2024 IEEE Conference on Artificial Intelligence (CAI 2024)

Singapore 25-27 June 2024

Pages 1-769

IEEE Catalog Number: CFP24BJ7-POD ISBN: 979-8-3503-5410-2

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24BJ7-POD

 ISBN (Print-On-Demand):
 979-8-3503-5410-2

 ISBN (Online):
 979-8-3503-5409-6

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE Conference on Artificial Intelligence (CAI) CAI 2024

Table of Contents

Message from the General Chairs xxx Message from the Program Chairs Organizing Committee x Program Committee x Sponsors 1 Keynote Addresses 1x	xl di lv ix
CAI 2024	
3D Reconstruction and Estimation from Single-view 2D Image by Deep Learning – A Survey Yongfeng Shan (University of Technology Sydney, Australia), Christy Jie Liang (University of Technology Sydney, Australia), and Min Xu (University of Technology Sydney, Australia)	1
3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification Shyam Varahagiri (Indian Institute of Information Technology, India), Aryaman Sinha (Indian Institute of Information Technology, India), Shiv Ram Dubey (Indian Institute of Information Technology, India), and Satish Kumar Singh (Indian Institute of Information Technology, India)	. 8
A Comparative Study of Reinforcement Learning-Based Collision Avoidance for Maritime Autonomous Surface Ships Liangbin Zhao (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Xingrui Yu (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Xiuju Fu (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	15
A Division Based Neuron for Neural Networks	19
A Knowledge Guided Multi-Population Evolutionary Algorithm for Dynamic Workflow Schedul Problem	_
A Lightweight Neural Network with Transformer to Predict Credit Default	<u>1</u> 9

A Model-Free Deep Reinforcement Learning Approach to Piano Fingering Generation	31
A Personalised Learning Tool for Physics Undergraduate Students Built On a Large Language Model for Symbolic Regression	38
A Review of Data-Centric Artificial Intelligence (DCAI) and its Impact on Manufacturing Industry: Challenges, Limitations, and Future Directions	44
A Semi-Supervised Model for Automated Classification of AI-Related Job Tasks Using Bloom's Taxonomy Christophe Mbounang Fongang (Ruhr West University of Applied Sciences, Germany), Michael Vogelsang (Ruhr West University of Applied Sciences, Germany), Timm Eichenberg (University of Applied Sciences Weserbergland, Germany), Britta Rüschoff (FOM University of Applied Sciences for Economics and Management, Germany), and Anne Stockem Novo (Ruhr West University of Applied Sciences, Germany)	52
A Spatiotemporal Excitation Classifier Head for Action Recognition Applications Dinh Nguyen (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Siying Liu (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Vicky Sintunata (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Yue Wang (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Jack Ho (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), ZhaoYong Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Ryan Lee (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), and Karianto Leman (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore)	59
A Study of the Generalisability of CNNs for Disease Prediction	. 63
A Unified Approach for Binary-Class and Multi-Class Data Augmented Generation	69
Abstracted Trajectory Visualization for Explainability in Reinforcement Learning	75

Accurate and Explainable Cataract Detection Using Eye Images Taken by Hand-held Slit-lamp
Cameras
Active Living for the Elderl (NTU), Singapore), Hao Wang (Joint
NTU-UBC Research Centre of Excellence in Active Living for the Elderl
(NTU), Singapore), Yongwei Wang (Joint NTU-UBC Research Centre of
Excellence in Active Living for the Elderl (NTU), Singapore),
Pengcheng Wu (Joint NTU-UBC Research Centre of Excellence in Active
Living for the Elderl (NTU), Singapore), Yan Yee Hah (Khoo Teck Puat
Hospital, Singapore), Chee Chew Yip (Khoo Teck Puat Hospital,
Singapore), Wee Jin Heng (Tan Tock Seng Hospital, Singapore), Tock Han Lim (Tan Tock Seng Hospital, Singapore), Cyril Leung (Nanyang
Technological University (NTU), Singapore), and Chunyan Miao (Nanyang
Technological University (NTU), Singapore; Joint NTU-UBC Research
Centre of Excellence in Active Living for the Elderl (NTU), Singapore)
Active Semi-Supervised Learning Based on Global Uncertainty Variation with Noise
Resistance
Yufei Wen (The Hong Kong University of Science and Technology (Guangzhou), China)
ADAAUG: An Adaptive Data Augmentation Method for Change Detection
Rui Huang (Civil Aviation University of China, China), Jieda Wei
(Civil Aviation University of China, China), Sihua Gao (Civil Aviation University of China, China), Zongyu Guo (Civil Aviation University of
China, China), Yan Xing (Civil Aviation University of China, China),
Weifeng Xu (North China Electric Power University, China), and Qing
Guo (Agency for Science, Technology and Research, Singapore)
Adaptive Graph Normalized Sign Algorithm
Adaptive Home Energy Management: Human-Centric RL Approach for Diverse Situations 104 Zachary Tchir (University of Alberta, Canada), Petr Musilek (University of Alberta, Canada), and Marek Z. Reformat (University of Alberta, Canada; University of Social Sciences, Łódź, Poland)
$Adoption \ of \ Generative \ AI \ in \ Content \ Creation: A \ Case \ Study \ from \ the \ Advertising \ Industry \ . \ 111 \ Dinh \ Thi \ Chinh \ Nguyet \ (Singapore \ University \ of \ Social \ Sciences)$
Advancing Safety and Robustness: Perception-Planning System of an Autonomous Vehicle for Micromobility Last Mile Delivery
Sai Datta (Nanyang Technological University, Singapore), Joseph De
Guia (Nanyang Technological University, Singapore; Mapua University,
Philippines), Madhavi Deveraj (Mapua University, Philippines), Jheanel
Estrada (Nanyang Technological University, Singapore), Cheng Hun Oh
(Nanyang Technological University, Singapore), Bradly Lomotan (Nanyang Technological University, Singapore), Gil Jr Opina (Nanyang
Technological University, Singapore), Gir ji Opina (Nanyang Technological University, Singapore), Anshuman Tripathi (Nanyang
Technological University, Singapore), and Zhigang Yu (Nanyang
Technological University, Singapore)
Adversarial Latent Autoencoder with Self-Attention for Structural Image Synthesis
Jiajie Fan (BMW Group, Germany), Laure Vuaille (Technical University
of Munich, Germany), Thomas Bäck (Leiden University, The Netherlands),
and Hao Wang (Leiden University, The Netherlands)

