2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia **Networks (WoWMoM 2024)**

Perth, Australia 4 – 7 June 2024

IEEE Catalog Number: CFP24WOW-POD ISBN:

979-8-3503-9467-2

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: CFP24WOW-POD ISBN (Print-On-Demand): 979-8-3503-9467-2 ISBN (Online): 979-8-3503-9466-5

ISSN: 2770-0526

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

WoWMoM 2024

Table of Contents

Message from the General Chairs	xiv
Message from the Technical Program Committee	xv i
Message from the Workshop Committee	xviii
Organizing Committee	
Technical Program Committee	xxi i
Reviewers	xxiv
Keynotes	
WoWMoM 2024 Workshops	
Cybersecurity of Critical National Infrastructures - CCNI 2024	
CCNI Session 1	
WIP: Performance Metrics of PUF-Based Authentication Protocols for Smart Grid: A Revie Taylah Griffiths (Edith Cowan University, Australia), Mohiuddin Ahmed (Edith Cowan University, Australia), and Shihao Yan (Edith Cowan University, Australia) University, Australia)	w 1
CCNI Session 2	
An Enhanced Threat Intelligence Driven Hybrid Model for Information Security Risk	
Management	5
Habib El Amin (Faculty of Engineering, CRSI, Lebanese University,	
Lebanon), Abed Ellatif Samhat (Faculty of Engineering, CRSI, Lebanese University, Lebanon), Maroun Chamoun (Ecole Supérieure d'Ingénieurs de	
Beyrouth, Saint Ioseph University of Lebanon). Lina Oueidat (Faculty	
of Engineering, CRSI, Lebanese University, Lebanon), and Antoine	
Ѓеghali (P.O.TECH Labs)	
Survey and Experimentation to Compare IoT Device Model Identification Methods	13
Norihiro Okui (KDDI Research, Inc., Japan), Masataka Nakahara (KDDI	
Research, Inc. Japan), and Ayumu Kubota (KDDI Research, Inc., Japan)	

Preserving Data Integrity and Detecting Toxic Recordings in Machine Learning Using Blockchain Bechir Alaya (IReSCoMath - Gabes University, Tunisia), Tarek Moulahi	18
(IReSCoMath - Gabes University, Tunisia), Salim El Khediri (IReSCoMath - Gabes University, Tunisia), and Suliman Aladhadh (Qassim University, Saudi Arabia)	
Enhancing Cybersecurity Training Efficacy: A Comprehensive Analysis of Gamified Learning, Behavioral Strategies and Digital Twins Yagmur Yigit (Edinburgh Napier University, UK), Kitty Kioskli (trustilio B.V., Netherlands), Laura Bishop (Airbus Limited, UK), Nestoras Chouliaras (University of West Attica, Greece), Leandros Maglaras (Edinburgh Napier University, UK), and Helge Janicke (Edith Cowan University, Australia)	24
Smart Computing for Smart Cities - SC2 2024	
Session 1: SC2 Session 1	
Efficient Binary Task Offloading Optimization in Large-Scale IoT Networks via UAV-Enhanced Mobile Edge Computing Xiangdong Yang (University of Electronic Science and Technology of China, China), Huaiwen He (University of Electronic Science and Technology of China, Zhongshan Institute, China), Hong Shen (Central Queensland University, Australia), Aiguo Chen (University of Electronic Science and Technology of China, China), and Hui Tian (Griffith University, Australia)	33
Unveiling Behavioral Transparency of Protocols Communicated by IoT Networked Assets	39
Is Edge Computing Always Suitable for Image Analysis? An Experimental Analysis	45
Session 2: NTN 6G Session and SC2 Session 2	
Performance Analysis of a Cognitive Radio Assisted Cooperative NOMA UAV System	51
Minimizing Age of Information: Adaptive Spectrum Sharing in Ultra-Reliable and Low-Latency eVTOL Communications	57

Advancing Federated Learning: Optimizing Model Accuracy through Privacy-Conscious Data ϵ	54
Rihab Saidi (University of Gabes, Tunisia), Tarek Moulahi (Qassim University, Saudi Arabia), Suliman Aladhadh (Qassim University, Saudi Arabia), and Salah Zidi (University of Gabes, Tunisia)	
Security and Privacy of AR, VR, and XR: Challenges and Opportunities - SEPAR 2024	
Session 1: Privacy Challenges in Extended Realities	
Effect of Duration and Delay on the Identifiability of VR Motion Mark Roman Miller (Illinois Institute of Technology, USA), Vivek Nair (UC Berkeley, USA), Eugy Han (Stanford University, USA), Cyan DeVeaux (Stanford University, USA), Christian Rack (University of Würzburg, Germany), Rui Wang (Carnegie Mellon University, USA), Brandon Huang (UC Berkeley, USA), Marc Erich Latoschik (University of Würzburg, Germany), James F. O'Brien (UC Berkeley, USA), and Jeremy N. Bailenson (Stanford University, USA)	'C
Threats of Extended Reality (XR) Applications to Teaching and Learning: Instructors' Perspectives	76
Session 2: Opportunities for Privacy in XR	
Protecting Privacy: A Gateway to Freedom of Opinion and Expression in Virtual Reality	79
Effect of Data Degradation on Motion Re-Identification	35
Fowards Privacy-Preserving Mixed Reality: Legal and Technical Implications)1
Germany)	

