2024 International Conference on Integrated Circuits, **Communication**, and **Computing** Systems (ICIC3S 2024)

Una, India 8-9 June 2024

IEEE Catalog Number: CFP24UX1-POD **ISBN:**

979-8-3503-6409-5

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24UX1-POD
ISBN (Print-On-Demand):	979-8-3503-6409-5
ISBN (Online):	979-8-3503-6408-8

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

S. No.	Paper ID	Paper Title	Page No.
1.	2	Image Classification for Monkey type Detection using Thirty-six-Fold Perpetuated Residual Network (TSFPRN)	01-05
2.	9	Enhancing the Accuracy of Manufacturing Process Error Detection through SMOTE-based Oversampling Using Machine Learning and Deep Learning Techniques	06-11
3.	19	HEMT As a Potential Contender For 5th Generation Communication Technology	12-15
4.	24	On the Integration of AlGaN/GaN HEMT and Micro-Electro-Mechanical Systems (MEMS) For Biomedical Applications: A Review	16-19
5.	41	X-FedAvg: An Explainable approach to FedAvg in Link Prediction	20-25
6.	60	A Comprehensive Survey on Diabetes Forecasting Using ML	26-30
7.	61	Efficient Channel Allocation for Load Balancing in Wireless Mesh Networks	31-34
8.	83	A Novel Approach for Approximating the Dynamics of Fisher's Equation based on Physics-Informed Neural Networks	35-39
9.	107	Design and Analysis of Widlar Current Mirror Circuit using Tunnel FET: CADENCE Simulation Study	40-43
10.	108	Interaction Analysis and Stability Analysis for Moisture and Grammage Control in a Paper Mill	44-47
11.	110	Design and Development of GAN Model for Video Frame Interpolation	48-52
12.	117	Enhancing Seizure Detection through Deep Learning-based Wearable Devices	53-58
13.	129	QoS-Aware Middleware for WBAN Application	59-65
14.	130	Low power SAR ADC for bio-medical application	66-68
15.	159	Beamforming Technique for Terahertz Massive MIMO System Aided by Holographic Reconfigurable Intelligent Surfaces using Approximate Message Passing	69-73
16.	160	Selective Atomic Layer Etching for Silicon Device Fabrication	74-79
17.	161	Effects of process parameters on Ga2O3 fabricated by MBE, HVPE and MOCVD	80-84
18.	163	Study of parameters impacting transmission energy consumption in CCN	85-90
19.	165	Performance Analysis of Charge Sensitive Amplifier	91-95
20.	166	Cooperative Spectrum Sensing Using Energy-Based Detection for Low SNR Regime over Rayleigh Fading Channel	96-101
21.	170	Technology Effects on OTA performance: A Comparative Study of 32nm CMOS and CNFET Technology	102-107
22.	176	Adaptive Channel Aware Scheduler for 5th Generation Networks	108-113
23.	182	Enhancing Skin Lesion Analysis: Leveraging Unet and VGG Architectures in Deep Learning Models	114-121
24.	190	Harmonizing Precision Agriculture: Augmented Insights into Plant Disease Detection Using Deep Learning	122-127
25.	201	Pose Detection using OpenCV and Media Pipe	128-133
26.	203	Extraction of Range and Speed data from A 24 GHz Radar module	134-139
27.	204	Decoding the Eye: AI-Driven Diabetic Retinopathy Classification for Precision Healthcare	140-144
28.	206	Gesture Recognition in Sign Language Translation: A Deep Learning Approach	145-151
29.	208	Exploring AI Ability to Generate Artistic Content, Music Literature, and Other Creative works	152-157
30.	209	Comparison of Recent Energy Efficient Protocols Used in Smart Agriculture	158-163
31.	210	Enhancing Underwater Imagery with Feature-Parallel Multi-Scale Attention and Spatially Enhanced Global Representation Transformer	164-169
32.	217	Reforming Education System with Blockchain Technology	170-174

33. 227 OCT (Optical Coherence Tomography) Image for Disease Detection 175-180 34. 230 IR Drop Analysis for Power Integrity in 3D Ics 181-185 35. 231 A 154 ppm/OC Improved Current Mode Bandgap with 0.9V Supply in 28 nm CMOS 186-190 36. 239 Review of Using Various Deep Learning Techniques and Cycle-GANs with Transformer for Disase Detection and Classification in Plant Leaves with Transformer for Disase Detection and Classification in Plant Leaves 191-197 37. 241 Sccurity System for IoT Applications based on Hybrid Fuzzy Possibility C-Means Clastering 203-206 38. 243 Power Efficient Novel CMOS Double-base to Binary Encoder (DBE) 203-206 39. 263 Design and Performance Analysis of Plamar Structure loaded with four symmetrical F-Slot of SG mm-wave Applications 218-224 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing 218-224 43. 328 Automated Weapon Detection using Inception-v3: A CNN Approach 230-235 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 241-244 54. 351 Application of PID Controller Tuning Method				