Adverse Weather Benchmark Dataset for LiDAR-Based 3D Object Recognition and Segmentation in Autonomous Driving	
Dominik Weikert (Otto von Guericke University, Germany), Christoph Steup (Otto von Guericke University, Germany), and Sanaz Mostaghim (Otto von Guericke University, Germany)	20
AI as a Tool for Fair Journalism: Case Studies from Malta	27
AI Hallucinations: A Misnomer Worth Clarifying	33
AI-Based Approach to Efficient Information Extraction for Supply Chain Contracts	39
AI-Based Learning Assistants: Enhancing Math Learning for Migrant Students in German Schools	44
Vivian Kretzschmar (Stuttgart Media University, Germany) and Jürgen Seitz (Stuttgart Media University, Germany)	
Aircraft Engines Performances Estimation from Multi-Point and Multi-Time Operational Data via Neural Networks	50
Aligning Crowd-Sourced Human Feedback for Code Generation with Bayesian Inference 15 Man Fai Wong (City University of Hong Kong) and Chee Wei Tan (Nanyang Technological University)	58
An Effective Ensemble Deep Learning Framework for Blood-Brain Barrier Permeability Prediction	<i>4</i> 1
Thanh-Hoang Nguyen-Vo (Victoria University of Wellington, New Zealand; Wellington Institute of Technology, New Zealand), Trang Do (Ministry of Business, Innovation and Employment, New Zealand), and Binh Nguyen (Victoria University of Wellington, New Zealand)	04
An Efficient TF-IDF Based Query by Example Spoken Term Detection	70
An End-to-end Learning Approach for Counterfactual Generation and Individual Treatment Effect Estimation	76

An Ensembled Convolutional Recurrent Neural Network Approach for Automated Classroom Sound	
Classification	13
An Evaluation of Reasoning Capabilities of Large Language Models in Financial Sentiment Analysis	39
An Evolutionary Algorithm with Variable-Length Chromosome for Multi-Objective Minimalistic Attack	
Anomaly Detection and Breakdown Diagnosis for Condition Monitoring of Marine Engines 20 Nhu Khue Vuong (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Sateesh Babu Giduthuri (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Gen Liang Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Terrence Tan (PSA International (PSA), Singapore), and Savitha Ramasamy (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore)	10
Application of Adaptive Douglas-Peucker with Acceleration Algorithm in Ship Trajectory Compression)6
Applications of Artificial Intelligence in Oceanic Nuclear Contamination Management	.0
Archive-Based Cooperative Coevolution Genetic Programming for Workflow Scheduling 21 Yuanzi Hong (Guangdong Polytechnic Normal University, China), Wei-Li Liu (Guangdong Polytechnic Normal University, China), Jinghui Zhong (South China University of Technology, China), Peng Liang (Guangdong Polytechnic Normal University, China), Jianhua Guo (Guangdong Polytechnic Normal University, China), and Chunying Li (Guangdong Polytechnic Normal University, China; Guangdong Provincial Key Laboratory of Intellectual Property & Big Data, China)	.6
ARIMA Time Series Modelling for Energy Forecasting in Wireless Sensor Networks	:0

Artificial Intelligence for Modeling Complex Treatment Decisions in Aortic Valve Intervention	226
Jie Jun Wong (National Heart Centre Singapore, Singapore), Glades Tan (National Heart Centre Singapore, Singapore), Xinliu Zhong (National University of Singapore, Singapore), Kay Woon Ho (National Heart Centre Singapore, Singapore), Vincent Wei Jun Sim (National Heart Centre Singapore, Singapore), Si Yong Yeo (Lee Kong Chian School of Medicine, Singapore), and Angela S. Koh (National Heart Centre Singapore, Singapore)	
Astro-Det: Resident Space Object Detection for Space Situational Awareness	228
Asymmetric Source-Free Unsupervised Domain Adaptation for Medical Image Diagnosis 2: Yajie Zhang (The Hong Kong Polytechnic University, China), Zhi-An Huang (City University of Hong Kong (Dongguan), China; City University of Hong Kong, Shenzhen Research Institute, China), Jibin Wu (The Hong Kong Polytechnic University, China), and Kay Chen Tan (The Hong Kong Polytechnic University, China)	34
Attention-Based Deep Learning Models for Detecting Misinformation of Long-Term Effects of COVID-19	240
Automatic Multiple Choice Question Evaluation Using Tesseract OCR and YOLOv8	46
Automatic Radar Waveform Design	:53
Autonomous Gain Tuning for Differential Drive Robots Targeting Control Using Soft Actor-Critic	.55

Bayesian Neural Network For Personalized Federated Learning Parameter Selection	
Benchmarking AutoGen with Different Large Language Models	
Benchmarking Shadow Removal for Facial Landmark Detection	
Big Data-Driven Booking Consolidation and Scheduling of Launching Service in Singapore Port	
Blockchain-Based AI Agent and Autonomous World Infrastructure	
Bounded Gaussian Process with Multiple Outputs and Ensemble Combination	
Breaking the Silence: Whisper-Driven Emotion Recognition in AI Mental Support Models290 Xinghua Qu (Tianqiao and Chrissy Chen Institute, Singapore), Zhu Sun (CFAR, IHPC, A*STAR, Singapore), Shanshan Feng (CFAR, IHPC, A*STAR, Singapore), Caishun Chen (CFAR, IHPC, A*STAR, Singapore), and Tian Tian (University of California, United States)	

Carbon Stock Estimation at Scale from Aerial and Satellite Imagery	292
Category-Aware Test-Time Training Domain Adaptation Yangqin Feng (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Xinxing Xu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Yan Wang (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Zizhou Wang (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Liangli Zhen (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Rick Siow Mong Goh (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), and Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore)	300
ChatGPT vs Bard: Which is a Better Writer? Ai Leng Ng (Singapore University of Social Sciences, Singapore) and Justina Ong (Singapore University of Social Sciences, Singapore)	307
CI-VAE: A Generative Deep Learning Model for Class-Specific Data Interpolation	313
Clash of Titans on Imbalanced Data: TabNet vs XGBoost	320
ColdU: User Cold-Start Recommendation with User-Specific Modulation	326
Comparative Analysis of Hate Speech Detection: Traditional vs. Deep Learning Approaches Haibo Pen (Tianjin University, China), Nicole Teo (Singapore Management University, Singapore), and Zhaoxia Wang (Singapore Management University, Singapore)	332
Comparison of Metaheuristic Algorithms for Photovoltaic Systems Allocation in a Power Distribution Feeder José Almeida (Polytechnic of Porto, Portugal), Brian Jaramillo-Leon (São Paulo State University, Brazil), Jônatas B. Leite (São Paulo State University, Brazil), João Soares (Polytechnic of Porto, Portugal), Zita Vale (GECAD, Portugal), and Sergio Zambrano-Asanza (São Paulo State University, Ecuador)	338

