Bjarnadottir (University of Florida, USA), and Yonghui Wu (University of Florida, USA)	05
 Diffusion Models for Image Generation to Enhance Health Literacy	12
 Mapping Study Variables to Common Data Elements Using GPT for Sheets: Towards Standardized Data Collection and Sharing	20
 Personalized Meal Planning in Inpatient Clinical Dietetics Using Generative Artificial Intelligence: System Description	26
Intelligence: System Description	26

Healthcare IT Systems

A Migration Framework for Active BPMN Processes in Healthcare Matteo Mantovani (University of Verona, Italy), Emanuele Chini (University of Verona, Italy), and Carlo Combi (University of Verona, Italy)	332
Data-Driven Real-Time Surveillance System for Tracking Disease Outbreaks: A Case Study of Lassa Fever Outbreak Aniket Wattamwar (California State University, USA), Sampson Akwafuo (California State University, USA), and Vritik Mistry (California State University, USA)	344
Development of a GenAI-Powered Hypertension Management Assistant: Early Development Phase and Architectural Design	
GEN-RWD Sandbox Ecosystem for Privacy-Preserving Data Sharing in Healthcare Research: the Processor Module Benedetta Gottardelli (Università Cattolica del Sacro Cuore, Italy), Roberto Gatta (Università degli Studi di Brescia, Italy), Leonardo Nucciarelli (Università Cattolica del Sacro Cuore, Italy), Mariachiara Savino (Università Cattolica del Sacro Cuore, Italy), Andrada Mihaela Tudor (Università Cattolica del Sacro Cuore, Italy), Mauro Vallati (University of Huddersfield, UK), and Andrea Damiani (Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), Italy)	360
The Development and Feasibility of a Triage System for Use in Primary Care Magnús Friðrik Helgason (Reykjavik University, Iceland), Kári Steinn Hlífarson (Reykjavik University, Iceland), Baldur Olsen (Reykjavik University, Iceland), Steindór Oddur Ellertsson (Primary Health Care of the Capital Area, Iceland), Hrafn Loftsson (Reykjavik University, Iceland), and Stefán Ólafsson (Reykjavik University, Iceland)	366

Generative AI-Based Systems

Leveraging Generative Pre-Trained Transformer Models for Standardizing Nursing Data
 Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts
 Leveraging Professional Radiologists' Expertise to Enhance LLMs' Evaluation for AI-Generated Radiology Reports
Effects of Different Prompts on the Quality of GPT-4 Responses to Dementia Care Questions 412 Zhuochun Li (University of Pittsburgh, USA), Bo Xie (University of Texas at Austin, USA), Robin Hilsabeck (University of Texas Health Sciences Center at San Antonio, USA), Alyssa Aguirre (University of Texas at Austin, USA), Ning Zou (University of Pittsburgh, USA), Zhimeng Luo (University of Pittsburgh, USA), and Daqing He (University of Pittsburgh, USA)

Mental Health and Wellbeing

Co-Designing a User-Centred Digital Portal to Support Health-Related Self-Management for	
Stroke Survivors	418
Zhiqiang Huo (King's College London, UK), Timothy Neate (King's	
College London, UK), David Wyatt (King's College London, UK), Sophie Rowland-Coomber (King's College London, UK), Martin Chapman (King's	
Rowland-Coomber (King's College London, UK), Martin Chapman (King's	
College London, UK), Iain J. Marshall (King's College London, UK),	
Charles Wolfe (King's College London, UK), Matthew O'Connell (King's	
College London, UK), and Vasa Curcin (King's College London, UK)	

Understanding Digital Wellbeing Through Smartphone Usage Intentions and Regrettable Patterns
A Gamified Approach for Alcohol Use Disorder Therapy in Virtual Reality
The Impact of Social Media on Caregiver's Mental Well-Being: An Empirical Study
Advancing Psychological Research: A Controlled Virtual Reality Environment for Exploring Social Dynamics in Immersive Conversational Interactions

