2024 Conference of Science and Technology for Integrated Circuits (CSTIC 2024)

Shanghai, China 17-18 March 2024

IEEE Catalog Number: CFP2460Y-POD **ISBN:**

979-8-3503-6220-6

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP2460Y-POD
ISBN (Print-On-Demand):	979-8-3503-6220-6
ISBN (Online):	979-8-3503-6219-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Preface

Chapter I - Device Engineering and Memory Technology

Multifunctional RRAM Chip with Configurability for Sparsity-Aware In-Memory	1
Isng Machine (1-33) Wenchuo Yua ¹ Zhaokun Jing ¹ Bonon Yon ^{1,3} Yaoyu Tao ³ Tang Zhang ¹ Pu Huang ¹ and	
Yuchao Yang ^{1,2,3,4}	
¹ Beijing Advanced Innovation Center for Integrated Circuit, School of Integrated Circuits,	
Peking University, Beijing, China	
² School of Electronic and Computer Engineering, Peking University, Shenzhen, China	
³ Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science	
⁴ Center for Brain Inspired Intelligence Chinese Institute for Brain Research (CIBR)	
Beijing, China	
Method of Scalable Polysilicon Resistor by Adjusting Shielding Metal in CMOS	4
Process (1-19)	-
Hun Jin Lee and Hyeon Cheol Kim	
Process Development X-FAB Sarawak Sdn. Bhd., Kuching, Sarawak, Malaysia	
A 110nm BCD-On-Soi Technology Offering Best-In-Class Nonvolatile Memory IP	7
for Automotive Application (1-15)	
Chee Boon Jiew ¹ , Andrey Hudyryev ² , Marco Sommer ² , Alexander Gittel ² , Joerg Mache ² ,	
Canicoba ⁴	
¹ X-FAB Sarawak Sdn. Bhd., Malavsia	
² X-FAB Global Services GmbH, Erfurt, Germany	
³ X-FAB Dresden GmbH & Co. KG, Germany	
⁴ X-FAB France SAS, France	
Analog Device Engineering and Enhancement in 0.18µm BCD-on-SOI	10
Technology Platform (1-14)	
Sim Pon Ching, Siti Aisan Binti Mond Sallen, Madelyn Liew Chai Ling and Yang Hao X-F4R Sarawak Sdn Bhd, Kuching Sarawak Malaysia	
1 1 1D Sarawak San. Dha., Kaoning, Sarawak, malaysta	
Inflection Points in CFET Scaling: Impact of DTCO Boosters (1-13)	13
Dmitry Yakimets ¹ , Krishna K. Bhuwalka ¹ , Hao Wu ¹ , Gerhard Rzepa ² , Markus Karner ² and	
Changze Liu ⁻ ¹ Hugwei Technologies R&D Leuven Belgium	
² GTS, Vienna, Austria	

Xujin Song ¹ , Dijiang Sun ¹ , Chenxi Yu ¹ , Shangze Li ² , Zheng Zhou ¹ , Xiaoyan Liu ¹ and Jinfeng Kang ¹	
¹ School of Integrated Circuits, Peking University, Beijing, China ² School of Software and Microelectronics, Peking University, Beijing, China	
First Principle Study on Oxygen Vacancy Induced Ferroelectricity in HfO ₂ -Based Ferroelectrics (1-39)	19
Chenxi Yu, Wanwang Yang, Xiaomin Xiao, Fei Liu and Jinfeng Kang School of Integrated Circuits, Peking University, Beijing, China	
Low Frequency Noise and Hot Carrier Degradation Characteristics on 55nm LP Platform (1-18)	22
Gang Wang*, Crimson Hu, Freya Ding Technology Development Center, Hangzhou HFC Semiconductor Corporation, Hangzhou, China	
A NOVEL ULTRALOW VOLTAGE SLOPE DEVICE (1-20) Pengtao Li, Zijian Wang, Shengpeng Xing, and Zhen Wang, Xuemeng Fan, Yishu Zhang School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	25
Experimental Investigation of Polarization Switching Speed in Ferroelectric HfO ₂ for High_Speed and Low-Power Applications (1-51)	28
Hao Zheng ¹ , Zhivuan Fu ¹ , Ru Huang ^{1,2} and Oiangian Huang ^{1,2,3}	
¹ School of Integrated Circuits, Peking University, Beijing, China	
² Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China ³ Beijing Superstring Academy of Memory Technology, Beijing, China	
A Novel Hybrid-Channel Gate-All-Around Nanosheet Transistor for Leakage	31
Yumin Xu ¹ , Chunlei Wu ^{1,2,3} , Boqian Shen ¹ , Fei Zhao ¹ , Hanzhi Gu ¹ , Jian Ma ¹ , Dawei Wang ¹ , Tao Liu ¹ and David Wei Zhang ^{1,2,3}	
¹ School of Microelectronics, Fudan University, Shanghai, China	
² Zhangjiang Fudan International Innovation Center, Shanghai, China ³ Jiashan Fudan Institute, Jiaxing, China	
Investigation of Self-Heating Effect on Forksheet Field-Effect Transistors (1-38) Pan Zhao, Songhan Zhao, Taoyu Zhou, Naiqi Liu, Xinpeng Li, Yandong He and Gang Du	34
School of Integrated Circuits, Peking University, Beijing, China Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China	
INTERFACE TREATMENT OF EPITAXIAL SI FINFET CHANNEL IN REPLACE	37
METAL GATE WITH SIMULTANEOUSLY PERFORMANCE IMPROVEMENT AND LEAKAGE REDUCTION (1-44)	
Renjie Jiang ^{1,3} , Lei Cao ^{1,3} , Wenjuan Xiong ^{1,2} , Jiaxin Yao ^{1,2} , Peng Wang ^{1,3} , Yadong	
Zhang ^{1,2} , Guanqiao Sang ^{1,5} , Lianlian Li ^{1,3} , Meihe Zhang ¹ , Huaxiang Yin ^{1,2,3} and Jun Luo ^{1,2,3}	
¹ Integrated Circuit Advanced Process R&D Center Institute of Microelectronics of the	
Chinese Academy of Sciences, Beijing China;	
- State key Laboratory of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics of the Chinese Academy of Sciences, Poiiing, China:	
microelectronics of the Chinese Academy of sciences, beijing China,	

Experimental Investigation on the Back-Gate Modulation of Extra-Thin Body PMOSFETS (1-47)	40
Rui Su, JunKang Li and Rui Zhang	
School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	
Impact of Thickness Dependent Ferroelectric and Interface Charge Variation on Device-to-Device Variation in Ferroelectric FET (1-50) Fan Zhang ^{1,2} , Zhaohao Zhang ^{2,3} , Jiali Huo ^{2,3} , Qingzhu Zhang ^{2,3} , Gaobo Xu ^{2,3} , Zhenhua Wu ^{2,3} , Genquan Han ¹ , Huaxiang Yin ^{2,3} and Yan Liu ¹ ¹ State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China ² Integrated Circuit Advanced Process R&D Center and the State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, CAS, Beijing, China ³ University of Chinese Academy of Sciences, Beijing, China	43
Yield Improvement in 4x Node Technology ETOX NOR Flash by Optimizing	46
Control Gate Related Process and Design (1-1)	
Yinang Du, Lin Gu, Hualun Chen, Zhuangzhuang Wang and Chun Yao Huahong Semiconductor (Wuxi) Limited, Wuxi, China	
MACHINE LEARNING-BASED PERFORMANCE PREDICTION MODEL OPTIMIZATION FOR SOI LDMOS USING ADAPTIVE SMALL SPACE	49
DATASET (1-5) Inwen You ^{1,2} Jing Chen ^{1,2} Oing Yao ^{1,2} Yuxuan Dai ^{1,2} and Yufeng Guo ^{1,2}	
¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and	
Telecommunications, Nanjing 210023, China	
² the National & Local Joint Engineering Laboratory for RF Integration and Micro- Packaging Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China	
HBM Device Test & Repair Solution on T5833 (1-4)	54
Advantest (China) Co., Ltd., Shanghai, China	
SUBSTRATE CURRENT IMPROVEMENT AND INVESTIGATION IN LOW VOLTAGE POWER LDMOS WITH A NOVEL DESIGN (1-5)	58
Zhaozhao Xu ¹ , Tian Tian ¹ , Mingxu Fang ¹ , Wan Song ¹ , Yintong Zhang ¹ , Ziquan Fang ² ,	
Donghua Liu ² , Hualun Chen ¹ , Wensheng Qian ²	
Fluanong Semiconductor (Wuxi) Limited, Wuxi, China ² Shanghai Huahong Grace Semiconductor Manufacturing Corporation Shanghai China	
Shunghui Huunong Gruce Semiconductor Munujucturing Corporation, Shunghui, China	
Short-Loop Method to Shorten Gate Process Characterization Cycle Time (1-6)	62
Bing Li, Wenwen Fei and Byunghak Lee	
Hangzhou HFC Semiconductor Corp., Hangzhou City, China	
Enhancement of SRAM Read and Write Noise Margin by Device Performance	65
Ai Lin Li ¹ , Wei Chang ^{1,2} , Xiaoxi Liu, Yi Duan ¹ , Gao Xiang Wang ¹ , Zeng Yao Ren ¹ .	
Dong Xing Bao ¹ , XiaoLi Cao ¹ and Jingang Wang ^{1,2}	