34. 230 IR Drop Analysis for Power Integrity in 3D Ics 181-185 35. 231 A 15.4 ppm/OC Improved Current Mode Bandgap with 0.9V Supply in 28 m CMOS 186-190 36. 239 Review of Using Various Deep Learning Techniques and Cycle-GANs with Transformer for Discase Detection and Classification in Plant Leave C-Means Clustering 191-197 37. 241 Sccurity System for IoT Applications based on Hybrid Fuzzy Possibility C-Means Clustering 198-202 38. 243 Power Efficient Novel CMOS Double-base to Binary Encoder (DBE) 203-206 39. 263 Design and Performance Analysis of Planar Structure loaded with four symmetrical T-Slot of S0 mm-wave Applications 207-212 40. 267 A Noise and Mismatch Improved Charge Pump for PLL in 28nn CMOS 213-217 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Muditispectral Imagery 218-224 42. 316 Study on Field Effect Transistors Based Gas Sensors 225-229 43. Automatic Detection of Invavive Aquatic Weeds Using Remotely Sensed Multispectral Imagery 246-240 44. 331 Automatic Detection using Inception-v3: A CNN Approach 245-250 45. 341<	33.	227		175-180
35.231A 15 4 ppm/OC improved Current Mode Bandgap with 0.9V Supply in 28 nm CMOS186-19036.239Review of Using Various Deep Learning Techniques and Cycle-GANs with Transformer for Disease Detection and Classification in Plant Leaves Security System for 167 Applications based on Hybrid Fuzzy Possibility (PMeans Clustering)198-20237.241Security System for 167 Applications based on Hybrid Fuzzy Possibility C-Means Clustering198-20238.243Power Efficient Novel CMOS Double-base to Binary Encoder (DBE) aymmetrical T-Slot for 5G mm-wave Applications207-21240.267A Noise and Mismatch Improved Charge Pump for PLL in 28nm CMOS Technology213-21741.302Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing Multispectral Imagery213-22442.316Study on Field Effect Transitors Based Gas Sensors Multispectral Imagery236-24045.341Automated Weapon Detection using Inception-v3: A CNN Approach Unreints and Steep Subthreshold Stope245-25047.356Study and Analysis of Plant Disease Identification Models257-26148.389A Novel Compact CP MIMO Antenan for Sub-6 GHz Wireles Communication Applications based on Shorting Pms276-26749.400Design and Analysis of Plant Disease Identification Models257-26150.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning QCA technology268-27351.405Defect free Lamination of Low Temperature Co-fired Ceranic Mult	34.	230		181-185
36. 239 with Transformer for Discase Detection and Classification in Plant Leaves 191-197 37. 241 Security System for IoT Applications based on Hybrid Fuzzy Possibility 198-202 38. 243 Power Efficient Novel CMOS Double-base to Binary Encoder (DBE) 203-206 39. 263 besign and Performance Analysis of Planar Structure loaded with four symmetrical T-Slot for 5G mm-wave Applications 207-212 40. 267 A Noise and Mismatch Improved Charge Pump for PLL in 28m CMOS Technology 213-217 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing 218-224 42. 316 Study on Field Effect Transistors Based Gas Sensors 225-229 43. 328 Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery 230-235 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 236-240 45. 341 Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subthrshold Slope 241-244 46. 353 Communication Applications based on Shorting Pins 257-261 49. 400 Design and Analysis of Binary to Gray and Gray to Binary co			A 15.4 ppm/0C Improved Current Mode Bandgap with 0.9V Supply in 28	
37. 241 C-Means Clustering 198-202 38. 243 Power Efficient Novel CMOS Double-base to Binary Encoder (DBE) 203-206 39. 263 symmetrical T-Slot for 5G mm-wave Applications 207-212 40. 267 A Noise and Mismatch Improved Charge Pump for PLL in 28mn CMOS 213-217 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A rathway to Enhanced Signal Processing 218-224 42. 316 Study on Field Effect Transistors Based Cas Sensors 225-229 43. 328 Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery 230-235 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 236-240 45. 341 Heterostructure Nanotube Tunneling FET (TFET) for better Drive Charle Currents and Steep Subthreshold Slope 241-244 46. 353 Control in Multi Area Power System at Different Load Conditions 251-256 47. 356 Study and Analysis of Plant Discase Identification Models 251-256 48. 389 A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless 262-267 50. 402 Resource Allocation in Multicarrie	36.	239		191-197
