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Uncrewed Aerial Vehicles (UAV) technology is advancing dramatically with 
applications ranging from surveillance to disaster response. One such area is real-
time traffic monitoring where UAVs with their vision-based methods can play a 
significant role in streamlining traffic flow, mitigating congestion, and facilitating 
quick emergency response in accidents. However, such an implementation is 
accompanied by challenges related to accuracy and computational overload. 
Therefore, a comparison of available methodologies in detection and tracking 
using computer vision is presented in this paper over different traffic scenarios. 
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INTRODUCTION

Vision-based surveillance systems are ubiquitous in urban areas. The role played by cameras in 
providing data for crowd counting, urban planning, traffic management studies as well as disaster 
response management is extremely valuable1. Small Uncrewed Aerial Vehicles (sUAVs) are 
emerging as viable platforms for surveillance applications, given their ability to maneuver in three 
dimensions and fly through narrow passages. Furthermore, with the advancement of the capabilities 
of vision algorithms, equipping sUAVs with vision sensors makes them a suitable technology for 
aiding in ad-hoc scenarios in traffic safety, streamlining traffic flow, and most importantly, 
improving responsiveness to emergencies. All these applications are predicated on pattern 
recognition, object detection, and tracking, which are essentially techniques within the framework 
of computer vision.

The state-of-the-art techniques in vision-based algorithms can be classified into traditional 
computer vision algorithms and deep learning-based algorithms. While the former boasts 
computational efficiency, the latter exhibits robustness in terms of solutions and remains less 
affected by scaling and occlusion. Both these categories of algorithms are widely studied for traffic 
applications2. While they are distinct in terms of their solution approaches, a common challenge 
confronted by both approaches is their ability to respond to different lighting conditions and 
occlusions. Given that the current research aims to deploy UAV-based vision systems for traffic 
safety, it is imperative that the deployed algorithms can overcome such challenges. Hence, a 
comprehensive understanding of the performance of each category of algorithms under such 
challenging conditions becomes crucial. 
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This paper thus proposes to evaluate and compare the performance of the traditional computer 
vision algorithms and deep learning algorithms, by applying them to vehicle traffic monitoring. 
This entails both detection as well as tracking of vehicles. Specifically, the Haar Cascade3, Lucas-
Kanade optical flow4, and SORT5 algorithms are explored in terms of traditional algorithms, 
whereas YOLOv56 and Deep SORT7 are the deep learning algorithms that are investigated. 
Moreover, this work presents the performance of several combinations of the above algorithms 
under various lighting conditions and views, quantified via state-of-the-art metrics. Since the 
overarching goal is to understand the performance of the algorithms under challenging conditions 
like lighting and occlusion, the VisDrone dataset appears to be the most suitable, as it offers the 
expected challenging data to test the algorithms. The remainder of the article is organized as 
follows: The next section discusses the motivation for this research and reviews the related work. 
Following that we provide a brief overview of the dataset and algorithms evaluated. We then 
present the evaluation metrics with results and finally, we conclude the article with a summary and 
conclusion.

RELATED WORK

Traditional computer vision methods leverage inherent image attributes such as texture, color, 
and shape and have been the mainstay for years. These approaches include template matching3,8

and feature extraction methods like HOG, SIFT, and ORB. Researchers have combined these 
extracted features with machine learning-based classifiers like Haar Cascade, KNN9, and SVM10

to detect vehicles. These detectors perform well but are sensitive to scale variations and less 
effective in cluttered environments11. Vehicle detection has also been explored using deep learning-
based methods. These include two-staged approaches like Fast RCNN12, Faster RCNN13, and Mask 
RCNN14, and one-staged methods like SSD15, and YOLO16. These advanced methods offer 
improved performance and accuracy in vehicle detection tasks.