Clinical Care and Self-Management

 Black-box Testing of the Interactive Prostate Cancer Information, Communication, and Support Program to Ensure Reliability for Patients and Caregivers Fei Yu (University of North Carolina, USA), Daria Neidre (University of Texas Health Science Center, USA), Nibras Ar Rakib (University of North Carolina, USA), Marcus Lambert (University of Texas Health Science Center, USA), Chunxuan Ma (University of Texas Health Science Center, USA), Chunxuan Ma (University of Texas Health Science Center, USA), Amy Vondenberger (University of Texas Health Science Center, USA), and Lixin Song (University of Texas Health Science Center, USA) 	461
iCare – An AI-Powered Virtual Assistant for Mental Health Remya Mavila (University of Washington, USA), Sugam Jaiswal (University of Washington, USA), Raghav Naswa (University of Washington, USA), Weichao Yuwen (University of Washington, USA), Bill Erdly (University of Washington, USA), and Dong Si (University of Washington, USA)	466
Lessons for Approaching Implementation of Ai Systems in Clinical Settings Ayomide Owoyemi (University of Illinois Chicago, USA), Ebere Okpara (University of Illinois Chicago, USA), Milicent Okor (Lakeshore Cancer Center, Nigeria), Farooq Awais (University of Illinois Chicago, USA), Sagar Harwani (University of Illinois Chicago, USA), Megan Salwei (Vanderbilt University Medical Center, USA), and Andrew Boyd (University of Illinois Chicago, USA)	472

Patient Engagement and Medication Consistency with Adolescent Heart Transplant Recipients 478 Michael O. Killian (Florida State University, USA), Sonnie E. Mayewski (Florida State University, USA), Schyler E. Brumm (Florida State University, USA), Lisa Schelbe (Florida State University, USA), Mia Liza A. Lustria (Florida State University, USA), and Dipankar Gupta (UF Health Congenital Heart Center University of Florida, FL)

Industry Research in Healthcare Informatics

 Detecting Clinical Intent in Electronic Healthcare Records in a UK National Healthcare Hospital Kawsar Noor (University College London, United Kingdom), Katherine Smith (UCL Hospitals NHS Foundation Trust, United Kingdom), Jade O'Connell (UCL Hospitals NHS Foundation Trust, United Kingdom), Niamh Ingram (UCL Hospitals NHS Foundation Trust, United Kingdom), Baptiste Briot Ribyere (UCL Hospitals NHS Foundation Trust, United Kingdom), Tom Searle (King's College London, United Kingdom), Wai Keong Wong (Cambridge University Hospitals NHS Foundation Trust, United Kingdom), and Richard J Dobson (University College London, United Kingdom)
Harness the Power of Generative AI in Healthcare with Amazon AI/ML Services
 Interpretable Hierarchical Attention Network for Medical Condition Identification
 Kamino: A Scalable Architecture to Support Medical AI Research Using Large Real World Data 500 Fongci Lin (Yale University, USA), Patrick Young (Yale University, USA), Huan He (Yale University, USA), Jimin Huang (Yale University, USA), Roger Gagne (Digital & Technology Solutions, Yale New Haven Hospital, USA), Daniel Rice (Digital & Technology Solutions, Yale New Haven Hospital, USA), Nathan Price (Digital & Technology Solutions \ Yale New Haven Hospital, USA), Will Byron (Digital & Technology Solutions, Yale New Haven Hospital, USA), Will Byron (Digital & Technology Solutions, Yale New Haven Hospital, USA), Yan Hu (Informatics University of Texas Health Science at Houston, USA), Donn Felker (Digital & Technology Solutions, Yale New Haven Hospital, USA), Will Button (Digital & Technology Solutions, Yale New Haven Hospital, USA), Deniella Meeker (Yale University, USA), Allen Hsiao (Yale University, USA), Hua Xu (Yale University, USA), Charles Torre (Digital & Technology Solutions Yale New Haven Hospital, USA), and Wade Schulz (Yale University, USA)

Remote Presentation

 Online Transfer Learning for RSV Case Detection
Posters and Demos
Time Series Anomaly Detection with CNN for Environmental Sensors in Healthcare-IoT
Reducing Diagnostic Uncertainty in Emergency Departments: The Role of Large Language Models in Age-Specific Diagnostics
Exploring Artificial Intelligence Solutions and Challenges in Healthcare Administration
Trends in Blockchain Applied to Healthcare
"Synthetic-Seed-Saturation" Concept: Overcome Nonresponse-Bias in Retrospective Medical Studies
Assessing Empathy in Mental Health Caregivers Using Conversational AI
Performance Evaluation of Multimodal Large Language Models (LLaVA and GPT-4-Based ChatGPT) in Medical Image Classification Tasks