39. 263 Design and Performance Analysis of Planar Structure loaded with four symmetrical T-Slot for 5G mm-wave Applications 207-212 40. 267 A Noise and Mismatch Improved Charge Pump for PLL in 28nm CMOS Technology 213-217 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing 218-224 42. 316 Study on Field Effect Transistors Based Gas Sensors 225-229 43. 328 Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery 230-235 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 236-240 45. 341 Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subthreshold Slope 241-244 46. 353 Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions 251-256 48. 389 A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins 262-267 50. 402 Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning 268-273 51. 405 Defect free Lamination of Low	37.	241	C-Means Clustering	198-202
39.265symmetrical T-Slot for 5G mm-wave Applications207-21240.267A Noise and Mismatch Improved Charge Pump for PLL in 28nm CMOS213-21741.302Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing218-22442.316Study on Field Effect Transistors Based Gas Sensors225-22943.328Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery230-23544.331Automated Weapon Detection using Inception-v3: A CNN Approach Deciphering Phenomenal Performance with Gate-All-Around Strained Heterostructure Nanotube Tunneling FET (TFET) for better Drive Control in Multi Area Power System at Different Load Conditions241-24446.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions257-26147.356Study and Analysis of Plant Disease Identification Models257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology268-27350.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.433Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinet Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications </td <td>38.</td> <td>243</td> <td>Power Efficient Novel CMOS Double-base to Binary Encoder (DBE)</td> <td>203-206</td>	38.	243	Power Efficient Novel CMOS Double-base to Binary Encoder (DBE)	203-206
40. 267 Technology 213-217 41. 302 Optimizing Dual-Channel QMF Banks with Linear Phase Using Modified-GABC Approach: A Pathway to Enhanced Signal Processing 218-224 42. 316 Study on Field Effect Transistors Based Gas Sensors 225-229 43. 328 Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery 230-235 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 236-240 45. 341 Heterostructure Nanotube Tunneling FET (TFET) for better Drive Control in Multi Area Power System at Different Load Conditions 245-250 46. 353 Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions 251-256 48. 389 A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins 257-261 49. 400 Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology 268-273 51. 405 Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules 274-277 52. 419 Analysing Distinc Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data 278-283 <td>39.</td> <td>263</td> <td>symmetrical T-Slot for 5G mm-wave Applications</td> <td>207-212</td>	39.	263	symmetrical T-Slot for 5G mm-wave Applications	207-212
41.302Modified-GABC Approach: A Pathway to Enhanced Signal Processing218-22442.316Study on Field Effect Transistors Based Gas Sensors225-22943.328Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery230-23544.331Automated Weapon Detection using Inception-v3: A CNN Approach Deciphering Phenomenal Performance with Gate-All-Around Strained Deciphering Phenomenal Performance with Gate-All-Around Strained Unrents and Steep Subthreshold Slope246-24046.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions245-25047.356Study and Analysis of Plant Discase Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins262-26750.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defert free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation S's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach of Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powerd Automated Refrigerator304-3085	40.	267		213-217
43.328Automatic Detection of Invasive Aquatic Weeds Using Remotely Sensed Multispectral Imagery230-23544.331Automated Weapon Detection using Inception-v3: A CNN Approach Deciphering Phenomenal Performance with Gate-All-Around Strained Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subthreshold Slope241-24445.341Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subthreshold Slope245-25046.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions245-25047.356Study and Analysis of Plant Disease Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology268-27351.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models290-29556.459Development of Wireless Optical Communication Link for Secure and four Transistors NAND Gates301-30359.474Multi-walled C	41.	302		218-224