Detected objects can be tracked using methods such as Lucas-Kanade optical flow17, mean-shift 
tracking, and Kalman filter-based SORT7. These tracking approaches are mostly based on 
predicting the next probable position based on tracking features. However, they can encounter 
issues related to scaling and occlusion which can affect their performance. These methods have 
been used in both single and multi-object tracking. In single object tracking (SOT), a vehicle is 
detected in the first frame, or its position is known a priori. As a result, the performance entirely 
depends on the tracking algorithm used. However, in multi-object tracking (MOT), a detection 
method is required at each frame to identify the targets that are leaving or entering the frame. Each 
detected object is assigned a unique ID and is tracked across frames. The IDs are assigned based 
on the matching detections with existing tracks based on criteria such as distance, appearance, and 
motion patterns. As a result, the accuracy of the tracker largely depends on the accuracy and 
precision of the detection algorithm. Therefore, researchers have been integrating deep learning-
based object detection methods with traditional trackers to make them robust. For example, Gomaa 
et al.18 combined optical flow with CNN and K-means clustering to remove background and 
generate features on the segmented vehicles to track. Similarly, other researchers have leveraged 
deep learning to track the objects for a longer time and reduce the number of ID switches when 
occlusion occurs. For example, Wojke et al.7 introduced Deep SORT, an extension of the SORT 
algorithm with the integration of appearance information by using a re-identification CNN model. 

While working with deep learning-based algorithms, one of the major challenges is obtaining a 
high-quality dataset that provides sufficient labeled images in different conditions.  In recent years, 
several challenges have been organized worldwide to promote research and development in object 
detection and tracking algorithms like Computer Vision and Pattern Recognition (CVPR) 
challenges, MOT challenges, and workshops. As a result, datasets such as KITTI19 for autonomous 
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vehicles in cities, and MOT1520 and MOT1621 for tracking pedestrians in urban environments are 
developed. These datasets typically focus on the images taken from a ground vehicle. To perform 
operations safety-critical operations using sUAVs, an aerial dataset is necessary. The underlying 
challenge with the drone dataset is that it can produce blurry images due to the camera motion. The 
scale of the objects also varies with the altitude of the drone. Small angular variations can produce 
large changes in the camera view which can make it difficult for the algorithm to keep track of the 
objects. Hsieh et al.15 presented the first paper with an aerial dataset for counting cars in a parking 
lot. Du et al.22 developed UAVDT aerial manually annotated datasets for vehicles for single and 
multiple object tracking while considering different weather conditions and camera angles. Zhu et 
al.23 created the VisDrone dataset with 10 object categories including people, bicycles, cars, vans, 
trucks, etc. in different traffic scenarios from various angles. 

OVERVIEW: DATASET AND ALGORITHMS

The VisDrone2019 dataset23, developed by the AISKYEYE team at Tianjin University’s Lab of 
Machine Learning and Data Mining in China is used in this research. The dataset comprises 288 
video clips, 10,209 static images, and 261,908 frames captured by diverse drone-mounted cameras. 
The dataset spans a broad spectrum, including various geographic locations (drawn from 14 
different cities across China, spanning thousands of kilometers), environments (urban and rural), 
objects (pedestrians, vehicles, bicycles, etc.), as well as scene densities (ranging from sparse to 
crowded). The dataset features manual annotations, with over 2.6 million bounding boxes 
delineating targets of frequent interest. In this study, three image sequences have been chosen. For 
ease of reference, we have used seq1 for uav0000137_00458_v, seq2 for uav0000268_05773_v, 
and seq3 for uav0000305_00000_v as shown in Figures 1, 2, and 3 respectively.

Figure 1. VisDrone Dataset Seq1 (uav0000137_00458_v)

Figure 2. VisDrone Dataset Seq2 (uav0000268_05773_v)

70https://doi.org/10.52202/075106-0004



Figure 3. VisDrone Dataset Seq3 (uav0000305_00000_v)

Under the category of traditional computer vision, three algorithms are employed, namely, the 
Haar Cascade for vehicle detection, Lucas-Kanade optical flow, and Kalman filtering-based SORT 
for vehicle tracking. In the deep learning-based approach, this paper uses YOLOv5 for vehicle 
detection and leverages a Kalman filtering and reidentification-based tracker, Deep SORT to 
perform tracking of the detected vehicles.

Haar Cascade

Viola and Jones developed the Haar Cascade3 method which is distinguished by three key 
contributions- First, the feature selection process uses Haar features, simple patterns derived from 
the image, to capture changes in texture or edge orientation. Second, it employs integral images for 
fast feature calculation, and third, the training uses AdaBoost, an algorithm for selecting the most 
critical features from a large set and combining them into a strong classifier. This classifier is 
trained using two kinds of images: Positive images that include objects of interest and negative 
images that do not include the objects. The process builds a cascade of classifiers, each more 
complex than the previous, designed to eliminate any incorrect detections.

