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This paper gives an overview of current challenges in GPS-denied drone
navigation, highlighting a crucial advancement towards achieving full autonomy
in flights devoid of GPS. It emphasizes the essentiality of GPS-denied solutions
for ensuring uninterrupted and safe flight operations in environments where GPS
signals are unreliable or absent. The exploration is divided into two principal
methodologies: managing sudden GPS loss during flight, and initiating flight
without GPS reliance. For scenarios involving GPS disruption mid-flight, the
study proposes the employment of visual odometry, utilizing both traditional and
deep-learning approaches, to sustain navigation accuracy. Alternatively, for
flights planned without GPS from the beginning, we rely on a method of
aligning live camera images with satellite imagery. This approach not only
enhances navigation reliability in GPS-compromised situations but also sets a
new standard for autonomous flight technology.

INTRODUCTION

Traditionally, UAVs and drones rely on GPS guidance for navigating their flight paths. This
system is popular and serves as the basis of modern drone navigation as it is highly precise and
reliable. However, there exist scenarios where utilizing GPS for navigation proves to be
challenging if not impossible. This includes situations such as dense urban environments where
high buildings create "urban canyons" that disrupt GPS signals, or scenarios where GPS signals
are intentionally jammed or spoofed. Under such conditions, GPS can be lost for varied durations,
lost permanently, or altogether absent. Without reliable alternatives, drones risk becoming
disoriented or ultimately lost, compromising mission success and operational safety. Given these
challenges, our objective is to develop robust GPS-denied navigation solutions, ensuring drones
can maintain efficacy across a diverse array of operational hurdles.

In this paper, we address the two pivotal use cases of GPS-Denied navigation: experiencing
GPS loss mid-flight and operating entirely void of GPS. For the first use case we employ visual
odometry techniques, both classical and deep-learning-based. These methods enable drones to
estimate their movement continuously, from one time step to the next by analyzing subsequent
camera images. For the second use case, navigating entirely without GPS, we combine this visual
odometry with an image based global localization. This allows drones to estimate their position
within a larger area by matching onboard camera images with pre-existing maps or satellite
imagery. Together, these strategies can significantly increase drone autonomy and effectiveness
across diverse operational landscapes. Figure 3a shows an example flight.
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APPROACHES FOR GPS-DENIED NAVIGATION

In this section, we detail our solution to the two GPS-Denied use cases, a sudden loss of GPS
during flight and navigating entirely without GPS

Use Case 1: Losing GPS During Flight

For drones that lose the GPS signal mid-flight, we advocate the implementation of visual
odometry techniques. These methods, which can be either classical or based on deep learning,
allow drones to estimate their movement over time by analyzing the visual differences between
sequential images captured by onboard cameras.

Figure 1: An example image recorded during the flight tracked in Figure 3 (left). An example of image
features tracked during flight (right). The color symbolizes the distance to the drone. Dark blue represents
features furthest away from the drone camera while dark red mark features closest to the camera.

Our proposed solution employs a monocular camera system for UAV navigation. This
approach, however, introduces the challenge of accurately estimating the scale of movement, a
task that is inherently complex due to the reliance on a single viewpoint for depth perception.
While stereo camera systems might seem like an alternative, offering direct depth information
through the use of two cameras, they fall short in aerial applications where the UAV's flight
altitude significantly exceeds the baseline, i.e. the distance between the two cameras. In such
cases, the stereo system's effectiveness in depth estimation diminishes, rendering it inadequate for
large-scale depth perception.

To calibrate the scale for the monocular camera, we utilize GPS data when it is available, e.g.,
at the start of the flight. While the GPS data is available, we already run and analyze the current
scaling of the visual odometry output. This is done by matching the poses that are computed by
the visual odometry system to the drone positions as received from GPS. As a result, once the
GPS is failing, we can leverage the previously computed scale information together with the
continuous visual odometry for calculating an estimated GPS location. An overview of how our
approach integrates into the entire navigation system is shown in Figure 2.

To implement monocular visual odometry, we leverage two approaches depending on the use
environment the drone is operating in and the computational resources available.

The first system utilizes classical features to compute optical flow between images, such as
ORB (Oriented FAST and Rotated BRIEF)1, which are renowned for their efficiency and low
computational cost. ORB excels in identifying and matching distinctive points between
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consecutive images, enabling the drone to estimate its movement by comparing these points
over time. We enhance this with additional steps that help refine the movement and camera
position estimation. After obtaining feature correspondences between images, we apply a
graph-based optimization together with a keyframe selection scheme to estimate the movement
and pose of the camera. This method is particularly effective in environments where the visual
features remain consistent and well-defined, allowing for precise movement estimation without
the need for intensive computational resources.

Figure 3 shows an example result of applying feature-based visual odometry inside the
GPS-Denied system. The blue dot marks the start of the flight. In the beginning, GPS information
is still available. We simulate a GPS cutoff at the position of the orange dot. The resulting
trajectories are shown in green (true location as received from the receiver) and red (estimated
GPS location after the simulated cutoff). As is visible from the figure, the algorithm is highly
accurate. While experiencing some expected drift, the estimated trajectory stays close to the
measured location.