Fabrication Process Improvement of Aggressively Scaled Dual-Bit/Cell Split-Gate	
¹ Semiconductor Manufacturing North China (Beijing) Corporation (SMNC), Beijing, China ² Semiconductor Technology Innovation Center (Beijing) Corporation (STIC), Beijing, China	

68

Floating-Gate Flash Cell (1-8) Yintong Zhang¹, Zhaozhao Xu¹, Xuanming Liang¹, Zhitao Wu¹, Yang Zhou², Gavin Xu², Ziquan Fang², Donghua Liu², Alex Li² and Wensheng Qian² ¹Huahong Semiconductor (Wuxi) Limited, Wuxi, China ²Shanghai Huahong Grace Semiconductor Manufacturing Corporation, Shanghai, China 72 STI Gap-Filling Performance Improvement by the Process Integration Optimization in the 4xnm ETOX NOR Flash (1-9) Zhuangzhuang Wang, Hualun Chen, Lin Gu, Yihang Du, Chun Yao and Zhen Zhu Huahong Semiconductor (Wuxi) Limited, Wuxi, China Breakdown Voltage Improvement of LDMOS by CESL Optimization in High-Voltage 90 75 nm BCD Technology (1-11) Ye Tian, Tian Chen, Xiang Zhang, Kui Li, Li Wang and Hualun Chen Huahong Semiconductor (Wuxi) Limited, Wuxi, China 79 Research on the Substitution of MIM Capacitors and MOM Capacitors on 12-inch 90nm BCD Process (1-12) Wenwu Zhu, Li Wang, Yong Chen and Hualun Chen Huahong Semiconductor (Wuxi) Limited, Wuxi, China 82 Anomalous Hot carrier injection induced degradation of drain current in High-Voltage NMOS with Shallow Trench Isolation (1-21) Bocheng Zhao^{1,2}, Zhi Tian², Qiwei Wang² and Jianhua Zhang¹ School of Microelectronics, Shanghai University, Jiading Area, Shanghai, China Shanghai Huali Microelectronics Corporation, Pudong New Area, Shanghai, China Study of Improvement for Substrate Current in High-Voltage NMOS with Shallow 85 Trench Isolation (1-22) Bocheng Zhao^{1,2}, Zhi Tian², Qiwei Wang² and Jianhua Zhang¹ School of Microelectronics, Shanghai University, Jiading Area, Shanghai, China Shanghai Huali Microelectronics Corporation, Pudong New Area, Shanghai, China The Effect of Depth, Air Gap Width and Ion Implant on Deep Trench Isolation for BCD 89 Technology (1-24) Chen Chen, Bo Kan, Yong Chen, Li Xiao, Li Wang and Hualun Chen Huahong Semiconductor (Wuxi) Co., Ltd, Jiangsu 214000, China A New Method for Improving 8V ESD Performance (1-25) 92 Chuang Wang, Chenchen Qiu, Yuan Gao and Hui Chen Shanghai Huali Microelectronics Corporation, Shanghai, China

Fabrication of Three-Side-Around Control Gate of Semi-Floating Gate Transistor (1-27)	95
Shiling Yang, Yanfei Ma, Xueli Zhang, Pengtao Duan and Tianpeng Guan	

Shanghai Huali Integrated Circuit Corporation, Shanghai, China	
Threshold Voltage Mismatch Dependence of SRAM Yield Window Simulation (1-28) Chunhsiung Wang, Haibo Chen, Yangen Xie, Luping Wu and Hongxiang Mo SRAM Dept., Hanzhou HFC Semiconductor Corp., Hangzhou City, China	97
Optimization of 8T SRAM Bit-Cell Design (1-29) Luping Wu, Chunhsiung Wang and Hongxiang Mo <i>SRAM Dept., Hangzhou HFC Semiconductor Corp., Hangzhou City, China</i>	100
Effect of Lightly Doped Drain Process on Variability for Static Random-Access Memory (1-31) Qiao Teng ¹ , Yongkang Hu ² , Yongyu Wu ¹ , Hai Wang ³ , Zenan Wang ³ and Dawei Gao ¹ ¹ School of Micro-Nano Electronic College of Integrated Circuitss, Zhejiang University, Hangzhou, China ² School of Microelectronics, University of Science and Technology of China, Hefei, China ³ Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	103
Improvement of NLDMOS Performance in Low-Resistivity Substrate for Integration with Discrete Power Devices on One Chip (1-32) Yuncong Chen, Xiaoqing Cai, Donghua Liu and Wensheng Qian HuaHong Grace Semiconductor Manufacturing Corporation, Shanghai, China	106
A Photoeletric Memristive Device for Artificial Visual Perception (1-34) Xuemeng Fan ^{1,2} , Zijian Wang ^{1,2} , Pengtao Li ^{1,2} , Shengpeng Xing ^{1,2} , Zhen Wang ^{1,2} and Yishu Zhang ^{1,2} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang, China, ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China,	109
Al ₂ O ₃ /AlO _x MEMRISTOR With Nearly Ideal Synaptic Characteristics (1-35) Qian He ^{1,2} , Hailiang Wang ^{1,2} , Yongqing Bai ^{1,2} , Jiayang Hu ^{1,2} , Hanxi Li ^{1,2} , Weiming Ma ^{1,2} , Yang Xu ^{1,2} , Yishu Zhang ^{1,2} and Bin Yu ^{1,2} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang, China, ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China	111
Two-Dimensional MoS₂ Based Memristors for Artificial Neural Network (1-36) Hailiang Wang ^{1,2} , Qian He ^{1,2} , Yongqing Bai ^{1,2} , Jiayang Hu ^{1,2} , Hanxi Li ^{1,2} , Weiming Ma ^{1,2} , Yishu Zhang ^{1,2} and Bin Yu ^{1,2} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang, China, ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China	114
A Novel RRAM-Based TCAM Search Array (1-40) Zhen Wang ^{1,2} , Pengtao Li ^{1,2} , Zijian Wang ^{1,2} , Shengpeng Xing ^{1,2} , Xuemeng Fan ^{1,2} and Yishu Zhang ^{1,2} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang, China, ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China	117