Online Applications for Cancer Social Support: A Review of Reviews	44
A GUI For OBO Foundry's ROBOT Library To Encourage Usability and Adoption	47
A Preliminary Case Study of Developing A Web-Based Digital Portal for Stroke Survivors Using Synthetic Personal Health Data	550
Evaluating Generative Models in Medical Imaging	53
A Novel Framework to Explore the Spatiotemporal Dynamics of Respiratory Syncytial Virus 55 Jingyi Liang (The University of Edinburgh, United Kingdom), Saturnino Luz (The University of Edinburgh, United Kingdom), You Li (Nanjing Medical University, China), and Harish Nair (The University of Edinburgh, United Kingdom)	56
 Promoting Public Engagement with Palliative and End-of-Life Care Discussion on Chinese Social Media	558
 Development and Preliminary Evaluation of Remote Pacemaker Monitoring System Using Large Language Model	61
Towards Values-Focused Design Methods for Personalization in Consumer Health Informatics: Workshopping Approaches with Designers	563

Fleischmann (The University of Texas at Austin, TX)

Workshop 1 - The First Workshop on Applying LLMs in LMICs for Healthcare Solutions (ALL 4 Health)

 Seeing Beyond Borders: Evaluating LLMs in Multilingual Ophthalmological Question Answering. 565 David Restrepo (Massachusetts Institute of Technology, USA), Luis Filipe Nakayama (Massachusetts Institute of Technology, USA), Robyn Gayle Dychiao (University of the Philippines, Philippines), Chenwei Wu (University of Michigan, USA), Liam G. McCoy (University of Alberta, Canada), Jose Carlo Artiaga (University of the Philippines, Philippines), Marisa Cobanaj (National Center for Radiation Research in Oncology, Germany), João Matos (Massachusetts Institute of Technology, USA), Jack Gallifant (Massachusetts Institute of Technology, USA), Danielle S. Bitterman (Harvard Medical School, USA), Vincenz Constantine Ferrer (University of the Philippines, Philippines), Yindalon Aphinyanaphongs (New York University Langone Health, USA), and Leo Anthony Celi (Massachusetts Institute of Technology, USA)
 Beyond the Stethoscope: Operationalizing Interactive Clinical Reasoning in Large Language Models via Proactive Information Seeking
 Large Language Models for Sexual, Reproductive, and Maternal Health Rights
Self-Directed Learning for Community Health Workers in Malawi Through Generative AI

Malawi)

All You Need Is Context: Clinician Evaluations of Various Iterations of a Large Language Model-Based First Aid Decision Support Tool in Ghana	580
Paulina Boadiwaa Mensah (SnooCODE, Ghana), Nana Serwaa Quao (Korle Bu Teaching Hospital, Ghana), Sesinam Dagadu (SnooCODE, Ghana), James Kwabena Mensah (Volta Regional Hospital, Ghana), Jude Domfeh Darkwah (University Hospital; University of Science and Technology, Ghana), and Project Genie Clinician (Evaluation Group, Ghana)	560
An LLM's Medical Testing Recommendations in a Nigerian Clinic: Potential and Limits of	
Prompt Engineering for Clinical Decision Support Grady McPeak (George Washington University), Anja Sautmann (World Bank Development Research Group), Ohia George (EHA Clinics), Adham Hallal (EHA Clinics), Eduardo Arancón Simal (World Bank Development Research Group), Aaron L. Schwartz (University of Pennsylvania; Michael J Crescenz VA Medical Center, Center for Health Equity Research and Promotion), Jason Abaluck (Yale University), Nirmal Ravi (EHA Clinics), and Robert Pless (George Washington University)	. 586
Human Review for Post-Training Improvement of low-Resource Language Performance in Large	500
Language Models Delta-Marie Lewis (Dimagi, Inc., USA), Brian DeRenzi (Dimagi, Inc.,	. 592
United Kingdom), Amos Misomali (Dimagi, Inc., Malawi), Themba Nyirenda	
(Dimagi, Inc., Malawi), Everlisto Phiri (Pachi, Malawi), Lyness	
Chifisi (Pachi, Malawi), Charles Makwenda (Pachi, Malawi), and Neal	
Lesh (Dimagi, Inc., USA)	

Workshop 2 - Data Privacy and Data Analysis in Healthcare Systems (DPDAHS)