Compressed Bayesian Federated Learning for Reliable Passive Radio Sensing in Industrial oT
Luca Barbieri (Politecnico di Milano, Italy; Consiglio Nazionale delle Ricerche, Italy), Stefano Savazzi (Consiglio Nazionale delle Ricerche, Italy), and Monica Nicoli (Politecnico di Milano, Italy)
Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data
Confidence Estimation in Analyzing Intravascular Optical Coherence Tomography Images with Deep Neural Networks
Confidential and Protected Disease Classifier Using Fully Homomorphic Encryption
Context-Based Semantic Caching for LLM Applications 371 Ramaswami Mohandoss (Infosys Ltd, India)
Continually Learning Planning Agent for Large Environments Guided by LLMs
Contrastive Information Maximization Clustering for Self-Supervised Speaker Recognition 383 Abderrahim Fathan (Computer Research Institute of Montreal (CRIM), Canada) and Jahangir Alam (Computer Research Institute of Montreal (CRIM), Canada)
Coronary Artery Disease Classification Using One-Dimensional Convolutional Neural Network 889
Atitaya Phoemsuk (University of Essex, United Kingdom) and Vahid Abolghasemi (University of Essex, United Kingdom)

	e Distribution Alignment for Improving Automated Medical Diagnosis Using
	as Photography
0,	rng (Institute of High Performance Computing, Agency for
	chnology and Research, Singapore), Xinxing Xu (Institute of
	rmance Computing, Agency for Science, Technology and ingapore), Zizhou Wang (Institute of High Performance
	, Agency for Science, Technology and Research, Singapore),
	(Institute of High Performance Computing, Agency for Science,
	and Research, Singapore), Huazhu Fu (Institute of High
	e Computing, Agency for Science, Technology and Research,
	Shaohua Li (Institute of High Performance Computing,
	Science, Technology and Research, Singapore), Liangli Zhen
	f High Performance Computing, Agency for Science,
	and Research, Singapore), Tien-En Tan (Singapore Eye
	ustitute, Singapore; Singapore National Eye Centre,
	Duke-National University of Singapore Medical School,
	Mukharram M. Bikbov (Ufa Eye Research Institute, Russia),
	is (Heidelberg University, Germany), Chee Wai Wong
	Eye Research Institute, Singapore; Singapore National Eye
	gapore; Duke-National University of Singapore Medical
	gapore), Ching-Yu Cheng (Singapore Eye Research Institute,
	Singapore National Eye Centre, Singapore; Duke-National
	of Singapore Medical School, Singapore), Daniel Shu Wei
	apore Eye Research Institute, Singapore; Singapore National
	, Singapore; Duke-National University of Singapore Medical
	gapore), Rick Siow Mong Goh (Institute of High Performance
	, Agency for Science, Technology and Research, Singapore),
	iu (Institute of High Performance Computing, Agency for
_	chnology and Research, Singapore)
	emputer Vision and Transformer Approach for Pile Capacity Estimation from
	Load Test
	puwai (King Mongkut's University of Technology Thonburi,
	nd Parchya Makam (King Mongkut's University of Technology
Thonburi,	
_	avigational Autonomy in the Visually Impaired: A Novel Approach with
	Singh (Nanyang Technological University, Singapore) and
	G (Nanyang Technological University, Singapore)
Data-Centric	AI Practice in Maritime: Securing Trusted Data Quality via a Computer
	Framework4
	Institute of High Performance Computing (IHPC), Agency for
0	chnology and Research (A*STAR), Republic of Singapore), Qi
	n Ong (School of Computing, Singapore Polytechnic, Republic
	re), Xiaocai Zhang (Institute of High Performance Computing
	gency for Science, Technology and Research (A*STAR), Republic
	re), Xiuju Fu (Institute of High Performance Computing
	gency for Science, Technology and Research (A*STAR), Republic
of Singapo	e), and Zheng Qin (Institute of High Performance Computing
	gency for Science, Technology and Research (A*STAR), Republic
of Singapo	

Data-Driven Reinforcement Learning for Optimal Motor Control in Washing Machines	118
Decoding Cyberbullying on Social Media: A Machine Learning Exploration	125
Deep Learning Based Layout Recognition Approach for HMI Software Validation	129
Deep Learning for Tumor Localization with Depth Estimation: A Minimally Invasive Robotics-Assisted Approach	138
Differentiable Hash Encoding for Physics-Informed Neural Networks	144
DIRA: Dynamic Incremental Regularised Adaptation	148
Diversified Sequential Recommendation via Evolutionary Multi-Objective Transfer Optimization	1 56
Does Metacognitive Prompting Improve Causal Inference in Large Language Models?	158
Effective Generative AI Implementation in Developing Country Universities	160
Efficient Offloading in UAV-MEC IoT Networks: Leveraging Digital Twins and Energy Harvesting	164

Efficient Wildfire Detection Framework Based on Artificial Intelligence Using Convolutional Neural Network and Multi-Color Filtering
Encouraging Trust in AI-Powered Teaching Tools: Ranking Design Principles
Enhancing Biomedical Multi-Modal Representation Learning with Multi-Scale Pre-Training and Perturbed Report Discrimination
Enhancing Early Stunting Detection: A Novel Approach Using Artificial Intelligence with an Integrated SMOTE Algorithm and Ensemble Learning Model
Enhancing EEG-Based Emotion Recognition Using Semi-Supervised Co-Training Ensemble Learning
Enhancing Human-Computer Interaction Through AI: A Study on ChatGPT in Educational Environments
Enhancing Ischemic Brain Stroke Detection on CT Images: A Investigation of Transfer Learning Techniques of DenseNet-201 for Neuroimaging Analysis
Enhancing Out-of-Distribution Detection with Multitesting-Based Layer-wise Feature Fusion . 510 Jiawei Li (Beijing Normal University, China), Sitong Li (Beijing Normal University, China), Shanshan Wang (Beijing Normal University, China), Yicheng Zeng (The Chinese University of Hong Kong (Shenzhen), China), Falong Tan (Hunan University, China), and Chuanlong Xie (Beijing Normal University, China)
Enhancing Privacy and Security of Autonomous UAV Navigation
Entropy-Weighted Simulated Annealing Optimisation of Human-Simulated Multi-mode PD-PI Control for Biped Robots

