2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering (Forge 2024)

Lisbon, Portugal 14 April 2024

IEEE Catalog Number: CFP24VO9-POD **ISBN:**

979-8-3503-8869-5

Copyright © 2024, Association for Computing Machinery (ACM) All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP24VO9-POD
979-8-3503-8869-5
979-8-4007-0536-6

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering (Forge) Forge 2024

Table of Contents

Message from the FORGE 2024 Chairs	viii
Organizing Committee	ix
Program Committee	x

Foundation Models for Software Quality Assurance

Deep Multiple Assertions Generation	
MeTMaP: Metamorphic Testing for Detecting False Vector Matching Problems in LLM Augmented Generation	<u>)</u>
Guanyu Wang (Beijing University of Posts and Telecommunications), Yuekang Li (University of New South Wales), Yi Liu (Nanyang Technological University), Gelei Deng (Nanyang Technological University), Tianlin Li (Nanyang Technological University), Guosheng Xu (Beijing University of Posts and Telecommunications), Yang Liu (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), and Kailong Wang (Huazhong University of	
Planning to Guide LLM for Code Coverage Prediction	ł
The Emergence of Large Language Models in Static Analysis: A First Look through Micro-benchmarks	;

 Reality Bites: Assessing the Realism of Driving Scenarios with Large Language Models
Assessing the Impact of GPT-4 Turbo in Generating Defeaters for Assurance Cases

Belle (York University), Song Wang (York University), and Timothy C. Lethbridge (University of Ottawa)

Properties of Foundation Models

Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation Marcos Macedo (Queen's University), Yuan Tian (Queen's University), Filipe R. Cogo (Centre for Software Excellence, Huawei Canada), and Bram Adams (Queen's University)	57
Is Attention All You Need? Toward a Conceptual Model for Social Awareness in Large Language Models <i>Gianmario Voria (University of Salerno, Italy), Gemma Catolino</i> <i>(University of Salerno, Italy), and Fabio Palomba (University of Salerno, Italy)</i>	69
An Exploratory Investigation into Code License Infringements in Large Language Model Training Datasets Jonathan Katzy (Delft University of Technology), Răzvan-Mihai Popescu (Delft University of Technology), Arie van Deursen (Delft University of Technology), and Maliheh Izadi (Delft University of Technology)	74

Foundation Models for Code and Documentation Generation

Fine Tuning Large Language Model for Secure Code Generation Junjie Li (Concordia University, Canada), Aseem Sangalay (Delhi Technological University, India), Cheng Cheng (Concordia University, Canada), Yuan Tian (Queen's University, Canada), and Jinqiu Yang (Concordia University, Canada)	86
Investigating the Performance of Language Models for Completing Code in Functional Programming Languages: a Haskell Case Study Tim van Dam (Delft University of Technology), Frank van der Heijden (Delft University of Technology), Philippe de Bekker (Delft University of Technology), Berend Nieuwschepen (Delft University of Technology), Marc Otten (Delft University of Technology), and Maliheh Izadi (Delft University of Technology)	91

On Evaluating the Efficiency of Source Code Generated by LLMs
PathOCL: Path-Based Prompt Augmentation for OCL Generation with GPT-4
Creative and Correct: Requesting Diverse Code Solutions from AI Foundation Models
Commit Message Generation via ChatGPT: How Far Are We?

Author Index		
--------------	--	--