43. 325 Multispectral Imagery 236-233 44. 331 Automated Weapon Detection using Inception-v3: A CNN Approach 236-240 45. 341 Deciphering Phenomenal Performance with Gate-All-Around Strained 241-244 46. 353 Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions 245-250 47. 356 Study and Analysis of Plant Disease Identification Models 251-256 48. 389 A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins 257-261 49. 400 Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology 268-273 51. 405 Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules 274-277 52. 419 Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data 278-283 53. 424 Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications 284-289 54. 433 A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model 290-295 55. 44	42.	316		225-229
45.341Deciphering Phenomenal Performance with Gate-All-Around Strained Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subthreshold Stope Control in Multi Area Power System at Different Load Conditions241-24446.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions245-25047.356Study and Analysis of Plant Disease Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins267-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology268-27350.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data284-28953.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS Ponsely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transist			Multispectral Imagery	
45.341Heterostructure Nanotube Tunneling FET (TFET) for better Drive Currents and Steep Subhreshold Slope241-24446.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions245-25047.356Study and Analysis of Plant Disease Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology262-26750.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS Pon Wireless Applications290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates320-32560.475Image Tweet Classification for Crisis Informative Task320-32561. </td <td>44.</td> <td>331</td> <td></td> <td>236-240</td>	44.	331		236-240
46.353Application of PID Controller Tuning Method for Load Frequency Control in Multi Area Power System at Different Load Conditions245-25047.356Study and Analysis of Plant Disease Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology268-27350.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications290-29554.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates320-32560.475Image Tweet Classification for Crisis Informative Task320-325 <td>45.</td> <td>341</td> <td>Heterostructure Nanotube Tunneling FET (TFET) for better Drive</td> <td>241-244</td>	45.	341	Heterostructure Nanotube Tunneling FET (TFET) for better Drive	241-244
47.356Study and Analysis of Plant Disease Identification Models251-25648.389A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless Communication Applications based on Shorting Pins257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology262-26750.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube-Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor326-33160.475Image Tweet Classification for Crisis Informative Task320-32561.476Einer-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Biosensor <td>46.</td> <td>353</td> <td>Application of PID Controller Tuning Method for Load Frequency</td> <td>245-250</td>	46.	353	Application of PID Controller Tuning Method for Load Frequency	245-250
48.389Communication Applications based on Shorting Pins257-26149.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology262-26750.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS Por Wireless Applications284-28954.433Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates314-31959.474Multi-walled Carbon Nanotube-Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Erizymatic Chemiresistive Sensor for Glucose Detection Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator	47.	356		251-256