Ethical Practices for Collecting Ground-Truth Food Datasets: A Systematic Review	530
EVA-ASCA: Enhancing Voice Anti-Spoofing Through Attention-Based Similarity Weights and Contrastive Negative Attractors	537
Evaluating Temporal Fidelity in Synthetic Time-Series Electronic Health Records Emmanuella Budu (Halmstad University, Swenden), Amira Soliman (Halmstad University, Swenden), Thorsteinn Rögnvaldsson (Halmstad University, Swenden), and Farzaneh Etminani (Halmstad University, Swenden)	541
Expert-Agnostic Medical Image Segmentation	549
Explainable Artificial Intelligence for Deep Synthetic Data Generation Models Luis Valina (University of Trás-os-Montes and Alto Douro, Portugal), Brigida Teixeira (LASI, GECAD, Polytechnic of Porto, Portugal), Arsénio Reis (University of Trás-os-Montes and Alto Douro, Portugal), Zita Vale (LASI, GECAD, Polytechnic of Porto, Portugal), and Tiago Pinto (University of Trás-os-Montes and Alto Douro, Portugal)	555
Exploring Viability of Test-Time Training: Application to 3D Segmentation in Multiple Sclerosis	557
Fairness-Aware Federated Minimax Optimization with Convergence Guarantee	563
Fast Convergence PINNs Using Pseudo-Density Embedding: A Study on Solid Mechanics! Melvin Wong (Nanyang Technological University, Singapore), Jiao Liu (Nanyang Technological University, Singapore), Ge Jin (Beijing Institute of Technology, China), Kunpeng Li (Nanyang Technological University, Singapore), and Doan Ngoc Chi Nam (Singapore Institute of Manufacturing Technology, A*STAR, Singapore)	569
Fast Vision Transformer via Additive Attention	57 3
Fast-Converging Decentralized ADMM for Consensus Optimization Jeannie He (KTH Royal Institute of Technology, Sweden), Ming Xiao (KTH Royal Institute of Technology, Sweden), and Mikael Skoglund (KTH Royal Institute of Technology, Sweden)	575

Fed-SHARC: Resilient Decentralized Federated Learning Based on Reward Driven Clustering Renuga Kanagavelu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Chris George Anil (Vellore Institute of Technology, India), Yuan Wang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Qingsong Wei (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Yong Liu (Institute of High Performance	581
Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Rick Siow Mong Goh (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	
Fine-Grained Partial Label Learning Cheng Chen (University of Technology1, Australia; CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Yueming Lyu (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Xingrui Yu (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Jing Li (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), and Ivor W Tsang (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore; Nanyang Technological University, Singapore)	587
Fine-Grained Visual Classification Using Self Assessment Classifier	. 597
Forecasting Infectious and Parasitic Disease Emergency Department Attendances using High-Dimensional Time Series Data	603
Gated Self-Supervised Learning for Improving Supervised Learning	. 611
Gaussian Process-Enhanced Impedance Iterative Learning for Robot Interaction Control Yongping Pan (Sun Yat-sen University, China), Wei Li (Sun Yat-sen University, China), and Tian Shi (Sun Yat-sen University, China)	. 616
Gene Targeting Particle Swarm Optimization for Large-Scale Optimization Problem	620

Generative Active Learning with Variational Autoencoder for Radiology Data Generation in Veterinary Medicine	26
In-Gyu Lee (Department of Computer Science, Chungbuk National University, Republic of Korea), Jun-Young Oh (Department of Computer Science, Chungbuk National University, Republic of Korea), Hee-Jung Yu (Department of Veterinary Medical Imaging, Konkuk University, Republic of Korea), Jae-Hwan Kim (Department of Veterinary Medical Imaging, Konkuk University, Republic of Korea), Ki-Dong Eom (Department of Veterinary Medical Imaging, Konkuk University, Republic of Korea), and Ji-Hoon Jeong (Department of Computer Science, Chungbuk National University, Republic of Korea)	
Generative AI-Based Cognitive Robot for Exam Candidates' Knowledge Self-Assessment 63 Intissar Haddiya (University Mohamed Premier, Morocco) and Andrea Pitrone (Loop AI Group LLC, United States)	32
GlobeMetrics: A Healthcare Framework for Video Based Saccade Characterization	38
Gradient Recalibration for Improved Visibility of Tail Classes in Supervised Contrastive Learning	14
Graph Learning Based Financial Market Crash Identification and Prediction	50
Group Correction-Based Local Disturbance Particle Swarm Optimization Algorithm for Solving Continuous Distributed Constraint Optimization Problems	52
Hand Function Assessment Using Computer Vision for Hand Rehabilitation	59
Harnessing Deep Learning and Satellite Imagery for Post-Buyout Land Cover Mapping	5 5
HFNeRF: Learning Human Biomechanic Features with Neural Radiance Fields	⁷ 2

Hierarchical Optimization for Operationally-Constrained Resource Planning	. 674
Human-Generative AI Collaborative Problem Solving Who Leads and How Students Perceive Interactions Gaoxia Zhu (Nanyang Technological University, Singapore), Vidya	
Sudarshan (Nanyang Technological University, Singapore), Jason Fok Kow (Nanyang Technological University, Singapore), and Yew Soon Ong (Nanyang Technological University, Singapore)	
HyMark: Application of Hybrid AI for Markdown Syntax Generation	. 687
Imitating Human Joystick Control Ability Using Style and Content Disentanglement	. 695
Improving 3D Occupancy Prediction Through Class-Balancing Loss and Multi-Scale Representation Huizhou Chen (Institute for Infocomm Research (I2R), A*STAR, Singapore; National University of Singapore (NUS), Singapore; Desay SV Automotive Singapore Pte. Ltd., Singapore), Jiangyi Wang (Institute for Infocomm Research (I2R), A*STAR, Singapore; Singapore University of Technology and Design (SUTD), Singapore), Yuxin Li (Desay SV Automotive Singapore Pte. Ltd., Singapore; Nanyang Technological University (NTU), Singapore), Na Zhao (Singapore University of Technology and Design (SUTD), Singapore), Jun Cheng (Institute for Infocomm Research (I2R), A*STAR, Singapore) and Xulei Yang (Institute for Infocomm Research (I2R), A*STAR, Singapore)	699
Incremental Random Forest for Unsupervised Learning	.704
Informed Machine Learning for Optimizing Melt Spinning Processes Viny Saajan Victor (Fraunhofer ITWM, Germany), Manuel Ettmüller (Fraunhofer ITWM, Germany), Andre Schmeißer (Fraunhofer ITWM, Germany), Heike Leitte (Rhineland-Palatinate Technical University, Germany), and Simone Gramsch (Frankfurt University of Applied Sciences, Germany)	. 706
Integrating Local Learning to Improve Deep-Reinforcement-Learning-Based Pairs Trading Strategies	. 714
Wei-Che Chang (National Yang Ming Chiao Tung University, Taiwan), Tian-Shyr Dai (National Yang Ming Chiao Tung University, Taiwan), Ying-Ping Chen (National Yang Ming Chiao Tung University, Taiwan), Chin-Yi Hsieh (National Yang Ming Chiao Tung University, Taiwan), Yu-Wei Chang (National Yang Ming Chiao Tung University, Taiwan), and Yu-Han Huang (National Yang Ming Chiao Tung University, Taiwan)	

