2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS 2024)

13-16 May 2024 Hong Kong

IEEE Catalog Number: ISBN:

CFP24044-POD 979-8-3503-5842-1

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24044-POD
ISBN (Print-On-Demand):	979-8-3503-5842-1
ISBN (Online):	979-8-3503-5841-4
ISSN:	1545-3421

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS) **RTAS 2024**

Table of Contents

Message from the RTAS 2024 Chairs	x
RTAS 2024 Organizing Committee	
RTAS 2024 Program Committee	xiii
Reviewers	xv

Papers

PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 281 Daniel Enright (University of California, Riverside), Yecheng Xiang (University of California, Riverside), Hyunjong Choi (San Diego State University), and Hyoseung Kim (University of California, Riverside)
Extending Network Calculus to Deal with Min-Plus Service Curves in Multiple Flow Scenarios 95 Anja Hamscher (RPTU Kaiserslautern-Landau, Germany), Vlad-Cristian Constantin (RPTU Kaiserslautern-Landau, Germany), and Jens B. Schmitt (RPTU Kaiserslautern-Landau, Germany)
 Real-Time Scheduling for 802.1Qbv Time-Sensitive Networking (TSN): A Systematic Review and Experimental Study
 Sync or Sink? The Robustness of Sensor Fusion Against Temporal Misalignment
Optimizing Logical Execution Time Model for Both Determinism and Low Latency
 DAG Scheduling with Execution Groups
A Hybrid Approach to WCTT Analysis in a Real-Time Switched Ethernet Network
RT-Mimalloc: A New Look at Dynamic Memory Allocation for Real-Time Systems
Exclusive Hierarchies for Predictable Sharing in Last-Level Cache

Core-Local Reasoning and Predictable Cross-Core Communication with M ³
 End-To-End Timing Analysis and Optimization of Multi-Executor ROS 2 Systems
TinyBFT: Byzantine Fault-Tolerant Replication for Highly Resource-Constrained Embedded
Systems
Harald Böhm (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)),
Tobias Distler (Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU)), and Peter Wägemann (Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU))
OmniWasm: Efficient, Granular Fault Isolation and Control-Flow Integrity for Arm
Microcontrollers
Maorui Bai (The George Washington University), Runyu Pan (Shandong
University), and Gabriel Parmer (The George Washington University)
Strict Partitioning for Sporadic Rigid Gang Tasks
Binqi Sun (Technical University of Munich, Germany), Tomasz Kloda
(LAAS-CNRS, Universite de Toulouse, INSA, France), and Marco Caccamo
(Technical University of Munich, Germany)
HAEST: Harvesting Ambient Events to Synchronize Time Across Heterogeneous IoT Devices 265 Adeel Nasrullah (University of Massachusetts Amherst) and Fatima M. Anwar (University of Massachusetts Amherst)
Fast Attack Recovery for Stochastic Cyber-Physical Systems
Lin Zhang (University of Pennsylvania), Luis Burbano (University of
California, Santa Cruz), Xin Chen (University of New Mexico), Alvaro
A. Cardenas (University of California, Santa Cruz), Steven Drager (Air
Force Research Laboratory), Matthew Anderson (Air Force Research
Laboratory), and Fanxin Kong (University of Notre Dame)
Demystifying NVIDIA GPU Internals to Enable Reliable GPU Management
DECNTR: Optimizing Safety and Schedulability with Multi-Mode Control and Resource
Allocation Co-Design
Robert Gifford (University of Pennsylvania), Felipe Galarza-Jimenez
(University of Colorado, Boulder), Linh Thi Xuan Phan (University of
Pennsylvania; Roblox), and Majid Zamani (University of Colorado,
Boulder)
An Empirical Study of Performance Interference: Timing Violation Patterns and Impacts
Ao Li (Washington University in St. Louis), Jinwen Wang (Washington
University in St. Louis), Sanjoy Baruah (Washington University in St.
Louis), Bruno Sinopoli (Washington University in St. Louis), and Ning
Zhang (Washington University in St. Louis)

 Elastic Scheduling for Harmonic Task Systems	334
Algorithms for Canvas-Based Attention Scheduling with Resizing	348
InsectACIDE: Debugger-Based Holistic Asynchronous CFI for Embedded System	360
RT-Swap: Addressing GPU Memory Bottlenecks for Real-Time Multi-DNN Inference	373

Brief Presentations

Work in Progress: Predictable Execution of Isolated Real-Time Tasks on Multicore Systems using the LET Paradigm Konstantin Dudzik (FZI Research Center for Information Technology, Germany), Maximilian Kirschner (FZI Research Center for Information Technology, Germany), Victor Pazmino Betancourt (FZI Research Center for Information Technology, Germany), and Jürgen Becker (FZI Research Center for Information Technology, Germany)	386
 Work in Progress: Early Timing Prediction of Real-Time Tasks in Continuous Integration Environments Pengcheng Huang (ABB Corporate Research, Switzerland), Balz Maag (ABB Corporate Research, Switzerland), Thanikesavan Sivanthi (ABB Corporate Research, Switzerland), and Chunwei Xing (ABB Corporate Research, Switzerland) Switzerland) 	390
DEMO: Developing a Virtual Remote Operating IoT Lab for Higher Education Research Michael Winokur (Faculty of Industrial Engineering and Technology Mangement, Holon Institute of Technology, Israel), Sofia Amador Nelke (Faculty of Industrial Engineering and Technology Mangement, Holon Institute of Technology, Israel), Arriel Benis (Holon Institute of Technology, Israel), and Michael Khomiakov (Faculty of Industrial Engineering and Technology Mangement, Holon Institute of Engineering and Technology Mangement, Holon Institute of Technology, Israel)	394

 Brief Industry Paper: Delay-Aware Control in Networked Systems using Smart Actuators	. 396
Demo: Vulnerability Analysis for STL-Guided Safe Reinforcement Learning in Cyber-Physical Systems	. 400
Notre Dame), and Fanxin Kong (University of Notre Dame)	
Work in Progress: Guaranteeing Weakly-Hard Timing Constraints in Server-Based Real-Time Systems	. 402
Nasim Samimi (Eindhoven University of Technology, The Netherlands), Mitra Nasri (Eindhoven University of Technology, The Netherlands), Twan Basten (Eindhoven University of Technology, The Netherlands), and Marc Geilen (Eindhoven University of Technology, The Netherlands)	
 Work in Progress: Emerging From Shadows: Optimal Hidden Actuator Attack to Cyber-Physical Systems Kausar Hamid Miji (The South Dakota School of Mines & Technology), Mengyu Liu (University of Notre Dame), Francis E. Akowuah (The South Dakota School of Mines & Technology), and Fanxin Kong (University of Notre Dame) 	. 406
Notre Dame) Author Index	411