Static Leakage Failure Analysis and Improvement for Small Size SRAM (1-41) Minghui Zhu, Chenchen Qiu, Houping Yang and Jingrong Kang Shanghai Huali Microelectronics Corporation, Shanghai, China	120
The Modeling and Optimization of Line Width Roughness in Polysilicon Gate for Improving the Performance of CMOS Device (1-42) Yaoting Wang ¹ , Mengshu Kong ³ , Yongyu Wu ^{1,3} , Dawei Gao ^{1,2,3} and Kai Xu ^{1,2,3} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China ³ Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	123
Hot-Carrier-Induced Degradations and Optimizations for Lateral DMOS Transistor with Shallow Trench Isolation and Step Oxide Improvement (1-43) Zhibo Liu, Tian Chen, Kui Li, Bo Kan, Li Xiao, Li Wang and Hualun Chen Huahong Semiconductor (Wuxi) Limited, Wuxi, China	126
Virtual Fab Semiconductor Process Modeling Augmented Vertical Gate All Around Complementary FET Based 6T SRAM Path-Finding (1-45) Zhaohai Di ^{1,2} , Yanna Luo ^{1,2} , Haoqing Xu ^{1,2} , Hao He ^{1,2} , Huaxiang Yin ^{1,2} and Zhenhua Wu ^{1,2} ¹ Institut for Microelectronics, Chinese Academy of Science, Beijing, China ² School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, China	130
Novel Memtransistor-Based LIF Neuron with Tunable Ionic Dynamics for Spiking Neural Networks (1-46) Zhen Yang ¹ , Teng Zhang ¹ , Yuchao Yang ^{1,2,3,4} and Ru Huang ¹ ¹ Beijing Advanced Innovation Center for Integrated Circuit, School of Integrated Circuits, Peking University, Beijing, China ² School of Electronic and Computer Engineering, Peking University, Shenzhen, China ³ Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China ⁴ Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing, China	133
New Insight into Impacts from Read Cycle Number and Voltage Sweeping Direction on Memory Window of Ferroelectric FET (1-49) Chang Su ¹ , Zhiyuan Fu ¹ , Shaodi Xu ¹ , Ru Huang ^{1,2,3} and Qianqian Huang ^{1,2,3} ¹ School of Integrated Circuits, Peking University, Beijing, China ² Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China ³ Beijing Superstring Academy of Memory Technology, Beijing, China	136
IGZO-TA₂O₅ Dual-Layer CBRRAM: A Low Voltage and High Switching Ratio Storage Solution (1-52) Shengpeng Xing ^{1,2} , Pengtao Li ^{1,2} , Zijian Wang ^{1,2} and Zhen Wang ^{1,2} , Xuemeng Fan ^{1,2} and Yishu Zhang ^{1,2} ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang, China ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China	139

 Xiaoqing Cai, Yuncong Chen, Donghua Liu and Wensheng Qian <i>HuaHong Grace Semiconductor Manufacturing Corporation, Shanghai, China</i> Solution-Processed Organic CMOS Inverter Via Contact Modulation (1-73) Jiarong Cao, Quanhua Chen and Yong Xu <i>College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China</i> Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu¹, Fuguo Tian⁴, Changqing Li¹, Zhongzhong Luo³, Zhihao Yu^{1,2}, Yong Xu^{1,2} and Huabin Sun^{1,2} ¹College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China 	145 148
 HuaHong Grace Semiconductor Manufacturing Corporation, Shanghai, China Solution-Processed Organic CMOS Inverter Via Contact Modulation (1-73) Jiarong Cao, Quanhua Chen and Yong Xu College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu¹, Fuguo Tian⁴, Changqing Li¹, Zhongzhong Luo³, Zhihao Yu^{1,2}, Yong Xu^{1,2} and Huabin Sun^{1,2} ¹College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China 	145 148
 Solution-Processed Organic CMOS Inverter Via Contact Modulation (1-73) Jiarong Cao, Quanhua Chen and Yong Xu College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu¹, Fuguo Tian⁴, Changqing Li¹, Zhongzhong Luo³, Zhihao Yu^{1,2}, Yong Xu^{1,2} and Huabin Sun^{1,2} ¹College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China 	145
Jiarong Cao, Quanhua Chen and Yong Xu College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu ¹ , Fuguo Tian ⁴ , Changqing Li ¹ , Zhongzhong Luo ³ , Zhihao Yu ^{1,2} , Yong Xu ^{1,2} and Huabin Sun ^{1,2} ¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China	148
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu ¹ , Fuguo Tian ⁴ , Changqing Li ¹ , Zhongzhong Luo ³ , Zhihao Yu ^{1,2} , Yong Xu ^{1,2} and Huabin Sun ^{1,2} ¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China	148
Ultra-Short Channel Polymer Transistors (1-74) Zhiqi Xu ¹ , Fuguo Tian ⁴ , Changqing Li ¹ , Zhongzhong Luo ³ , Zhihao Yu ^{1,2} , Yong Xu ^{1,2} and Huabin Sun ^{1,2} ¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China	148
Zhiqi Xu ¹ , Fuguo Tian ⁴ , Changqing Li ¹ , Zhongzhong Luo ³ , Zhihao Yu ^{1,2} , Yong Xu ^{1,2} and Huabin Sun ^{1,2} ¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Naniing, China	
¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Naniing, China	
² Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou, China	
³ College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China ⁴ Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China	
Exploring Low-Frequency Noise Behavior in Vertically Structured Organic Schottky	151
Tingting Ji, Runfeng Wang, Xin Chen, Huabin Sun, Zhihao Yu, Yong Xu and Chee Leong	
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China	
FLEXIBLE LOW-VOLTAGE, HYSTERESIS-FREE FERROELECTRIC	155
Yao Yu ¹ , Yu Yao ⁴ , Fuguo Tian ⁴ , Changqing Li ¹ , Zhongzhong Luo ³ , Huabin Sun ^{1,2} , Zhihao Yu ^{1,2} and Yong Xu ^{1,2}	
¹ College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China	
² Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou, china	
³ College of Electronic and Optical Engineering & College of Flexible Electronics (Future ³ College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, China ⁴ Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.	
A Novel Approach for Doping Two-Dimensional MoS ₂ Materials: ZnO Polar Interfacial Charge Transfor Method (1-2)	158

Interfacial Charge Transfer Method (1-2) Lijun Xu^{1,2} Guohui Zhan^{1,2} Kun Luo^{1,2} Yukun Shi^{1,2} Jiangtao Liu³ and Zhenhua Wu^{1,2} ¹Institute for Microelectronics, Chinese Academy of Science, Beijing, China ²School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, China ³School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, China

Jihua Ding, Yanchao Dong, Wei Xia, Xiabing Bai and Yujie Yang Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China		
Chapter II – Lithography and Patterning		
Polyimides for Power Device Applications (2-6) Masao Tomikawa ¹ , Takayuki Kaneki ² , Yu Shoji ² , Chika Hibino ² and Hitoshi Araki ² ¹ Research and Development Division, Toray Industries Inc., Otsu, Shiga, Japan ² Electronic & Imaging Materials Research Labs., Toray Industries Inc., Otsu, Shiga, Japan	163	
A STUDY OF THE VIA PATTERN LITHOGRAPHY PROCESS WINDOW UNDER THE 7 NM LOGIC DESIGN RULES WITH 193 NM IMMERSION LITHOGRAPHY (2-17) Jinhao Zhu ¹ , Xianhe Liu ^{1,2} , Ying Li ² , Yanli Li ^{1,2} and Qiang Wu ^{1,2} ¹ School of Microelectronics, Fudan University, Shanghai, China ² National Integrated Circuit Innovation Center Shanghai, China	168	
STUDY ON CROSS-LEVEL INTERCONNECTION OF METAL LAYERS UNDER 193 IMMERSION LITHOGRAPHY CONDITIONS (2-13) Ying Li ¹ , Yanli Li ^{1,2} , Xianhe Liu ^{1,2} and Qiang Wu ² ¹ National Intergrated Circuit Innovation Center ² School of Microelectronics, Fudan University, Shanghai, China	171	
Inverse Lithography with Adaptive Mask Complexity (2-7) Xiaoxuan Liu ¹ , Dongyong Xu ¹ , Fanwenqing Zeng ¹ , Yaojun Du ² , Li Xie ² , Yijiang Shen ¹ and Hong Chen ² ¹ School of Automation, Guangdong University of Technology Mega Education Center South, Guangzhou, China ² Shenzhen Fuxin Technology Co., Ltd., Shenzhen GWX Technology Co., Ltd., Shenzhen, China	174	
MASK CORNER ROUNDING IN OPC MODELING (2-16) Weimei Xie, Zhimei Zhang National Integrated Circuit Innovation Center, Shanghai 200433.China	177	
A STUDY OF FLEXIBLE BEOL DESIGN RULES ALLOWING DEGREED SLANTED INTERCONENCTION IN ADVANCED NODES (2-15) Zhiwei Ren ¹ , Xianhe Liu ^{1,2} , Yanli Li ^{1,2} , Qi Wang ^{1,2} , and Qiang Wu ^{1,2} ¹ School of Microelectronics, Fudan University, Shanghai, China ² National Integrated Circuit Innovation Center, Shanghai, China	181	
Innovated Methodology Improving CD Uniformity for Lithography Using Wafer- less Dynamic Grouping Process Characteristics (2-19) Yong-Qiang Che ¹ , Hong-Ye Gao ¹ , Xiao-Bo Zhang ¹ , Lin-Qiang Ye ¹ , Ivan Mao ² , Xue Gong ² , Xiang-Yu Wei ² , Fei-Teng Yang ² , Xu-Xin Huang ² , Zi-Xuan Liang ² , Qi Li ² , Yun Zhou ² , Xiao- Liang Zhang ² , Jason Zhu ² , Soon Thon Kian ² , River Shen ² , Wei-Min Gao ² , Rene Queens ³ Bay Van Tran ³ and Martijn Otto ³ ¹ Semiconductor Manufacturing Beijing Corporation	185	