Metaverse-6G Convergence: Enabling Future Networking - M6CEN 2024
A Hybrid NFV/In-Network Computing MANO Architecture for Provisioning Holographic Applications in the Metaverse
First Steps Towards Game and Activity Inference on Encrypted VR Datastreams 105 Yushan Yang (Haptic Communication Systems, TU Dresden, Germany), Simon Hanisch (KASTEL Security Research Labs, Karlsruhe Institute of Technology, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI)), Mingyu Ma (Haptic Communication Systems, TU Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI)), Stefanie Roos (University of Kaiserslautern-Landau, Germany), Thorsten Strufe (KASTEL Security Research Labs, Karlsruhe Institute of Technology, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI)), and Giang Nguyen (Haptic Communication Systems, TU Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI))
Securing the Metaverse: Traffic Application Classification and Anomaly Detection
LSTM-GRU Based Efficient Intrusion Detection in 6G-Enabled Metaverse Environments
Enhanced Virtual Try-On in the Metaverse Leveraging Unet Model for Improved Cloth Detection
WoWMoM 2024 Technical Sessions
Technical Session 1: Machine Learning
Signal as Point: Deep Learning Signal Detector on Time Domain
A Graph Neural Network Power Allocation Algorithm Based on Fully Unrolled WMMSE

China), and JinHong Yang (Central South University, China)

Dependable Distributed Training of Compressed Machine Learning Models
Technical Session 2: Cellular Networks
ADDeR: Service-Specific Adaptive Data-Driven Radio Resource Control for Cellular-IoT
Cluster-Then-Match: Efficient Management of Human-Centric, Cell-Less 6G Networks
On the Impact of 5G User Equipments on Latency Across Chipset Generations
Technical Session 3: Wireless Networks 1
DC-PPO for Joint User Association and Power Allocation in Dynamic Indoor Hybrid VLC/RF Networks
NaviSplit: Dynamic Multi-Branch Split DNNs for Efficient Distributed Autonomous Navigation 196 Timothy K Johnsen (University of California Irvine, USA), Ian Harshbarger (University of California Irvine, USA), Zixia Xia (University of California Irvine, USA), and Marco Levorato (University of California Irvine, USA)
RiSi: Spectro-Temporal RAN-Agnostic Modulation Identification for OFDMA Signals

Landmark-Based Localization using Stereo Vision and Deep Learning in GPS-Denied Battlefield Environment
Effects of Lossy Compression on the Value of Information in a Low Powered Network
Evaluation and Optimization of Positional Accuracy for Maritime Positioning Systems
Technical Session 4: Physical Layer
Spectrum Painting for On-Device Signal Classification
Optimizing Ray Tracing Techniques for Generating Large-Scale 3D Radio Frequency Maps
Predictability of LoRaWAN Link Quality Based on Weather Data: Insights from a Long-Term Study
Technical Session 5: Transport and Routing
EABC: Energy-Aware Centrality-Based Caching for Named Data Networking in the IoT
DCP: A TCP-Inspired Method for Online Domain Adaptation Under Dynamic Data Drift
Improving TCP Slow Start Performance in Wireless Networks with SEARCH

Deep Reinforcement Learning Based Resource Allocation Method in Future Wireless Networks with Blockchain Assisted MEC Network	. 289
Posters/Demos/Graduate Forum	
Poster: Unified Fog Node Utilization for Multiple Content Providers through Cluster-Based Cooperative Caching Ferdous Sharifi (Macquarie University, Australia; Sharif University of Technology, Iran), Young Choon Lee (Macquarie University, Australia), and Shaahin Hessabi (Sharif University of Technology, Iran)	295
Poster: Cloud Computing with AI-Empowered Trends in Software-Defined Radios: Challenges and Opportunities	298
Poster: Integration of Wearable and Affective Computing via Abstraction and Decision Fusion Architecture	301
Demo: P4 Based In-Network ML with Federated Learning to Secure and Slice IoT Networks	.304
Optimizing Ray Tracing Techniques for Generating Large-Scale 3D Radio Frequency Maps Bernard Tamba Sandouno (Inria, Université Côte d'Azur, France; ZoneADSL & FIBRE, France), Chadi Barakat (Inria, Université Côte d'Azur, France), Thierry Turletti (Inria, Université Côte d'Azur, France), and Walid Dabbous (Inria, Université Côte d'Azur, France)	307
Ph.D. Forum: Multi-Agent Reinforcement Learning in Wireless Network Communication	317

Technical Session 6: Localisation, Tracking, and Navigation	
Leveraging the Movements of Occupants to Generate Indoor Maps Using RF Signals	319
Informative and Communication-Efficient Multi-Agent Path Planning for Pollution Plume Monitoring	329
Lyon, Inria, France), and Hervé Rivano (INSA Lyon, Inria, France)	
Noisy Labels Make Sense: Data-Driven Smartphone Inertial Tracking without Tedious Annotations	339
Technical Session 7: Wireless Networks 2	
ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations	349
WIP: An Open Data Set about Multi-Provider Redundancy in Cellular Networks	359
Queueing Theoretical Performance Assessment of Mobile Virtual Reality Video Streaming	363
PROMPT: Prediction of Channel Metrics for Proactive Optimization in Cellular Networks	370
TuplePick: A High Stability Packet Classification Based on Neural Network Zhuo Li (Tianjin University, China), Tongtong Wang (Tianjin University, China), Jindian Liu (Tianjin University, China), Yu Zhang (Harbin Institute of Technology, China), Tianxiang Ma (State Grid Hebei Electric Power Research Institute, China), and Kaihua Liu (Tianjin Ren'ai College, China)	377
On the k-Weak Coverage of Random Mobile Sensors	383

Author Index	 	