The second system makes use of neural networks and is based on Deep Pose Visual Odometry
(DPVO)2 to infer the drone's pose and movement from raw image data, offering highly accurate
results in complex environments. Unlike classical methods, which rely on explicit feature
detection and matching, DPVO learns to recognize patterns and correlations in the visual data,
enabling it to adapt to a wider range of visual scenarios. This adaptability makes DPVO
particularly suitable for environments where traditional feature-based methods struggle, such as
areas with limited distinct visual markers or in varied lighting conditions. However, it does
require more computational resources, i.e., the usage of an onboard GPU which also leads to a
higher power consumption. In addition, DPVO utilizes dense depth data for training which is hard
to obtain, especially for UAV applications. In another work, we have shown how to train DPVO
with minimal supervision and thus mitigate this challenge.5
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Figure 2: System overview for the use case of losing GPS during the flight. At times where GPS is
available, this information can be used to scale the monocular visual odometry. Once the GPS fails,
an estimated GPS location can be sent to the flight controller that can also integrate additional
information such as IMU or wind sensor data.
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a) Example trajectory flown over a quarry. Plotted are the true GPS trajectory (green) and the estimated
trajectory (red). The flight time of the drone was approximately 4.5 minutes. The start is marked in blue, the
simulated GPS cutoff is marked in orange. The estimated trajectory stays close to the true trajectory even
through the sharp turn at the end.

b) Visualization of the absolute trajectory error (ATE) over the entire trajectory. Dark red marks the largest
error of about 27m. The mean ATE over the part of the entire flight is ~15m.

Figure 3: Example of a GPS-Denied trajectory flight over a quarry plotted onto an OpenStreetMap.
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Use Case 2: Completely Navigating Without GPS

In scenarios where drones are required to operate entirely without GPS, combining visual
odometry with global localization techniques offers a comprehensive solution. This dual approach
enables drones not only to track their immediate movement through visual odometry but also to
locate their position within a larger mapped area. By matching real-time imagery with
pre-existing GPS indexed maps or satellite images, drones can achieve a level of precision
navigation that would otherwise be unattainable without GPS. Figure 4 shows an example of
matching an image obtained from sensory input during the flight to a Google maps aerial image.

Figure 4: Example of matching visual features of a camera view (right) to Google satellite imaginary (left).
The matching proves robust to different viewpoints and even larger vegetation changes.

To implement this matching process, we employ cutting-edge deep-learning based algorithms
such as SuperGlue3 and LightGlue4, which are exceptional in their ability to identify and match
features between the drone's immediate visual input and the corresponding sections of pre-stored
maps or satellite images. We have tuned and highly optimized these algorithms for the specific
hardware onboard the drone, allowing a processing speed beyond the current state-of-the-art. We
then leverage the found feature matches to compute the current GPS position of the drone and
thus realize global localization. While the matching algorithm is highly optimized, it yields a
lower frame rate than the visual odometry. While visual odometry and global localization can run
independently, we propose a hybrid system. This system runs the visual odometry and estimates
the relative movement of the drone in addition to the global localization runs to provide a
continuous estimate to the flight controller. Figure 5 shows the integration of this approach into
the system control view.

This approach, however, does come with its set of challenges. First, its reliance on a GPU for
processing means that the energy consumption are factors that must be carefully managed to
ensure prolonged operational periods. Furthermore, for the matching process to be effective, the
drone needs to maintain a sufficient altitude, ensuring it captures a broad enough view of the
surrounding environment to match with the aerial data. This requirement on a high altitude poses
limitations on the flight path in densely populated areas, environments with significant vertical
obstructions, or other areas where high altitude flight is highly regulated. Additionally, aerial
image data, comparable in altitude to that at which the drone is flying, must be available,
processed beforehand, and stored onboard. This introduces constraints regarding data storage and
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management. Despite these challenges, the advantages offered by this method, such as the ability
to navigate with high precision in GPS-denied environments, make it a promising avenue for
enhancing drone autonomy and operational capabilities.

GPS-DENIED NAVIGATION COMPETITION

To benefit the community with valuable datasets as well as advance our own research, we are
launching a competition that challenges participants to navigate drones without GPS by solely
relying on visual data from three onboard cameras. Hosted as part of the CVPR OmniCV2024
Workshop, the aim is to develop an algorithm capable of accurately calculating the drone's flight
path in GPS-denied scenarios. The competition, named "Omni-BALLOON" in homage to the
historic East Germany balloon escape, underscores the transformative potential of
camera-assisted navigation. This endeavor not only fosters innovation but also provides a
platform for showcasing novel solutions in the realm of autonomous flight. CVPR OmniCV2024
Workshop. We encourage everyone to participate in showcasing and comparing your solution
through Kaggle2.

CONCLUSION

GPS-Denied drone navigation in real-time is extremely challenging. We have presented
approaches for two use cases, losing GPS mid-flight and flying the entire mission without GPS.
In addition, through our "Omni-BALLOON" competition, part of the CVPR OmniCV2024
Workshop, we offer the community valuable datasets for fostering innovation in autonomous
flight technology. There are still a number of challenges ahead, including flying in low-light or
night time conditions and flying robustly without GPS for several hours at a time. However,
through these efforts, we lay the groundwork for future advancements in drone navigation,
moving closer to reliable operations in environments where GPS is compromised or unavailable.

2 https://www.kaggle.com/competitions/omni-balloon
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Figure 5: System overview for the use case of navigating completely without GPS. The global map matching
typically runs at a lower frequency, providing global GPS locations. The visual odometry estimates the local
movement between the global matching runs. The flight controller integrates the estimated GPS locations

together with additional sensor information such as IMU data.
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