Calculation Method of Target Erosion in the Planar DC Magnetron Sputtering (1-62)

²*ASML China* ³*ASML Netherlands B.V., The Netherlands*

Correlation Between CD/LWR and Focus Level Fitting Error: A Process Quality Indicator (2-4)

Tianhao Huang¹, Pan Liu¹, Zeyang Chen¹, Sheng Li³, Dawei Gao¹ and Guodong Zhou^{1,2} ¹ School of Micro-Nano Electronics, ¹College of Integrated Circuits, Zhejiang University, Hangzhou, China ²ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China ³Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China

The Impact of Wafer Warpage-Induced Unevenness on Alignment (2-5)

192

189

Pan Liu¹, Tianhao Huang¹, Zeyang Chen¹, Chenhang Ma³, Jianming Wu⁴, Dawei Gao¹ and Guodong Zhou^{1,2} ¹School of Micro-Nano Electronics, College of Integrated Circuits, Zhejiang University, Hangzhou, China ²ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China ³College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China ⁴Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China

Chapter III – Dry & Wet Etch and Cleaning

Novel Etch Solution with Sym3® for Logic BEOL Patterning Etch Applications** (3-36)195Hui Sun and Tongchuan GaoApplied Materials, Sunnyvale, California, USA

Study of Tungsten-Doped Carbon Hard Mask Etch Process Using Nf3/O2198Based Chemistry (3-120)198

Li-Tian Xu, Li Zeng, Meng-Jiao Zhu, Xao-Hui Li, Ji-Han Zhao, Hui Qin, Ze-Dong Qi and Yu-hao Li *NAURA Microelectronics Equipment Co. Ltd, Beijing, China*

Plasma Corrosion Resistant Atomic Layer Deposited Coatings for Semiconductor Manufacturing Process Equipment (3-2) Lassi Leppilahti Beneq Oy, Espoo, Finland	201
A Study on SADP Film Stack Selection for Line Roughness Improvement in Planar 1xnm NAND Flash (3-60) Yinan Ma ^{1,2} , Jun Wang ¹ , Xuan Liu ¹ and Liang Du ^{1,2}	204
Semiconductor Manufacturing North China (Beijing) Corporation, Beijing, China	
Semiconductor Technology Innovation Center (Beijing) Corporation, Beijing, China	
A Study of Post Process Wafer-Less Chamber Clean Recipe in LELE Process (3-57) Xinruo Su ^{1,2} , Jun Wang ¹ and Liang Du ^{1,2}	208
Semiconductor manufacturing North China Corporation, Beijing, China	
² Semiconductor Technology Innovation Corporation, Beijing, China	
Challenge of Boron-Doped Silicon Hard Mask Removal (3-123) Xuehua Wang, Litian Xu and Cheng Tian ETCH II BU Beijing NAURA Microelectronics Equipment Co. Ltd. Beijing China	213
Precise Etching Technique of Ultra-thin Al₂O₃ Film using BCl₃ Chemistry (3-122) Cheng Tian, Litian Xu, Yuhao Li and Xuehua Wang Beijing NAURA Microelectronics Equipment Co. Ltd., Beijing, China	215
High Aspect Ratio Carbon Hard Mask Etch Process for Profile and LCDU Control (3-124) Meng-Jiao Zhu, Li-Tian Xu, Li Zeng, Hui Qin and Fang-Min Guo Beijing NAURA Microelectronics Equipment Co. Ltd., Beijing, China	217
Line edge roughness reduction in high aspect ratio carbon hardmask patterning for slit trench (3-121) Li Zeng, Li-Tian Xu, Mengjiao Zhu ¹ Beijing NAURA Microelectronics Equipment Co., Ltd. Beijing, China	220
A Fully Automated VPD System for Noble Metal Control during CIS Manufacturing (3-131) Qiao Huang, Hushan Cui, Zhiwen Zou, Shiran Cheng, Lei Zhu, Hao Zhang, Chaobo Xue, Jiali Feng, Qiang Hua, Xiaoqing Zhu, Wuping Liu and Kaidong Xu Jiangsu Leuven Instruments Co. Ltd, Xuzhou, Jiangsu, China	223
SoC Profile Control for BEOL Tri-layer Patterning Scheme (3-25) Xingxing Xu, Hexin Zhou, Quanbao Li, Ya-Ming Liu and Jian Huang <i>Lam Research Service Co., Ltd, Shanghai, China</i>	227
Perspective on Plasma Etching in Advanced Packaging (3-3) Yuanwei Lin Department of Semiconductor Etching, NAURA Technology Group Co., Ltd., Beijing, China	230

A Study on Floating Gate Profile Control and Reliability Improvement in Planar 1xnm NAND Flash (3-61) Jun Wang ^{1,2} , Lifeng Liu ¹ , Yinan Ma ² , Jianmin Xiao ² and Le Yang ²	234
School of Integrated Circuit, Peking University, Beijing, China	
Semiconductor Manufacturing North China (Beijing) Corporation, Beijing, China	
Ion Beam Shaping as a Solution for Ultra-High Precision Planarization Process (3-67) Lei Guo, Yuxin Yang, Fang Sun, Zhiyuan Zheng, Xiaoxiu Wei, Feng Liang, Cheng Li, Hushan Cui, Dongdong Hu, Lu Chen and Kaidong Xu <i>Jiangsu Leuven Instruments Co. Ltd, Xuzhou, Jiangsu, China</i>	237
Ultra Low Temperature High Aspect Ratio Oxide Punch Through Etching (3-91) Hanlin Cui, Shiming Yan, Tony Lu and Yanhui Li <i>Applied Materials (China) Inc., China</i>	240
Sidewall Kink Elimination of Slanted Gratings Utilizing a Twice-Etching Method (3-19) Jiuru Gao ¹ , Zhiwei He ¹ , Shuo Dong ² , Tingting Xie, Yuxin Yang, Shiwei Zhuang ¹ and Kaidong Xu ²	243
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, China	
Jiangsu Leuven Instruments Co. Ltd, Xuzhou, China	
Ultra-Deep Via Etching of Silicon Oxide for High-Voltage Capacitive Isolators (3-56) Yuyan Xia ¹ , Jia Qiu ¹ , Fuqiang Zheng ² , Luhao Zhou ² and Ran Tao ^{1,3}	246
School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	
Zhejiang ICsprout Semiconductor Co. Ltd, Hangzhou, China	
ZJU-HANGZHOU GLOBAL SCIENTIFIC AND TECHNOLOGICAL INNOVATION CENTER, HANGZHOU, CHINA	
Optimization of Polysilicon Gate Etching Process in SONOS Memory Fabrication (3-58) Wanli Yang ¹ , Zhengming Liu ² , Xiaoming Shi ² , Jingru Shen ¹ , Juxin Yin ¹ , Xuqing Zhang ^{1,3} and Dawei Gao ^{1,2}	249
School of Micro-Nano Electronics, College of Integrated Circuits, Zhejiang University, Hangzhou, China	
Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	
³ ZJU-HANGZHOU GLOBAL SCIENTIFIC AND TECHNOLOGICAL INNOVATION CENTER, ZHEJIANG UNIVERSITY, HANGZHOU, CHINA	
A Study on Bevel Metal Film Removal for Bevel Peeling Defect Reduction (3-62) Xuan Liu ^{1,2} , Juntao Wu ³ , Jun Wang ^{1,2} , Changhuo Liu ^{1,2} , Yinan Ma ² and Yimao Cai ⁴	252
School of software and microelectronics, Peking University Beijing, China	
Semiconductor Manufacturing North China (Beijing) Corporation	
Semiconductor Technology Innovation Center (Beijing) Corporation	
School of Integrated Circuits, Peking University, Beijing, China	
Sn-Ag Compatible Selective Ti Etch in Cu RDL Fabrication and 3D IC Integration (3-65) Chien-Pin Sherman Hsu	257