Optical Flow

The Lucas-Kanade optical flow4,24 method is used for tracking motion between consecutive 
images or video frames. It calculates the motion in terms of the displacement of pixels from one 
frame to the next. It is based on the assumption that the brightness of any object remains constant 
over time. The algorithm analyzes the pattern and magnitude of these motion vectors to estimate 
the direction and speed of moving objects in the images. This information is then used to predict 
the location of bounding boxes in the subsequent frames.

SORT

Simple Online and Realtime Tracking (SORT)5 developed by Bewley et al. is an object 
detection-based tracker. It uses an object detection algorithm to detect objects in each frame of a 
video or image sequence and create bounding boxes on the targets. In the first frame, these 
bounding boxes will initiate the object tracks, and an identification (ID) is assigned to each object. 
In subsequent frames, the goal is to associate the detected bounding boxes with existing object 
tracks produced by the Kalman filter. This is achieved by using an association matrix which is 
based on Intersection Over Union (IOU). This matrix is then used by the Hungarian algorithm to 
associate the valid tracks. When an object is occluded or moved out of the frame, the tracking 
algorithm allows trackers to exist for a short time without new matching detections, giving the 
object a chance to reappear. If a tracker does not receive a matching detection during this time, it 
is removed.
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YOLOv5

YOLOv5 is an advanced version of the YOLO architecture6. Unlike traditional two-stage 
detectors like R-CNN, which first select region proposals and then classify them, YOLOv5 is a 
single-stage detector that predicts both bounding boxes and class probabilities directly from the 
image in one evaluation. This makes it exceptionally fast and suitable for real-time applications. 
YOLOv5 is different from its previous versions with the use of a more efficient neural network 
EfficientDet25. Moreover, YOLOv5 integrates well with modern deep learning libraries such as 
PyTorch, which makes the development and deployment easier.

Deep SORT

Deep SORT is an extension of the SORT algorithm7. While SORT uses Kalman filtering and 
the Hungarian algorithm for object tracking, Deep SORT also incorporates deep learning features 
in the association matrix. Deep SORT uses a reidentification-based convolutional neural network 
(CNN) to extract deep features from detected objects. These features help in recognizing the same 
object across different frames, even when its appearance changes due to lighting, viewpoint, or 
other factors. This helps to improve tracking performance, especially in cases of occlusions or 
interactions between objects. 

EVALUATION

The evaluation of the different combinations of algorithms is divided as follows: evaluation of 
detection algorithms Haar Cascade and YOLOv5 over all frames of video, evaluation of optical 
flow for SOT, evaluation of SORT and Deep SORT on SOT with Haar Cascade and YOLOv5.

Evaluation Of Detection Algorithms

YOLOv5 is not trained on a vehicle dataset, thus the weights found on the official website of 
the YOLOv5 repository could not be used effectively for detecting the vehicles. Therefore, a 
transfer learning approach has been utilized in this work. The pre-trained YOLOv5 model is trained 
on a new dataset of vehicles. The vehicle dataset is taken from a GitHub repository23. The dataset 
consists of a series of images containing around 1300 images of vehicles. The dataset is divided 
into 70% training images, 20% validation images, and 10% testing images. The training is done for 
50 epochs in the batch of 16 and it took 1.25 hours to train the model. The metrics used to evaluate 
the training accuracy of YOLOv5 are precision, recall, and Mean Average Precision (mAP). 
Precision measures the percentage of the model’s positive identifications that were correct. Recall 
estimates how good the model is at detecting positive cases. Finally, mAP is calculated as the mean 
of average precision for each category in the dataset. The results of the training are shown in Figure
4. The mAP from this training is 0.773.

Figure 4. YOLOv5 Training Precision And Recall Curve.
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The training weights for the Haar Cascade model are taken from this GitHub repository*. The 
model was trained using 526 images of cars from the rear (360 x 240 pixels, no scale). The images 
were extracted from the Car dataset proposed by Brad Philip and Paul Updike taken of the freeways 
of southern California†.