Integrating Time Series Forecasting, NLP, and Financial Analysis for Optimal Investment Strategy: A Case Study on Adani Ports	720
Interact360: Interactive Identity-Driven Text to 360° Panorama Generation Zeyu Cai (The Hong Kong University of Science and Technology (Guangzhou)), Zhelong Huang (University of Science and Technology of China), Xu Zheng (The Hong Kong University of Science and Technology (Guangzhou)), Yexin Liu (The Hong Kong University of Science and Technology (Guangzhou)), Chao Liu (The Hong Kong University of Science and Technology (Guangzhou)), Zeyu Wang (The Hong Kong University of Science and Technology (Guangzhou); Hong Kong University of Science and Technology), and Lin Wang (The Hong Kong University of Science and Technology (Guangzhou); Hong Kong University of Science and Technology)	728
Inverse Multiobjective Optimization by Generative Model Prompting	737
Inverse Reinforcement Learning for Legibility Automation in Intelligent Agents	741
Is Complexity Required for Neural Network Pruning? A Case Study on Global Magnitude Pruning	747
It Takes Two to Trust: Mediating Human-AI Trust for Resilience and Reliability	755
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models Peike Patrick Li (Futureverse AI Research), Boyu Chen (Futureverse AI Research), Yao Yao (Futureverse AI Research), Yikai Wang (Futureverse AI Research), Allen Wang (Futureverse AI Research), and Alex Wang (Futureverse AI Research)	762

Knowledge-Based Reactive Planning and Re-Planning – A Case-Study Approach	770
Landscape Analysis Based vs. Domain-Specific Optimization for Engineering Design Applications: A Clear Case Roy de Winter (LIACS, Leiden University, The Netherlands), Fu Xing Long (BMW Group, Germany), Andre Thomaser (BMW Group, Germany), Thomas H.W. Bäck (LIACS, Leiden University, The Netherlands), Niki van Stein (LIACS, Leiden University, The Netherlands), and Anna V. Kononova (LIACS, Leiden University, The Netherlands)	776
Large Language Model (LLM) as a System of Multiple Expert Agents: An Approach to Solve the Abstraction and Reasoning Corpus (ARC) Challenge	
Large Language Model-Assisted Clustering and Concept Identification of Engineering Design Data	788
Large Language Model-Assisted Surrogate Modelling for Engineering Optimization Thiago Rios (Honda Research Institute Europe, Germany), Felix Lanfermann (Honda Research Institute Europe, Germany), and Stefan Menzel (Honda Research Institute Europe, Germany)	796
Large Language Models as Synthetic Electronic Health Record Data Generators Madhurima Vardhan (Argonne Leadership Computing Facility, Argonne National Laboratory, USA), Deepak Nathani (University of California, USA), Swarnima Vardhan (Yale New Haven Health System, USA), Abhinav Aggarwal (Yale New Haven Health System, USA), and Filippo Simini (Argonne Leadership Computing Facility, Argonne National Laboratory, USA)	804
Learning Task-Specific Initialization for Effective Federated Continual Fine-Tuning of Foundation Model Adapters Danni Peng (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Yuan Wang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Qingsong Wei (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Yong Liu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Rick Siow Mong Goh (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	811
Learning to Predict Short-Term Volatility with Order Flow Image Representation	817

	s is More: Understanding Word-Level Textual Adversarial Attack via n-gram Frequency
11 0 11 0 12 0 11	Scend
2	ense Plate Recognition in Low Quality Image by Using Latent Diffusion YOLOv7
Gas 2 1 (ntweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced trointestinal Disease Classification
) 1 2 ((1 3 4 6	ma-TCR: Generate De Novo TCR with Large Language Model
Res _] 1 (M-Assisted Crisis Management: Building Advanced LLM Platforms for Effective Emergency ponse and Public Collaboration
((2	al and Global Guidance for Multi-Complementary Label Learning

ocal Optima Networks for Reinforcement Learning - A Case Study: Coupled Inverted Pendulur ask	
Ferrante Neri (University of Surrey, UK), Alexander Turner (University of Nottingham, UK), and Yuyang Zhou (University of Nottingham Ningbo China, China)	
ow Variance Off-Policy Evaluation with State-Based Importance Sampling	⁷ 1
TE User Behavior Prediction Via LSTM	34
Security Iachine and Deep Learning Based Clinical Decision Making for Coronary Artery Disease and Hatbot Tool	90
Wei Jun Vincent Sim (National Heart Centre Singapore, Singapore), Glades Tan (National Heart Centre Singapore, Singapore), Xinliu Zhong (National University of Singapore, Singapore), Terrance Sj Chua (National Heart Centre Singapore, Singapore), Jie Jun Wong (National Heart Centre Singapore, Singapore), Si Yong Yeo (Lee Kong Chian School of Medicine, Singapore), and Angela S. Koh (National Heart Centre Singapore, Singapore)	
Machine Learning-Based Radiomic Features for Glioblastoma Overall Survival Prediction 89 Ankit Das (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), Kee Yen Cheng (Temasek Polytechnic, Singapore), Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), Rick Siow Mong Goh (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), and Feng Yang (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore))4
Maritime-Context Text Identification for Connecting Artificial Intelligence (AI) Models	99
IeLoDicA AI- Machine Learning Based Detection of Asthma via Vocal Audio Analysis 90 Zhi Qing Looi (Singapore Polytechnic, Singapore), Zi Heng Ng (Singapore Polytechnic, Singapore), Ren Xiang Yak (Singapore Polytechnic, Singapore), Oren Rosen (Technion – Israel Institute of Technology, Israel), and Arun Kumar (Singapore Polytechnic, Singapore))5
 Iining Contrastive Loss for Kinship Verification	11

Mitigating Nonlinear Algorithmic Bias in Binary Classification Wendy Wan Yee Hui (Singapore Institute of Technology, Singapore) and Wai Kwong Lau (University of Western Australia, Australia)	913
Model Based Reinforcement Learning Pre-Trained with Various State Data	918
Modeling Variational Anchoring Effect for Recommender Systems Yudi Xiao (Dalian University of Technology, China), Yingyi Zhang (Dalian University of Technology, China), and Xianneng Li (Dalian University of Technology, China)	926
Multi-Objective Optimization for Flexible Building Space Usage Huanbo Lyu (University of Birmingham, UK), Daniel Herring (University of Birmingham, UK), Lingfeng Wang (University of Birmingham, UK), Jelena Ninic (University of Birmingham, UK), James Andrews (University of Birmingham, UK), Miqing Li (University of Birmingham, UK), Michal Kocvara (University of Birmingham, UK), Fabian Spill (University of Birmingham, UK), and Shuo Wang (University of Birmingham, UK)	932
Multi-Order Loss Functions for Accelerating Unsteady Flow Simulations with Physics-Based	0.40
AI	940
Multimodal Fusion for Effective Recommendations on a User-Anonymous Price Comparison	
Platform Merve Gül Kantarci (iLab, Turkey) and Mehmet Gönen (Koç University, Turkey)	947
Multimodal Fusion of EEG and Eye Data for Attention Classification Using Machine Learning Debanga Raj Neog (Indian Institute of Technology Guwahati, India) and Indrani Paul Roy (North-Eastern Hill University, India)	g 953
MYCloth: Towards Intelligent and Interactive Online T-Shirt Customization Based on User's	
Preference Yexin Liu (AI Thrust, HKUST(GZ)) and Lin Wang (AI/CMA Thrust, HKUST(GZ), HKUST)	955
MyHistory: Automatic Photo Album Creation	963
MyriadAL: Active Few Shot Learning for Histopathology	969
Natural Language Processing to Estimate RECIST Response in Cancer Patients Sara Contu (Epidemiology & Biostatistics Department, Centre Antoine Lacassagne, Nice, France), Renaud Schiappa (Epidemiology & Biostatistics Department, Centre Antoine Lacassagne, Nice, France), and Emmanuel Chamorey (Epidemiology & Biostatistics Department, Centre Antoine Lacassagne, Nice, France)	977