Avantor, Bridgewater, New Jersey, USA

Improvement of Line Roughness of Fin by Conventional Thermal Oxidation and Atomic Level Low-Temperature Ozone Treatments (3-68) Peng Wang ^{1,2} , Guanqiao Sang ^{1,3} , Yihong Lu ^{1,2} , Wenjuan Xiong ^{1,2} , Renjie Jiang ^{1,2} , Lei Cao ^{1,2} , QingKun Li ^{1,2} , Lianlian Li ^{1,2} , Jiaxin Yao ^{1,2} , Yadong Zhang ^{1,2} , Meihe Zhang ^{1,2} , Qingzhu Zhang ^{1,2} , Junfeng Li ^{1,2} and Huaxiang Yin ^{1,2} and Jun Luo ^{1,2}	259
Integrated Circuit Advanced Process R&D Center Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China	
University of Chinese Academy of Sciences, Beijing, China	
ChangChun University of Science and Technology, Changchun, China	
Producer-GT TM High Productivity CCP Etch Solution (3-80) Xipeng Tong and Qiang Ge <i>Applied Materials (China) Inc., China</i>	262
Investigation of Amorphous Silicon as Dry Etch Hard Mask in BEOL Low-k Dielectric Patterning (3-102) Juvin Xin ¹ Euglang Zheng ² Liufei Shu ² Van Zhang ² Jingru Shen ¹ Wanli Yang ¹ Vunlong	264
Li ^{1,2,3} , Xuqing Zhang ^{1,4} and Dawei Gao ^{1,2}	
School of Micro-Nano Electronics College of Integrated Circuits, Zhejiang University	
Zhejiang ICsprout Semiconductor Co., Ltd.	
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, China	
⁴ ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China	
Research on Integrated Trench Etching for Trench-Type Power MOSFET (3-104) Jingru Shen ¹ , Yancai Zhang ² , Wanli Yang ¹ , Juxin Yin ¹ , Xuqing Zhang ^{1,3} and Dawei Gao ^{1,2}	267
School of Micro-Nano Electronics Micro-Nano Electronics Integrated Circuits, Zhejiang University	
Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	
³ ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou, China	
Effect of Low Damage Strip Process on SiGe Surface State (3-108) Shijing Wang ¹ , Sheng Chen ¹ , Yiwei Liu ¹ , Kang Shen ¹ , Zhiqian Gui ² , Bin Zhao ² , Lei Wu ¹ , Xiaowen Wang ¹ , Leyi Tu ¹ , Wenqiang Fang ² , Jie Liang ¹ and Zhaoxiang Wang ^{1,2}	270
Shanghai AnBang Semi Equipment Co., Ltd., Shanghai, China	
Shanghai BangXin Semi Technology Co., Ltd., Shanghai, China	
The Influence of Etching Sequence on Morphology in Deep Silicon Etching (3-113) Yiming Ma, Guang Yang, Litian Xu, Zhongwei Jiang, Jing Wang, Donghan Wang and Dong Li <i>Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China</i>	274
A Study of Deep Hole Etching in Mo&Dielectric Alterning Multilayer Structure (3-114) Wang Zhe, Qin hui, Zhang Teng and Zhang Wenjun Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China	276
A Study of High Aspect Ratio Si Trench in Cycle Mode Etching with Mask no Loss (3-115) Zhang Teng, Qin Hui, Xu Litian, Li Xiaohui, Jiang Zhongwei and Wang Jing <i>Beijing NAURA Microelectronics Equipment Co. Ltd., Beijing, China</i>	279

Dong Li, Guang Yang, Zhicheng Song, Jing Wang, Zhongwei Jiang and Jinrong Zhao Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China	281
Two Step Etching Method for Removing Thick Photoresist (3-117) Ji Long, Xu Litian, Jiang Zhongwei, Wang Jing, Zhang Yu and Yu Qingtao <i>Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China</i>	283
Flattening the Silicon Nitride surface of semiconductor Chips through Etching Processes (3-118) Donghan Wang, Zhongwei Jiang , Jing Wang and Yingming Ma Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, china	285
Reducing Side Cutting during Wet Etching of Gate Oxide Layer for 28HK Metal Gate Process (3-125) Chunshan Zhao, Wei Zhou, Xiaolin Xu, Yamin Cao and YanshengWang Shanghai Huali Integrated Circuit Corporation, Shanghai, China	287
A Novel Method to Improve Sidewall Protection by Adopting Nested BOSCH Process (3-59)	289
Changhuo Liu ^{1,2} , Jun Wang ^{1,2} , Peng Wang ² , Xuan Liu ^{1,2} , Xinruo Su ² and Jingfeng Kang ¹	
School of Integrated Circuit, Peking University, Beijing, China	
semiconductor Manufacturing North China, Beijing, China	
Chapter IV – Thin Film, Plating and Process Integration	
Advances And Reliability Challenges in Heterogeneous Integration in Chiplet Era: From Solder to Copper to Optical Interconnects* (4-17) Zhuo-Jie Wu and Nan Xu <i>HFC Semiconductor, Hangzhou, China</i>	293
Advances And Reliability Challenges in Heterogeneous Integration in ChipletEra: From Solder to Copper to Optical Interconnects* (4-17)Zhuo-Jie Wu and Nan XuHFC Semiconductor, Hangzhou, ChinaOptimization of Deep Trench Isolation on 0.18μm SOI BCD Technologyfor Automotive Application (4-16)Siti Aisah binti Mohd Salleh and Sim Poh ChingX-FAB Sarawak Sdn. Bhd., Sarawak, Malaysia	293 297
Advances And Reliability Challenges in Heterogeneous Integration in Chiplet Era: From Solder to Copper to Optical Interconnects* (4-17) Zhuo-Jie Wu and Nan Xu <i>HFC Semiconductor, Hangzhou, China</i> Optimization of Deep Trench Isolation on 0.18µm SOI BCD Technology for Automotive Application (4-16) Siti Aisah binti Mohd Salleh and Sim Poh Ching <i>X-FAB Sarawak Sdn. Bhd., Sarawak,</i> Malaysia NUCLEATION AND GROWTH STUDY OF Al2O3 FILM FABRICATED THROUGH ATOMIC LAYER DEPOSITION ON PET SUBSTRATE (4-4) Wang Li, Jiacheng Hu, Di Wen, Kun Cao, Rong Chen School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China	293 297 301

CHARACTERIZATION OF ALD LOW-K FILMS (4-58) Wenxu Duan, Miao Zhang, Xiaoyu Liu, Yin Du, Xinyan Wang, Ziyu Hu, Yunyan Xue, Bing Xue, Shiyao Cheng, Xiaoping Shi Vertical Furnace Department, Naura, Beijing, China	309
Modeling of Endurance Degradation of Anti-Ferroelectric Hf _{1-x} Zr _x O ₂ Capacitors (4-25) Yaru Ding ^{1, 2} , Yuetong Huo ^{3, 4} , Chu Yan ^{1, 2} , Zeping Weng ^{1, 2} , Jianguo Li ^{1, 2} , Zhangsheng Lan ^{1, 2} , Yiming Qu ^{3,4} and Yi Zhao ^{1, 2}	312
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China	
International Joint Innovation Center, Zhejiang University, Haining, China	
³ School of Integrated Circuits, East China Normal University, Shanghai, China	
⁴ Zhejiang Li-ryder Technology Co., Ltd., Hangzhou, China	
The Formation of Air Gaps Isolation used in Metal/Dielectric Stacking (4-28) Weidu Qin, Jiabao Sun, Chao Tian, Tielu Liu, Xin Zhang, Hongbo Sun and Chao Zhao <i>Beijing Superstring Academy of Memory Technology, Beijing, China</i>	315
SMT Optimization of PMOSFET Based on Multi-Deposition and In-Situ N ₂ Plasma Treatment (4-30) Longyue Zheng, Liangyao Deng, Jinxu Liu, Yitao Ma and Yongpeng Cheng School of Micro- and Nano-Electronics, Zhejiang University, Hangzhou, China	319
FEA of Thermo-Mechanically Induced Cracks in IMD (4-26) Colin Chan, Bong Ching Ching and Kim Hyeon Cheol <i>Process Development, X-FAB Sarawak Sdn. Bhd., Kuching, Malaysia</i>	322
Copper Diffusion Improvement by Optimizing TaN and Integration in Power Device (4-62) Xiangyu Zhou, Qingshan Zhang, Xin Wang, Song Yang and Nan Liu <i>Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China</i>	326
A Machine Learning Study to Obtain an Optimal Processing Pulsed Frequency on Reactive Pulsed DC Sputtering of Aluminum Nitride Films (4-27) Xue-Li Tseng ¹ , Yu-Shin Chen ¹ , Hsuan-Fan Chen ¹ , Hsiao-Han Lo ² , Peter J. Wang ² , Yu- Min Dai ² , Yiin-kuen Fuh ¹ and Tomi T. Li ¹	329
Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan,	
China ² Delta Electronics Inc. Taowan City Taiwan China	
FULL WAFER COMBINATORIAL DEPOSITION WITH IN-SITU XPS/ UPS CHARACTERIZATIONS (4-66) Lingli Chen ¹ , Lei Zhu ^{1,2} , Wenjie Yu ^{1,2} , Weimin Li ^{1,2}	334
Shanghai Institute of IC Materials Co., Ltd, Shanghai, China	
Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Science, Shanghai, China	
The Effects of Different Silicon Oxide Substrates on Amorphous Silicon Thin-Film	337
(4-57) Zhengdao Liu, Zun Chen, Wei Wang, Jinlong Mu, Yuanzhi Li, Changqing Feng and Xiaoping Shi Beijing NAURA Microelectronics Equipment Co., Ltd, Beijing, China	