The detection algorithms are evaluated using recall and precision. The value changes with the 
tracking algorithms since the tracking algorithms used in this paper generate detection using 
Kalman filtering. Thus, Haar Cascade and YOLOv5 are implemented on the video and compared 
with the ground truth data, and recall and precision have been reported as shown in Table 1. It can 
be that the values are higher in YOLOv5. This is due to the high number of False Positives and the 
size of the bounding box generated by the Haar Cascade method which highly affects its 
performance.

Table 1. Performance Metrics For Detection Algorithms Without Tracker On Seq1.

Method Recall Precision

Haar Cascade 0.0718 0.0956

YOLOv5 0.5871 0.8999

Evaluation Of MOT Algorithms

For tracking, pre-trained weights of the Deep-SORT model are used and are obtained from the 
official Deep SORT repository. Evaluation of MOT algorithms is done using the metrics taken 
from CLEAR MOT26. The metrics for identification include ID Precision (IDP), ID Recall (IDR), 
and IDF1 (ID F1 score). IDF1 is the harmonic mean of IDP and IDR, reflecting the balance between 
accurately identifying objects and minimizing missed or incorrect identifications. MOT Accuracy 
(MOTA) consolidates three types of tracking errors into a single performance indicator: the 
detection errors of False Positives (FPs) and False Negatives (FNs) as well as association errors 
using ID switches (IDSWs). Since MOTA does not include the localization error, MOTP is defined 
by CLEAR MOT as the overall tracking precision in terms of average overlap between the detected 
object and its ground truth. The other trajectory-based metrics27 used are Mostly Tracked (MT), 
Partially Tracked (PT), Mostly Lost (ML), and Fragmentations (FM). MT is the number of objects 
tracked for at least 80% of their span, PT is the number of objects tracked between 20 and 80% of 
their span, ML is the number of objects tracked for at most 20% of their span and FM is the number 
of times a track was interrupted by a missing detection.

MOT is performed using three combinations of algorithms: Haar Cascade with SORT, YOLOv5 
with SORT, and YOLOv5 with Deep SORT. The results corresponding to each case on seq1, seq2,
and seq3, are shown in Tables 2, 3, and 4 respectively. The analysis shows that Haar Cascade with 
SORT exhibits lower performance as compared to YOLOv5 with SORT. One of the reasons for 
this observation is the scaling effect and the high number of FNs. The Haar Cascade performs 
optimally when the objects match the size it was trained on. Another observation is that both 
trackers demonstrate lower accuracy on seq2 compared to seq1. This may be attributed to the 
brighter images in seq2, which could have impacted the performance of detection algorithms. Both 
these findings emphasize that the accuracy of the tracking algorithm depends on the accuracy of 

* https://github.com/andrewssobral/vehicle_detection_haarcascades?tab=readme-ov-file
† https://data.caltech.edu/records/dvx6b-vsc46
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the detection algorithm. Overall, the evaluation highlights the importance of choosing the right 
combination of detection and tracking algorithms for optimal performance in MOT.

Table 2. Performance Metrics For MOT On Seq1.

Method MOTA
[%]

MOTP
[%]

FM MT ML FP FN IDSW IDF1 IDP IDR

Haar Cascade 
+ SORT

-2.37 56.7 12 0 44 193 7023 11 0.0044 0.0696 0.0023

YOLOv5 +
SORT

49.6 83.83 62 18 14 239 3261 26 0.6244 0.8619 0.4896

YOLOv5 +
Deep SORT

45.6 79.61 135 18 13 400 3295 109 0.5438 0.7357 0.4313

Table 3. Performance Metrics For MOT On Seq2.

Method MOTA
[%]

MOTP
[%]

FM MT ML FP FN IDSW IDF1 IDP IDR

Haar Cascade 
+ SORT

-3.94 52.7 98 0 52 712 13350 51 0.0118 0.0915 0.0063

YOLOv5 +
SORT

1.39 84.64 19 0 48 615 12767 7 0.0993 0.5224 0.0549

YOLOv5 +
Deep SORT

1.75 70.47 39 0 50 47 13286 8 0.0365 0.7492 0.0187

Table 4. Performance Metrics For MOT On Seq3.