49.400Design and Analysis of Binary to Gray and Gray to Binary code converter using QCA technology262-26750.402Resource Allocation in Multicarrier MIMO-NOMA with Unsupervised Learning268-27351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS Por Wireless Applications284-28954.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates320-31359.474Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor320-32561.476Einzymatic Cheminesistive Sensor for Glucose Detection Enzymatic Chemiresistive Sensor for Glucose Detection332-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Volt	48.	389	A Novel Compact CP MIMO Antenna for Sub-6 GHz Wireless	257-261
30.402Learning208-2/351.405Defect free Lamination of Low Temperature Co-fired Ceramic Multi- Chip-Modules274-27752.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications284-28954.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube-Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset	49.	400	Design and Analysis of Binary to Gray and Gray to Binary code converter	262-267
31.403Chip-Modules214-21152.419Analysing Distinct Change Detection Methods for Identifying Spectral and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications284-28954.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90mm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	50.	402		268-273
52.419and Spatial Variation Using Planetscope Satellite Data278-28353.424Triple band CSSRR inspired Microstrip Patch Antenna Using L-Slot DGS For Wireless Applications284-28954.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	51.	405	Chip-Modules	274-277
35.424For Wireless Applications284-28954.433A Robust Parkinson's Disease Recognition from MRI Brain Images by Densely Multi-Dilated Densely Connected ResNet Model290-29555.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Multi-walled Carbon Nanotube-Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Enzymatic Chemiresistive Sensor for Glucose Detection Enzymatic Chemiresistive Sensor for Glucose Detection322-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease338-34363.511Design and Implementation of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	52.	419		278-283
54.433Densely Multi-Dilated Densely Connected ResNet Model290-29355.435Hierarchical Approach for Multi-Class Models296-30056.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	53.	424		284-289
56.459Development of Wireless Optical Communication Link for Secure Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease338-34363.511Design and Implementation of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	54.	433		290-295
36.439Underwater Communication301-30357.463Solar Energy Powered Automated Refrigerator304-30858.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection332-33762.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease338-34363.511Design and Implementation of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	55.	435		296-300
58.471Design and Evaluation of Low Power 2 to 4 Decoder Circuit using Three and four Transistors NAND Gates309-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection326-33162.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349			Underwater Communication	
58.471and four Transistors NAND Gates509-31359.474Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection326-33162.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	57.	463		304-308
59.474Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor314-31960.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection326-33162.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	58.	471	and four Transistors NAND Gates	309-313
60.475Image Tweet Classification for Crisis Informative Task320-32561.476Zinc-Oxide Nanofiber and Green Synthesized Silver Nanoparticle Based Enzymatic Chemiresistive Sensor for Glucose Detection326-33162.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	59.	474	Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber:	314-319
61.470Enzymatic Chemiresistive Sensor for Glucose Detection520-53162.486Walrus Optimization Algorithm based Support Vector Machine for Feature Selection and Classification in Coronary Artery Disease332-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	60.	475	Image Tweet Classification for Crisis Informative Task	320-325
62.486Feature Selection and Classification in Coronary Artery Disease532-33763.511Design and Implementation of Voltage Controlled Ring Oscillator using 90nm CMOS Technology338-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	61.	476	Enzymatic Chemiresistive Sensor for Glucose Detection	326-331