A Novel Thin Film Deposition Method by IBD for Asymmetrical Patterns (4-18) Zichao Li, Kangning Xu, Fei Xu, Yuxin Yang, Shuo Dong, Qiao Huang, Cheng Li, Hushan Cui, Wuping Liu, Lu Chen, Kaidong Xu Jiangsu Leuven Instruments Co., Ltd., Xuzhou, Jiangsu, China	340
Potential Confusion in the Analysis of the Current-Voltage Characteristics of High- k Dielectric on Lightly Doped P-Type Silicon MIS Capacitors (4-11) W.S. Lau	343
Nanyang Technological University (Retired), School of EEE, Singapore	
The Secret of the Leakage Current Mechanism in Some Historical Device- Quality High-k Metal-Insulator-Metal Capacitors (4-10) W.S. Lau	346
Nanyang Technological University (Retired), School of EEE, Singapore	
Improved Performance of PMOS by Optimizing the Epitaxial Morphology (4-23) Tao Wang ^{1,2} , Yongyue Chen ² , Li Peng ² , Jinyu Fu ² , Lu Zhang ² , Yingjie Su ² , Qiang Yan ² , Jun	350
Tan ² , Kairen Zheng ² , Xinhua Cheng ² , Jinxun Fang ² , Yu Zhang ² and Jianhua Zhang ¹	
School of microelectronics, Shanghai university, Jiading Area, Shanghai, China	
Shanghai Huali Microelectronics Corporation, Pudong New Area, Shanghai, China	
Exploring the Effect of Gate Oxide Process on Electrical Performance of CMOS Device (4-31)	353
Yongkang Hu ¹ , Qiao Teng ² , Yongyu Wu ^{2,4} , Zenan Wang ⁴ and Kai Xu ^{2,3}	
¹ School of Microelectronics, University of Science and Technology of China, Hefei, China ² School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ³ ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China	
⁴ Zhejiang ICsprout Semiconductor Co., Ltd., Hangzhou, China	
Improving Gate Oxide Uniformity using Wet-Dry Oxidation for Semiconductor Manufacturing (4-32) Tang Lin ¹ , Xie Weisi ² , Jia Zeqi ² , Chen Xiwei ² , Zhang Yunyan ¹ , Luo Jinjiang ¹ , Gao Dawei ^{1,2} and Fang Wenzhang ^{1,2,3}	357
School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	
Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China	
SiGe Epitaxy Improved by Si Cap Technology (4-22) Tao Wang ^{1,2} , Yongyue Chen ² , Yingjie Su ² , Li Peng ² , Qiang Yan ² , Jun Tan ² , Kairen Zheng ² , Xinhua Cheng ² , Jinxun Fang ² , Yu Zhang ² and Jianhua Zhang ¹	360
School of microelectronics, Shanghai University, Jiading Area, Shanghai, , China	
Shanghai Huali Microelectronics Corporation, Pudong New Area, Shanghai, China	
Effect of Process Parameters on Microstructure and Properties of ITO Films by Pulsed Magnetron Sputtering (4-59) Yanmeng Chen, Jianheng Luo and Qintong Zhang Beijing NAURA Microelectronics Equipment Co. Ltd., Beijing, China	363

The Influence of Different Parameters on Capacitive Coupled Magnetron Sputtering Process (4-60) Song Yang, Chao Zhang, Qiwei Huang, Shuaitao Shi, Ruolin Yuan, and Xiangyu Zhou

Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China

Chapter V – CMP and Post-CMP Cleaning

New methodology for anisotropic nanoparticles characterization by Depolarized Light Scattering measurements: length and diameter determination of rod- like nanoparticles (5-42) Benoit Maxit ^{1*} , Clara Catros ¹ , Julien Le Mener ^{1,2} , Florian Aubrit ^{1,2} , Olivier Sandre ² , David Jacob ¹ and Sylvain Boj ¹ ¹ Cordouan Technologies, Pessac, France ² LCPO CNRS/University and INP Bordeaux, Pessac, France	369
CEO ₂ SLURRY POST RINSE CONDITION RESEARCH IN STI CMP TECHNOLOGY (5-18) ZhiJie Zhang, ZhengYi Li, HongDi Wang, Jian Li Semiconductor Manufacturing North China(Beijing) Corporation, Beijing, China	372
Incoming Impact on Dishing Improvement in FEOL Process (5-14) Huize Du ^{1,2} , Shubin Liu ² , Yu Yang ² , Hu Li ² , Yu Bao ² , Jingxun Fang ² and Yu Zhang ² ¹ School of Microelectronic, Shanghai University, Shanghai, China ² Shanghai Huali Integrated Circuit Corporation, Beijing, China	376
Study on the Dispersing Effect and Mechanism of LABSA on SiO ₂ in an Alkaline Barrier Slurry (5-11) Fangyuan Wang ^{1,2} , Tengda Ma ^{1,2} , Baimei Tan ^{1,2} and Yunhui Shi ^{1,2} School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China	382
Mechanism Research and Improvement of Al Scratch Defect Based on MG CMP* (5-39) Qingqing Duan ¹ , Hu Li ² , Mingfei Yu ² , Hongwei Zhang ² and Yijun Liu ² , Advanced Module Technology Dept., Shanghai Huali Integrated Circuit Corp., Shanghai, China	385

Cu Post CMP Cleaner Development Utilizing AI System (5-1) Atsushi Mizutani, Akihiko Ohtsu and Tetsuya Kamimura <i>Electronic Materials Research Laboratories, Fujifilm corporation, Shizuoka, Japan</i>	389
Effect of Green Corrosion Inhibitors on the Performance of Copper-Cobalt CMP (5-3) Chao He ^{1,2,3,4,5} , Xinhuan Niu ^{1,2,3,4,5} , Han Yan ^{1,2,3,4,5} , Jianghao Liu ^{1,2,3,4,5} , Changxin Dong ^{1,2,3,4,5} and Xinjie Li ^{1,2,3,4,5}	392
Institute of Microelectronics, Hebei University of Technology, Tianjin, China	
School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China	
Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China	
⁴ Collaborative Innovation Center for Microelectronics Ultra-precision Processing Materials and Technology, Tianjin, China	
Engineering Center for Microelectronics Specialized Materials and Devices, Tianjin, China	
Effect of Green Additive Sarcosine as Inhibitor for Cobalt-Based Copper Interconnect CMP (5-10)	395
Changxin Dong ^{1,2,3,4,5} , Xinhuan Niu ^{1,2,3,4,5} , Chao He ^{1,2,3,4,5} , Xinjie Li ^{1,2,3,4,5} and Han Yan ^{1,2,3,4,5}	
Institute of Microelectronics, Hebei University of Technology, Tianjin, China ² School of Electronics and Information Engineering, Hebei University of Technology,	
³ Tianjin, China ³ Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China ⁴ Hebei Province Microelectronics Ultra Precision Processing Materials and Tachnology	
Collaborative Innovation Center, Tianjin, China ⁵ Hebei Microelectronics Special Materials and Device Engineering Center, Tianjin, China	
Study on the Slurry for Chemical Mechanical Polishing of GaN Wafer (5-9) Yang Liu ^{1,2} , Baoguo Zhang ^{1,2} , Sihui Qin ^{1,2} , Yijun Wang ^{1,2} , Wenhao Xian ^{1,2} , Min Liu ^{1,2} and	398
School of Electronics and Information Engineering, Hebei University of Technology Tianjin, China	
Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China	
Chemical Effect Mechanism in Chemical Mechanical Polishing of Silicon Wafer (5-37) Xuejie Wang ¹ , Chenwei Wang ¹ , Xing Li ² , Lijiao Jiang ² and Shuangshuang Lei ¹	401
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China	
Jiangsu Shanshui Semiconductor Technology Co., LTD, Wuxi, China	
EOE Evolution Processes of Same Step Profile with Different One-Material Polishing Time in CMP (5-41) Liviao Wu and Changfeng Van	404
School of Mechanical & Electronical Engineering, Lanzhou University of Technology, Lanzhou, China	
Effect of Surfactants on CMP Properties of C-, A- and R-Plane Sapphire (5-5) Xinjie Li ^{1,2} , Xinhuan Niu ^{1,2} , Minghui Qu ^{1,2} , Chao He ^{1,2} and Changxin Dong ^{1,2}	407
School of Electronics and Information Engineering, Hebei University of Technology,	