Navigating the EU AI Act - A Methodological Approach to Compliance for Safety-Critical Products	979
Jessica Kelly (Fraunhofer IKS, Germany), Shanza Ali Zafar (Fraunhofer IKS, Germany), Lena Heidemann (Fraunhofer IKS, Germany), João-Vitor Zacchi (Fraunhofer IKS, Germany), Delfina Espinoza (Fraunhofer IKS, Germany), and Núria Mata (Fraunhofer IKS, Germany)	
Navigating the Waters of Object Detection: Evaluating the Robustness of Real-time Object Detection Models for Autonomous Surface Vehicles	985
Neuroevolving Monotonic PINNs for Particle Breakage Analysis	993
NL2IBE – Ontology-Controlled Transformation of Natural Language into Formalized Engineering Artefacts	997
On Efficient Object-Detection NAS for ADAS on Edge Devices	1005
On the Generation and Assessment of Synthetic Waste Images	1011
On the Impact of Data Heterogeneity in Federated Learning Environments with Application Healthcare Networks Usevalad Milasheuski (Politecnico di Milano, Italy; Consiglio Nazionale delle Ricerche, Italy), Luca Barbieri (Politecnico di Milano, Italy), Bernardo Camajori Tedeschini (Politecnico di Milano, Italy), Monica Nicoli (Politecnico di Milano, Italy), and Stefano Savazzi (Consiglio Nazionale delle Ricerche, Italy)	
On the Influence of Metric Learning Loss Functions for Robust Self-Supervised Speaker Verification to Label Noise	1024
On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance System	1032
Open-World Learning Under Dataset Shift	1040

Optimized Vision Transformer Training Using GPU and Multi-Threading
Optimizing Demand Forecasting: A Framework With Bayesian Optimization Embedded Reinforcement Learning for Combined Algorithm Selection and Hyperparameter Optimization 1045 Zizhe Wang (Agency for Science, Technology and Research, Singapore), Xiaofeng Yin (Agency for Science, Technology and Research, Singapore), Yun Hui Lin (Agency for Science, Technology and Research, Singapore), Ping Chong Chua (Agency for Science, Technology and Research, Singapore), Ning Li (Agency for Science, Technology and Research, Singapore), and Xiuju Fu (Agency for Science, Technology and Research, Singapore)
Optimizing Indoor Farming: Deep Learning for Predicting Plant Growth Under LED Light Treatments
Optimizing Supply Chain Risk Management: An Integrated Framework Leveraging Large Language Models
PANO-ECHO: PANOramic Depth Prediction Enhancement with ECHO Features
Path-Based Link Prediction on Hyper-Relational Knowledge Graph
PepPFN: Protein-Peptide Binding Residues Prediction via Pre-Trained Module-Based Fourier Network
Performance Analysis of Llama 2 Among Other LLMs

Phased Continuous Exploration Method for Cooperative Multi-Agent Reinforcement Learning 1086 Jie Kang (Dalian University of Technology, China), Yaqing Hou (Dalian University of Technology, China), Yifeng Zeng (Northumbria University, UK), Yongchao Chen (The Institute of Effectiveness Evaluation of Flying Vehicle, China), Xiangrong Tong (Yantai University, China), Xin Xu (Wuhan University of Science and Technology, China), and Qiang Zhang (Dalian University of Technology, China)	
PLNet: Light Recipe Design for Indoor Farming Through Generative Deep Learning	092
Predicting Mild Cognitive Impairment Through Ambient Sensing and Artificial Intelligence . 18 Ah-Hwee Tan (Singapore Management University, Singapore), Weng-Yan Ying (Singapore Management University, Singapore), Budhitama Subagdja (Singapore Management University, Singapore), Anni Huang (Singapore Management University, Singapore), Shanthoshigaa D (Singapore Management University, Singapore), Tony Chin-Ian Tay (Sengkang General Hospital and Singhealth Duke NUS Academic Medical Centre, Singapore), and Iris Rawtaer (Sengkang General Hospital and Singhealth Duke NUS Academic Medical Centre, Singapore)	098
Prediction of Students' Academic Progression Using Machine Learning	105
Prediction of Successful Memory Formation During Audiovisual Advertising Using EEG Signal 1111 Vangelis P. Oikonomou (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Kostas Georgiadis (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Fotis P. Kalaganis (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Spiros Nikolopoulos (Centre for Research and Technology Hellas, CERTH-ITI, Greece), and Ioannis Kompatsiaris (Centre for Research and Technology Hellas, CERTH-ITI, Greece)	ls
Prediction of Transmission Rates of Dengue in National Capital Territory Delhi Using Machine Learning Models	117
Prediction of Treatment Outcome to Transcranial Direct Current Stimulation in Major Depression Based on Deep Learning of EEG Data	1 2 3
Privacy Preserving Layer Partitioning for Deep Neural Network Models	129

Privacy-Preserving Federated Learning for Industrial Defect Detection Systems via Differential Privacy and Image Obfuscation
Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
Privacy-Preserving Intrusion Detection Using Convolutional Neural Networks
Providing Real-World Benchmarks for Super-Resolving Fluorescence Microscope Imagery Using Generative Adversarial Networks
Query-Selected Global Attention for Text Guided Image Style Transfer Using Diffusion Model 1162 Jungmin Hwang (Unviversity of Ottawa, Canada) and Wonsook Lee (University of Ottawa, Canada)
Rapid Classification of Aerosol Particle Mass Spectra Using Data Augmentation and Deep Learning
Real-time Scheduling Optimization with Deep Learning-Powered Demand Forecasting in Water Transportation
Real-World License Plate Image Super-Resolution via Domain-Specific Degradation Modeling 1175 Xin Luo (East China Normal University, China), Yihao Huang (Nanyang Technological University, Singapore), and Weika Miao (East China Normal University, China)
Reconceptualizing AI Literacy: The Importance of Metacognitive Thinking in an Artificial Intelligence (AI)-Enabled Workforce

ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers 1187 Arvid Weyrauch (Karlsruhe Institute of Technology (KIT), Germany), Thomas Steens (German Aerospace Center (DLR), Germany), Oskar Taubert (Karlsruhe Institute of Technology (KIT), Germany), Benedikt Hanke (German Aerospace Center (DLR), Germany), Aslan Eqbal (INENSUS GmbH, Germany), Ewa Götz (Siemens AG, Germany), Achim Streit (Karlsruhe Institute of Technology (KIT), Germany), Markus Götz (Karlsruhe Institute of Technology (KIT), Germany), and Charlotte Debus (Karlsruhe Institute of Technology (KIT), Germany)
Reinforcement Learning for Strategic Airport Slot Scheduling: Analysis of State Observations and Reward Designs
Representation Learning and Knowledge Distillation for Lightweight Domain Adaptation 1202 Sayed Rafay Bin Shah (South Westphalia University of Applied Sciences, Germany), Shreyas Subhash Putty (South Westphalia University of Applied Sciences, Germany), and Andreas Schwung (South Westphalia University of Applied Sciences, Germany)
Resolving Ethics Trade-offs in Implementing Responsible AI
Restoration of Material Pore Structure Image Using Transformer Architecture
Retrieval Augmented MedLM
Robust FOD Detection Using Frame Sequence-Based DEtection TRansformer (DETR)
Robust Lagrangian and Adversarial Policy Gradient for Robust Constrained Markov Decision Processes
Roles of Standardised Criteria in Assessing Societal Impact of AI
Route Planning Through Genetic Algorithm for Multi-Axis Motion Control

Safe Multi-Agent Reinforcement Learning via Dynamic Shielding
Scaffolding Language Learning via Multi-Modal Tutoring Systems with Pedagogical Instructions
Scanning Electron Microscope Image Segmentation with Foundation AI Vision Model for Nanoparticles in Autonomous Materials Explorations
SegMAE-Net: A Hybrid Method Using Masked Autoencoders for Consistent 3D Medical Image Segmentation
Self-Supervised Modular Architecture for Multi-Sensor Anomaly Detection and Localization 1278 Mohammed Ayalew Belay (Norwegian University of Science and Technology, Norway), Adil Rasheed (Norwegian University of Science and Technology, Norway), and Pierluigi Salvo Rossi (SINTEF Energy Research, Norway)
Semantic Textual Similarity Analysis of Clinical Text in the Era of LLM
Sensor-Drift-Aware Time-Series Anomaly Detection for Climate Stations
Sequential Transfer via Clustering-Based Similarity Measurement for Faster Trajectory Optimization
Ship Trajectory Prediction Using AIS Data with TransFormer-Based AI

SHSML: A Stochastic Approach to Hierarchically Structured Meta-Learning for Improved Inference and Confidence	1306
Zhuoran Li (Chongqing University, China), Xuefeng Chen (Chongqing University, China), Liang Feng (Chongqing University, China), Zhou Wu (Chongqing University, China), and Xin Xu (Wuhan University of Science and Technology, China)	
Soft Constraint in Local Structure Approximation-PINN Jian Cheng Wong (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore; Nanyang Technological University (NTU), Singapore), Pao-Hsiung Chiu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Chinchun Ooi (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore; Center for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), and My Ha Dao (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore)	. 1312
SPADENet: Skill-Based Player Action Decision and Evaluation for Card Games Using Deep Neural Networks (Online Rummy as Case Study)	1316
SPD Hashing Network for Fast Image Set Classification and Retrieval Xiaxin Wang (Nanjing University of Science and Technology, China), Lixuan Zong (The Hong Kong Polytechnic University, Hong Kong SAR), and Xiaobo Shen (National Natural Science Foundation of China, Natural Science Foundation of Jiangsu, China)	. 1324
Split Learning of Multi-Modal Medical Image Classification Bishwamittra Ghosh (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore; Max Planck Institute for Software Systems, Germany), Yuan Wang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Qingsong Wei (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Yong Liu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Rick Siow Mong Goh (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	. 1326
SSR: SAM is a Strong Regularizer for Domain Adaptive Semantic Segmentation	. 1332
SSSwin: Sequential Spectral Swin Transformer for Solar Panel Mapping in Satellite Imagery . Zhiyuan Yang (Northeastern University, Canada) and Ryan Rad (Northeastern University, Canada)	1334

Stable Probabilistic Graphical Models for Systemic Risk Estimation
Stage-Aware Brain Graph Learning for Alzheimer's Disease
Stay Tuned! Analysing Hyperparameters of a Wide-Kernel Architecture for Industrial Faults 1350 Dan Hudson (Osnabrück University, Germany), Jurgen van den Hoogen (Osnabrück University, Germany), Stefan Bloemheuvel (Jheronimus Academy of Data Science (JADS), Netherlands), and Martin Atzmueller (Osnabrück University, Germany)
Study on Stochastic Gradient Descent Without Explicit Error Backpropagation with Momentum 1357 Shahrzad Mahboubi (Shonan Institute of Technology, Japan) and Hiroshi
Ninomiya (Shonan Institute of Technology, Japan) Supervised Virtual-to-Real Domain Adaptation for Object Detection Task Using YOLO1359 Akbar Satya Nugraha (Brawijaya University, Indonesia), Novanto Yudistira (Brawijaya University, Indonesia), and Bayu Rahayudi (Brawijaya University, Indonesia)
Surpassing Human Counterparts: A Breakthrough Achievement of Large Language Models in Professional Tax Qualification Examinations in China
Sustainable Machine Learning: Evaluating the Environmental Cost of AutoML Algorithms in AI Development
Symbolic Regression for Discovery of Medical Equations: A Case Study on Glomerular Filtration Rate Estimation Equations
Talking Face Generation via Face Mesh - Controllability Without Reference Videos

TelLungNet - Enabling Telemedicine Utilizing an Improved U-Net Lung Image Segmentation 1387	
Rifat Al Mamun Rudro (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Api Alam (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Shafin Talukder (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Tanvir Ahmed (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Nayma Islam (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), and Kamruddin Nur (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh)	
Textile Surface Defects Analysis with Explainable AI	1394
The Detection of Vibration Dampers Based on Optimized RetinaNet Mingsheng Ma (Beijing University of Civil Engineering and Architecture, China), De Zhang (Beijing University of Civil Engineering and Architecture, China), and Feng Liu (Nanjing University of Posts and Telecommunications, China)	1399
The Impact of Perceived Robotic Intelligence on Trust and Attitude	1404
The Impact of the Artificial Intelligence (AI) Art Generator in Pre-Service Art Teacher Training	1406
The Proposal of an AI Policy Maturity Model Helena Costa (Center for Innovation, Technology and Policy Research (IN+), Portugal) and Joana Mendonça (Center for Innovation, Technology and Policy Research (IN+), Instituto Superior Técnico, Universidade de Lisboa, Portugal)	1408
Towards a More Robust and Accurate OCR Model with Adversarial Techniques in HMI Testin Scenarios	
Towards Adversarially Robust Data-Efficient Learning with Generated Data	1422
Towards Efficient Rail Transportation: Bayesian Network Modeling for Predicting Passenger Train Delays Using Secondary Train Information	1425