A Proactive Digital Chain of Custody for Internet of Healthcare Things (IoHT) Data
A Comparative Study of Few-Shot Learning Methods for 1-D ECG Time-Series Classification 604 Priyanka Gupta (BITS Pilani Hyderabad, India), Arunachala Amuda Murugan (BITS Pilani Hyderabad, India), Deep Chordia (BITS Pilani Hyderabad, India), Pavan Kumar Reddy Yannam (BITS Pilani Hyderabad, India), and Manik Gupta (BITS Pilani Hyderabad, India)
 Detection of Bipolar Disorder on Social Media Data Utilizing Biomedical, Clinical and Mental Health Domain Fine-Tuned Word Embeddings
A key Performance Indicator to Analyze Swarm Learning Performances with EHR

Uncertainty Quantification in Deep Learning Framework for Mallampati Classification
Decentralized, Explainable, and Personalized Mental Health Monitoring
Workshop 3 - The 2nd International Workshop on Ethics and Bias of Artificial Intelligence in Clinical Applications (EBAIC)
An Ethical Approach to Genomic Privacy Preserving Technology Development
A Survey of Bias and Fairness in Healthcare AI
Abstaining ECG Classifiers Through Explainable Prototypical Spaces
Equity in Healthcare: Analyzing Disparities in Machine Learning Predictions of Diabetic Patient Readmissions

Workshop 4 - Multimodal Representation Learning for Healthcare (Multimodal4Health)

An nnU-Net Model to Enhance Segmentation of Cardiac Cine DENSE-MRI Using Phase Information... 670

Mohammad Naqizadeh Jahromi (University of Central Florida, USA), Augusto Delavald Marques (University of Central Florida, USA), Mehlil Ahmed (University of Central Florida, USA), Zhan-Qiu Liu (Stanford University, USA), Ariel J. Hannum (Stanford University, USA), Daniel B. Ennis (Stanford University, USA), Luigi E. Perotti (University of Central Florida, USA), and Dazhong Wu (University of Central Florida, USA)

Multimodal Clinical Prediction with Unified Prompts and Pretrained Larg	e-Language Models 679
Caleb Winston (Stanford University, USA), Chloe Winston (University of	
Pennsylvania, USA), Cailin Winston (University of Washington, USA),	
Claris Winston (University of Washington, USA), and Cleah Winston	
(University of Washington, USA)	

Applying Large Language Models for Causal Structure Learning in Non Small Cell Lung Cancer...688 Narmada Naik (datma Health Science, USA), Ayush Khandelwal (datma Health Science, USA), Mohit Joshi (datma Health Science, USA), Madhusudan Atre (datma Health Science, USA), Hollis Wright (datma Health Science, USA), Kavya Kannan (datma Health Science, USA), Scott Hill (datma Health Science, USA), Giridhar Mamidipudi (datma Health Science, USA), Ganapati Srinivasa (datma Health Science, USA), Carlo Bifulco (Earle A. Chiles Research Institute, Providence Cancer Institute, USA), Brian Piening (Earle A. Chiles Research Institute, Providence Cancer Institute, USA), and Kevin Matlock (datma Health Science, USA)

Workshop 5 - Human-Centred XAI: Enhancing AI Acceptability for Healthcare (Human-Centred XAI)

 Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines
 Requirements and Challenges to use Explainable Artificial Intelligence in Histopathology: A Rapid Review
County-Level Associations Between Social and Sleep Deprivation Conditioned by Regional Effects
 Visualizing Model Behaviors for Clinic Users: Explaining A Clinical Prediction Model for 30-day Readmission After Inpatient Alcohol Dependence Treatment

Personalized Bayesian Inference for Explainable Healthcare Management and Intervention	<u>2</u> 5
Utkarshani Jaimini (University of South Carolina, USA), Krishnaprasad	
Thirunarayan (Wright State University, USA), Manindra Kalra	
(Nationwide Children's Hospital, USA), Robin Dawson (University of	
South Carolina, USA), and Amit Sheth (University of South Carolina,	
USA)	
Consistency of XAI Models Against Medical Expertise: An Assessment Protocol	32

Workshop 6 - The Third International Workshop on Health Informatics Education (HI-Edu)

An Electronic Medical Record Simulator and Sandbox for Informatics Education	'37
 Evaluating Academic Performance in Health Informatics Post-EHR Implementation	'39
Providing Support to Online Health Informatics Graduate Students for Enriched Learning Experience	749
The Current Landscape of Cybersecurity Training in CAHIIM Accredited Programs	'50

753
7