Method MOTA
[%]

MOTP
[%]

FM MT ML FP FN IDSW IDF1 IDP IDR

Haar Cascade 
+ SORT

-1.8 47.23 4 0 69 131 6376 1 0.0037 0.082 0.0019

YOLOv5 +
SORT

30.09 86.05 21 13 44 235 4232 1 0.4871 0.8939 0.3348

YOLOv5 +
Deep SORT

13.31 76.71 39 5 53 250 5283 7 0.2697 0.7695 0.1635

In the comparison between SORT and Deep SORT with YOLOv5, the accuracy is nearly 
consistent for both seq1 and seq2. However, the accuracy of Deep SORT is significantly low on 
seq3. This can be attributed to the reidentification model being trained on oblique images of cars 
while seq3 has images taken from a downward-looking camera. This exhibits the challenge of using 
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the same deep learning-based model for different camera views. Moreover, it can be inferred that 
in MOT, the deep learning-based algorithms are more effective for object detection while 
traditional algorithms perform better in object tracking. This harmoniously agrees with the 
evaluation performed by Pereira et al.29.

Table 5. Performance Metrics For MOT On Seq3 For Yolov5 With Deep SORT With 
Change In Max_dist.

Parameter MOTA
[%]

MOTP
[%]

FM MT ML FP FN IDSW IDF1 IDP IDR

Max_dist = 0.2 13.31 76.71 39 5 53 250 5283 7 0.2697 0.7695 0.1635

Max_dist = 0.5 13.31 76.6 40 5 53 255 5277 8 0.2703 0.7662 0.1641

Deep SORT has various parameters that affect its performance like Max_dist, maximum IOU, 
and minimum confidence. Max_dist is the maximum allowed Mahalanobis distance for matching 
a new detection to an existing track. These parameters are varied to check the accuracy of MOT. It 
can be seen that with an increase in Max_dist, its FNs have reduced as shown in Table 5. The 
Max_dist value increased from 0.2 to 0.7. However, the results didn’t show any improvement after 
0.5. Varying the minimum confidence parameter of the detection algorithm with Deep SORT did 
not affect its performance.

Evaluation Of SOT Algorithms

Optical flow is used for performing SOT on a known car location. Its performance is evaluated 
using the metric given by Soleimanitaleb et al.28. The Euclidean distance between the center 
detected object and its ground truth link as shown in Figure 5 is plotted. This gives a measure 
similar to MOTP where the overlap between the bounding boxes is measured to find the precision 
of detection and mAP where the ground truth bounding box is compared with the detected box and 
returns a score. The other metric to evaluate the performance is using IOU over the frames of the 
video. IOU metric is used for checking how well our prediction bounding box aligns with our 
ground truth.

(a)                                            (b)

Figure 5: Using Haar Cascade With Optical Flow (a) Center Position Error, And (b) IOU.
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We can observe that as the position error increased after the 90th frame, the corresponding IOU 
value also decreased. The performance of optical flow in SOT is degrading due to the occlusion 
and scaling. As the features in the initial bounding box got occluded, the size of the bounding box 
changed and increased the IOU and hence increased the center position error.

CONCLUSION

We have presented a comprehensive performance evaluation of different detection and tracking 
algorithms for single object tracking (SOT) and multi-object tracking (MOT) of vehicles. The MOT 
algorithms used are SORT and Deep SORT. To evaluate their performance, the MOT metrics 
outlined by CLEAR MOT are used. These metrics give a clear idea about the performance of the 
two trackers. The algorithms are tested with the datasets of VisDrone with different camera views 
and lighting conditions. We have observed that in MOT, the deep learning-based algorithms are 
well suited for object detection while traditional algorithms perform better in tracking. Moving 
forward, training Deep SORT over a wide range of datasets may enhance its performance. 
Additionally, more algorithms can be tested for SOT and optical flow can be integrated with other 
algorithms to improve its performance.

NOTATION

MT Mostly tracked

PT Partially tracked

PT Partially tracked

ML Mostly lost

FM Fragmentations

IDSW ID switches 

MOTA Multiple Object Tracking Accuracy

t Frame index

GT Number of ground-truth objects 

FN False negatives

FP False positives

Ct Number of matches in frame t
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