Cowards End-to-End Prompt-Vision-Physics Neural Network for Fast Design Discovery 14 Qingshan Xu (Nanyang Technological University, Singapore), Jiao Liu (Nanyang Technological University, Singapore), Melvin Wong (Nanyang Technological University, Singapore), Ge Jin (Beijing Institute of Technology, China), Ryan Lau (Nanyang Technological University, Singapore), Yew-Soon Ong (Nanyang Technological University, Singapore; Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore), Stefan Menzel (Honda Research Institute Europe, Germany), Thiago Rios (Honda Research Institute Europe, Germany), Joo-Hwee Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research, Singapore), and Chin Chun Ooi (Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore)	.32
Gowards FAIR Workflows for Federated Experimental Sciences	.36
Towards Fault-Tolerant Quadruped Locomotion with Reinforcement Learning	:38
Fowards Lightweight Underwater Depth Estimation	:42
Towards Next-Generation Federated Learning: A Case Study on Privacy Attacks in Artificial ntelligence Systems	.46
Fransformer-Based Reinforcement Learning Model for Optimized Quantitative Trading 14 Aniket Kumar (University of South Dakota, USA), Rodrigue Rizk (University of South Dakota, USA), and Kc Santosh (University of South Dakota, USA)	.54
Fransforming GPP Estimation in Terrestrial Ecosystems Using Remote Sensing and Fransformers	156

Manna Dai (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Yonghui Wu (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Jun Zhou (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Zhenzhou Wu (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Mengren Man (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Linh Le Dinh (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Joyjit Chattoraj (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Feng Yang (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Dao My Ha (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore), and Rick Siow Mong Goh (Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore) Unsupervised Latent Regression Through Information Maximization - Contrastive Regularized Vicky Sintunata (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Siying Liu (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Dinh Nguyen Van (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Zhao Yong Lim (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Ryan Lee Zhikuan (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Yue Wang (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Jack Ho Jun Feng (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore), and Karianto Leman (Agency for Science, Technology and Research (A*STAR), Institute of Infocomm Research (I^2R), Singapore) Unveiling the Dynamics of Learning Behaviors in Learning K-12 Math: An Exploration of an Jun Song Huang (National Institute of Education, Nanyang Technological University, Singapore), Arya Radhakrishnan (Independent Researcher, Singapore), Timothy Lee (National Institute of Education, Nanyang Technological University, Singapore), Min Lee (National Institute of Education, Nanyang Technological University, Singapore), Janice Lum (National Institute of Education, Nanyang Technological University, Singapore), Guimei Liu (Institute for Infocomm Research, A*STAR, Singapore), and Jung Jae Kim (Institute for Infocomm Research, A*STAR,

Singapore)

Unveiling the Potential of ChatGPT in Detecting Machine Unauditable Bugs in Smart Contracts: A Preliminary Evaluation and Categorization	1481
Uplift Modeling Based on Graph Neural Network Combined with Causal Knowledge Haowen Wang (Zhejiang Lab, China), Xinyan Ye (Imperial College London, UK), Yikang Wang (University College London, UK), Yangze Zhou (Zhejiang University, China), Zhiyi Zhang (Peking University, China), Longhan Zhang (Zhejiang Lab, China; Hong Kong University of Science and Technology (Guangzhou), China), Jing Jiang (Zhejiang Lab, China), and Yiteng Zhai (Zhejiang Lab, China; Nanyang Technological University, Singapore)	1487
Using Generative AI to Drive Person Centric Networking	1493
UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for Underwater Image Enhancement	1497
Virtual Co-Pilot: Multimodal Large Language Model-Enabled Quick-Access Procedures for Single Pilot Operations	1501
VirtuGuard: Ethically Aligned Artificial Intelligence Framework for Cyberbullying Mitigation Min Wang (University of Canberra, Australia; University of New South Wales, Australia), Christine Boshuijzen-van Burken (University of New South Wales, Australia), Nan Sun (University of New South Wales, Australia), Shabnam Kasra Kermanshahi (University of New South Wales, Australia), Yu Zhang (School of Business, University of New South Wales, Canberra, Australia), and Jiankun Hu (University of New South Wales, Australia)	1507
Vision Control for Cable Binding Robot in Offshore and Marine Industry Jing Zhong Tee (Sembcorp Marine Ltd, Singapore), Ye Zhen (National University of Singapore, Singapore), Chin Boon Chng (National University of Singapore, Singapore), and Chee Kong Chui (National University of Singapore, Singapore)	1510
Visualize Music Using Generative Arts	1516

W-Net: Two-Stage Segmentation for Multi-Center Kidney Ultrasound Yu-Chi Chang (Graduate Institute of Library Information and Archival Studies, National Chengchi University, Taiwan), Chung-Ming Lo (Graduate Institute of Library Information and Archival Studies, National Chengchi University, Taiwan), Yi-Kong Chen (Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan), Ping-Hsun Wu (Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan), and Hsing Luh (Department of Mathematical Sciences, National Chengchi University, Taiwan)	1522
When Audio Denoising Meets Spiking Neural Network	1524
When to use Demographic Data in Healthcare Models: A Bias-Responsible Approach Sebrina Zeleke (The Ohio State University), Tanya Berger-Wolf (The Ohio State University), and Xia Ning (The Ohio State University)	1528
Where to Move Next: Zero-shot Generalization of LLMs for Next POI Recommendation Shanshan Feng (Centre for Frontier AI Research, A*STAR, Singapore; Institute of High Performance Computing, A*STAR, Singapore), Haoming Lyu (Nanyang Technological University, Singapore), Fan Li (Hong Kong Polytechnic University, China), Zhu Sun (Centre for Frontier AI Research, A*STAR, Singapore; Institute of High Performance Computing, A*STAR, Singapore), and Caishun Chen (Centre for Frontier AI Research, A*STAR, Singapore; Institute of High Performance Computing, A*STAR, Singapore)	1530
Wildfire Spread Prediction in North America Using Satellite Imagery and Vision Transfo 1536	rmer
Bronte Sihan Li (Northeastern University) and Ryan Rad (Northeastern University)	
XES3MaP: Explainable Risks Identified from Ensembled Stacked Self-Supervised Models Augment Predictive Maintenance	
Zero-shot Domain Adaptation Based on Dual-Level Mix and Contrast	1549
μPose: Synthetic Dataset for Human Pose Estimation in Microgravity Environments Luís Fernando de Souza Cardoso (Ilmenau University of Technology, Germany), Tobias Schwandt (Ilmenau University of Technology, Germany), and Wolfgang Broll (Ilmenau University of Technology, Germany)	1557

Author Index