65.51190nm CMOS Technology538-34364.534Unobtrusive Classification of Student Behavior in Real Classroom Settings Using a Video Dataset344-349	62.	486	Feature Selection and Classification in Coronary Artery Disease	332-337
04. 534 Settings Using a Video Dataset 544-349	63.	511	90nm CMOS Technology	338-343
65.546High-Performance Hate Speech Detection with Hybrid Attention350-355	64.	534	Settings Using a Video Dataset	
	65.	546	High-Performance Hate Speech Detection with Hybrid Attention	350-355

553	A Review on Reconfigurable Antenna and its Design Methods for Sub-6 GHz Applications	356-361
560	Optimization of Energy Management and Anomaly Detection in Smart Grid Analytics using Deep Learning	362-367
563	using Edge-IIoTset	368-371
565	Deterministic Point Process Perspective	372-377
569	Performance Improvement of Hybrid RoF and RoFSO System using NRZI Encoding under High Atmospheric Turbulence	378-383
587	Electrical-Performance Characteristics Prediction of Gate All Around Tunnel FET Using Machine Learning	384-387
588	Ensemble Classification of Sleep Apnea Using Single-Lead Electrocardiogram Signal	388-393
590	An Ultra-Sensitive MXene Mediated Surface plasmon resonance sensor using Bi-metal layers	394-398
593	Investigation of parameter variations of lead-free perovskite solar cell NiO/CsSnGeI3/IGZO using SCAPS 1D simulation tool	399-402
604	High speed low leakage and power efficient Domino Logic circuit for wide fan in gates.	403-407
610	Compact Sized Dual Band Triangular Patch Antenna Using CSRR for Wireless Applications	408-412
614	Detection of Escherichia Coli Bacteria Using Few Layer Black Phosphorous-Based Surface Plasmon Resonance Sensor	413-416
619	Leveraging Deep Learning and Molecular Representation for Drug Discovery	417-423
620	Apple Leaf Disease Prediction using modified YOLOv8 Algorithm	424-429
622	Classification of Soil Moisture Content with the Application of Deep Learning	430-434
625	Reinforcement Learning-Based Strategies For Achieving Long-Term Sustainability In IoT	435-440
631	Transfer Learning Ensemble Model for Lung Nodule Classification	441-444
633	A Review on SPR Based PCF Refractometric Sensor	445-450
653	Fog-Driven Heart Attack Prediction from Wearable Edge Devices	451-455
664	Design of an Efficient Model for Quad Bio-Inspired Optimization for Securing and Scheduling Smart Grids	456-461
669	Revolutionizing Smart Agriculture: Burning Number Analysis and Linear Regression for Optimal Sensor Activation in 3-Ary n-Cube Networks	462-466
677	Refining of Learning in Human Decision Making Models: A Simple Step towards Machine Unlearning	467-472
679	Design of Substrate Integrated Waveguide Antenna for Liquid Sensing	473-477
691	Enhancing Fetal ECG Extraction: Novel UNET Architecture using Continuous Wavelet Transforms performing dimentionality reduction	478-485
696	Detection of Alcoholism based on EEG Signals Using Machine Learning	486-491
700	Performance analysis of Gate-All-Around Transistor at Various Technology Nodes	492-497
715	Energy Efficient Transmission and Fault Tolerance in WSN-Based IoT Network using HS-EDEEC and Probability Based Approach	498-505
	560 563 565 569 587 588 590 593 604 610 614 619 620 622 623 633 653 664 669 677 679 691 696 700	533 GHz Applications 560 Optimization of Energy Management and Anomaly Detection in Smart Grid Analytics using Deep Learning 563 Convolutional Neural Network Based IOT Intrusion Detection System using Edge-IIoTset 565 Success Probability Analysis for Joint Sensing and Communications: A Deterministic Point Process Perspective 569 Performance Improvement of Hybrid RoF and RoFSO System using NRZI Encoding under High Atmospheric Turbulence 587 Electrical-Performance Characteristics Prediction of Gate All Around Tunnel FET Using Machine Learning 588 Ensemble Classification of Sleep Apnea Using Single-Lead Electrocardiogram Signal 590 An Ultra-Sensitive MXene Mediated Surface plasmon resonance sensor using Bi-metal layers 593 Investigation of parameter variations of lead-free perovskite solar cell NiO/CSsNGeI3/IGZO using SCAPS 1D simulation tool 604 High speed low leakage and power efficient Domino Logic circuit for wide fan in gates. 610 Compact Sized Dual Band Triangular Patch Antenna Using CSRR for Wireless Applications 614 Detection of Scil Moisture Content with the Application of Deep Learning 620 Apple Leaf Disease Prediction using modified YOLOv8 Algorithm 622 Classification of Soil Moisture Content with the Application of Sustainability In IoT 631 Transfer Learning-Baseed Strategies For Achi