School of Electronics and Information Engineering, Hebei University of Tianjin, China ² *Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China*

ILD-CMP WAFER EDGE THICKNESS PROFILE STABILITY IMPROVEMENT VIA ACID SILICON OXIDE SLURRY FORMULATION DESIGN (5-15)	41
ZhiJie Zhang, Zhiyang Liang, HongDi Wang, Liang Tian Semiconductor Manufacturing North China(Beijing) Corporation, Beijing, China	
Dishing Study On Chemical Mechanical Planarization (CMP) (5-13) Huize Du ^{1,2} , Shubin Liu, Yu Yang ^{2*} , Hu Li ² , Yu Bao ² , Jingxun Fang ² , Yu Zhang ²	41
¹ School of Microelectronic, Shanghai University, Shanghai, China ² Shanghai Huali Integrated Circuit Corporation, Beijing, China	
Study on Ceria Slurry for Chemical Mechanical Polishing of 4H-SiC (5-16) Sihui Qin ^{1,2} , Baoguo Zhang ^{1,2*} , Yijun Wang ^{1,2} , Yang Liu ^{1,2} , Dexing Cui ^{1,2} , Min Liu ^{1,2} and Wenhao Xian ^{1,2}	42
School of Electronics and Information Engineering, Hebei University of Technology Tianjin, China	
² Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China	
Study On Chemical-Mechanical Synergies in Polishing of Ruthenium (5-24) Hongyu oi, Ping Zhou and Dongming Guo State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, China	42
Effects of Polyvinyl Alcohol on Silicon Chemical Mechanical Polishing (5-25) Shuangshuang Lei ¹ , Chenwei Wang ¹ and Shengli Wang ²	42
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China	
² Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin, China	
Study on 28nm Technology Node ILD0-CMP Micro_Scratch Defect Reduction (5-30) Xing Ma, Kailin Wang, Jianwen Yu, Yurong Que, Hu Li, Jingxun Fang and Yu Zhang Advanced Module Research & Development Dept., Shanghai Huali Integrated Circuit	42
Corp., Shanghai, China	
Feasibility Analysis of Skip Ild Cmp Scheme on 28nm Technology Node (5-32) Fan Chen, Zhen Liu, Shaojia Zhu, Mingfei Yu, Hu Li and Jingxun Fang Shanghai Huali Integrated Circuit Corporation, Shanghai, China	43
A Trade-off Balance Between Cu Corrosion and Cu Oxide Defect (5-33) Lei Zhang	43
Advanced Module Technology Dept., Shanghai Huali Integrated Circuit Corp., Shanghai, China	

Chapter VI – Metrology, Reliability and Testing	
Jitter Reduction for Multi-GHz ATE up to 20 GHz* (6-59) D.C. Keezer ¹ , D. Minier ² and H. Li ³ ¹ Eastern Institute of Technology, Ningbo, China ² Boreas Technologies, Bromont, Canada ³ Tianjin University, Shenzhen Research Institute, Shenzhen, China	438
An Efficient Library for Protocol Test on V93000 (6-5) Peifeng Ni and Hao Chen Advantest, Shanghai, China	442
Address the challenges of mass production testing for 5G millimeter devices (6-6) Daniel Sun, Yongjun Hu Business Development & Center of Expertise, Advantest (China) Co., Ltd., Shanghai, China	446
DEEP REINFORCEMENT LEARNING-BASED AUTOMATIC TEST PATTERN GENERATION (6-49) Wenxing Li ^{1,2} , Hongqin Lyu ¹ , Shengwen Liang ^{1*} , Zizhen Liu ¹ , Ning Lin ^{3,5} , Zhongrui Wang ^{3,5} , Pengyu Tian ¹ , Tiancheng Wang ^{1,4} and Huawei Li ^{1,2,4*} ¹ State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China ² University of Chinese Academy of Sciences, Beijing, China ³ Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China ⁴ CASTEST, Beijing, China ⁵ ACCESS – AI Chip Center for Emerging Smart Systems, Hong Kong, China	451
Mirroring ATPG Technology for Multi-Core Chips (6-27) Keqing Ouyang ^{1,2} , Minqiang Peng ^{1,2} , Jitong Zhou ^{1,2} , Guohua Zhou ^{1,2} and Youfa Wu ^{1,2} <i>State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen,</i> <i>China</i> <i>Sanechips Technology Co., Ltd, Shenzhen, China</i>	454
Investigation on the Root Cause of ESD Failure of Large Size WBBGA Package Chip (6-14) Yunhe Zhang ^{1,2} , Shaobing Lin ² , Shuanshe Chao ² , Xiao He ² , Dan Yang ² and Na Mei ¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, China Department of Reliability Engineering, Sanechips Technology Co., Ltd., Shenzhen, China	457
The Influence of Pin Position on CDM Peak Current of Chips Based on Large-Sized CoWoS Package (6-15) Liyi He ^{1,2} , Menghua Wang ² , Hui Zheng ² , Xiao He ² , Dan Yang ² and Na Mei ¹ <i>State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen,</i> <i>China</i>	460

Department of Reliability Engineering, Sanechips, Shenzhen, China

Breakthrough the Test Challenges for the Latest BeiDou Navigation and Satellite Communications Chips (6-11) Bank Liu and Daniel Sun	463
System Application Engineering Department, Business Development & Center of Expertise, Advantest (China) Co., Ltd, Shanghai, China	
Advanced Digital Baseband Signal Generation and Processing Solution for V93000 5G Small Cell Transceiver Testing (6-12) Bank Liu, Daniel Sun and QuanXing Liu System Application Engineering Department, Business Development & Center of Expertise,	468
Advantest (China) Co., Ltd, Shanghai, China	
Various Driver Test Summary on V93000 in Automotive Device (6-18) Lin Yang and Zhu Humphrey	473
Application Development Center, ADVANTEST, Shanghai, China	
A New Fast XRD Apparatus for the Epitaxial Films with a Focusing X-Ray Beam (6-17) Yankun Sun, Yangchun Rong, Hanlin Yu, Ronghui Luo, Trina Wong , Feng Hong and	476
Shenzhen Angstrom Excellence Semiconductor Technology Co. Ltd, Shenzhen, China	
An Efficient Protocol Ate Solution for Driver IC on Advantest T6391 (6-48) Xiang Cai ¹ , Siwen Wang ² and Mingjie Tang ¹	479
¹ Advantest (China) Co., Ltd, Shanghai, China ² Huatek Technologies Co., Ltd, Shanghai, China	
Multi-Physics Simulation of Electromigration in Cu Interconnect (6-55) Xuefeng Zhang, Bin Deng, Qingshan Zhang, Qintong Zhang and Guodong Bian <i>Beijing NAURA Microelectronics Equipment Co., Ltd., Beijing, China</i>	482
Analysis and Protection Solution for Aging DC-Stress Induced Waveform Distortion	486
Haiyong Wang ^{1,2} , Qi Wei ^{1,2} , Jinxin Liu ^{1,2} , Chenfei Wu ^{1,2} , Hailiang Zhang ^{1,2} , Guohua Zhou ^{1,2} and Keqing Ouyang ^{1,2}	
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology ² Sanechips Technology Co., Ltd, Shenzhen, Guangdong, China	
High-Resolution Time Domain Reflectometry in Advanced Package Failure Analysis (6-33)	489
Longhai Liu and Mingye Zhuang Advantest (China) Co., Ltd, Shanghai China	
Reliability Challenges in SiC Components – Performing Dynamic Test Methodologies Like DGS for Meaningful Measurement Results (6-50) Frank Heidemann , Mathias Gebhard and Sandro Strasser SET GmbH, NI, Wangen im Allgäu, Germany	492

Study on Failure Mechanism of C4 Bump Solder Excursion in CoWoS Package (6-25) Xixiong Wei ^{1, 2} , Xinyi Lin ² , Shilu Zhou ² , Dan Yang ² and Na Mei ¹	495
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen,	
² Department of Reliability Engineering, Sanechips Technology Co., Ltd., Shenzhen, China	
A Dynamic Reusable Structure Of I/O Pads For Scan Chains (6-28) Minqiang Peng ^{1,2} , Keqing Ouyang ^{1,2} , Qi Cheng ^{1,2} , Guohua Zhou ^{1,2} and Lei Chen ^{1,2}	498
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen,	
² Sanechips Technology Co., Ltd, Shenzhen, China	
A Closed-Loop Chip Fast Binning Technology (6-30) Minqiang Peng ^{1,2} , Keqing Ouyang ^{1,2} , Jiawei Wang ^{1,2} , Xiwu Chen ^{1,2} , Guohua Zhou ^{1,2} and Lei Chen ^{1,2}	501
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, China	
² Sanechips Technology Co., Ltd, Shenzhen, China	
A Universal DPAT GUI Solution for Production Test (6-7) Hao Chen, Peifeng Ni and Hua Yang Advantest (China) Co., Ltd., Shanghai, China	504
A Common Framework Solution for Firmware Test on V93000 ATE Platform (6-13) Chang Yanyan , Chen Tianyu , Jiang Tao and Chen Kai SA, Advantest (China) Co., Ltd, Shanghai, China	507
Study of Coating Effect on TEM Sample Damage and Elemental Analysis (6-19) Yun Xu, Fan Zhang and Fairy Chen Semiconductor Manufacturing International (Shanghai) Corporation Failure Analysis Laboratory, Shanghai, China	510
A Universal Auto Configured Efuse Solution on ADVANTEST V93000 ATE Platform (6-20)	514
Wang Yefang, Xia Qingqing Advantest (China) Co. Ltd, Shanghai, China	
Influence of FOUP Environment on Defects in Semiconductor Manufacturing (6-23) Weiwei Zhao, Honglin Chen, Yin Long, Kai Wang and Hao Guo Shanghai Huali Integrated Circuit Corporation, Shanghai, China	517
Streamlining Chip Testing with Simplified Digital Data Acquisition (6-24) Felix Chen <i>ADVANTEST, Shanghai, China</i>	520
Comparison of Simulation and Test Results of Multi-Type Ring Oscillators on Advanced Process Nodes (6-26) Kuili Chen ^{1,2} , Jian Wang ^{1,2} , Haiyong Wang ^{1,2} , Keqing Ouyang ^{1,2} and Guohua Zhou ^{1,2} ¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology ² Saneching Technology Co. Ltd. Shenzhen Guangdong China	523

Optimization and Validation of Sampling and TD-GCMS Analysis for Volatile Organic Compounds from Semiconductor Cleaning Coupons (6-31) Ling Wang	526
Ferrotec (Shanghai) Technology Corp., Shanghai , China	
New Generation Test Framework Solution for Complicated Multi-Die Chip on ATE (6-36)	529
Kai Zhou , Changyuan Sha and Yang Liu T-Head Semiconductor Co., Ltd, Alibaba Group, Shanghai , China	
Virtual Measurement Combine OCD and FDC Through Optimized Random Forest Machine Learning Algorithm Assists on Post Etching Monitor (6-37) Qingyun Yang, Michael Meng, Alex Zheng, Paul Lin, Kevin Gai and Osim Chen SiEn (Qingdao) Integrated Circuits Co., Ltd, Qingdao, China	532
Study on STEM EDS for GeSi Atomic Layer Interface Identified and Concentration Quantified (6-39) Fan Zhang and Yun Xu Semiconductor Manufacturing International (Shanghai) Corporation, Shanghai, China	535
An optimized ADC&DAC test solution from SmartScale MCx to ExaScale WSMX (6-40) Tianyu Zhang <i>Advantest (China) Co., Ltd, Shanghai China</i>	539
Spectra Machine Learning for the Prediction of Sheet Resistance and Capacity (6-41) Alex Zheng, Michael Meng, Shang Li, Kevin Gai and Osim Chen SiEn (Qingdao) Integrated Circuits Co., Ltd, Qingdao, China	542
A New Multi-Mode X-Ray Fluorescence Apparatus for Both Blanket and Pattern Wafer Film Metrology (6-44)	545
Hong and Athena Chang Shenzhen Angstrom Excellence Technology Co. Ltd, Shenzhen, China	
The Influence of Metal Barrier Punch Through Process on Dielectric Reliability at 55nm CMOS Node (6-45) Chenxiao Xu ^{1,2} , Luhao Zhou ² , Dawei Gao ^{1,2} and Yunlong Li ^{1,2,3}	548
¹ College of Integrated Circuits, Zhejiang University, Hangzhou, China ² Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China ³ State Key Laboratory of Silicon and Advanced Semiconductor Materials, ^{Zhejiang} University, Hangzhou, China	
Sample Preparation Method for In-Situ TEM Analysis in Integrated Circuits (6-61) Guoyang Ye, Xianfeng Chen, Tong Wu and Xiaoyu Li Semiconductor Manufacturing International (Shanghai) Corporation Failure Analysis Laboratory, Shanghai, China	551

Challenges of Semiconductor Micro Via Fabrication Technology for 3D Chiplet Interconnect (7-12) Yasuhiro Morikawa ULVAC Inc., Susono, Shizuoka, Japan	555
Comprehensive Investigation of Insufficient IMC in SOIC Through Advanced Statistical Analysis (7-2) Jingwei Sun ¹ , JW Seah ² and VK Leong ²	558
¹ NXP Semiconductors, Suzhou, Jiangsu, China ² NXP Semiconductors, Kuala Lumpur, Malaysia	
Study on ELK Dielectric Reliability During the Solder Reflow Process Based on Finite Element Simulations* (7-3)	561
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, China	
² Department of Reliability Engineering, Sanechips Technology Co., Ltd., Shenzhen, China	
A Modularized Thermal Test Chip Design and Verification (7-7) Jianjun Sun ^{1,2} , Deping Wang ³ , Shiying Zhou ³ , Bin Yan ^{2*} , Yelei Xie ² , Jian Pang ² , Guangyao Li ² and Keqing Ouyang ²	565
¹ State Key Laboratory of Mobile Network and Mobile Multimedia Technology, ZTE Corporation, Shenzhen, China	
² Department of Packaging and Testing, Sanechips Technology CO., Ltd., Shenzhen, China ³ China FAW Group Co., Ltd.	
Improvement of Warping Simulation Accuracy and Influence Factors Analysis in FCBGA Package (7-5) Yubo Wang ¹ , Bin Yan ² , Bin Yu ¹ , XiaoDong Tan ¹ , Jian Pang ¹ and GuangYao Li ¹	569
¹ Department of Packaging and Testing, Sanechips Technology Co., Ltd., Shenzhen, Guangdong, China	
² State Key Laboratory of Radio Frequency Heterogeneous Integration, Sanechips Technology Co., Ltd., Shenzhen, Guangdong, China	
Evaluating 224G SI Performance of Vertical Interconnections on Package Substrate and PCB (7-9) Kai Yuan ¹ , Xinxin Dong ¹ , Liyang Xu ¹ , Ming Xia ¹ and Jianguo Zhang ^{1,2}	574
¹ Department of Packaging and Testing, Sanechips, Shenzhen, China ² State Key Laboratory of Radio Frequency Heterogeneous Integration	
Heat Transfer Improvement of Phase Change Material with Metal Foam (7-10) Qixin Zhang, Minghe Wang, Zhiying Huang, Yong Zhang and Yan Zhang School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China	580

A Graphene Field Effect Transistor (GFET) Based Integrated Biosensor System for Point-Of-Care Application (8-27) Ziyang Zhu, Biyu Guo ¹ , Jiangyang Wang, Feige Lou and Ye Lu	583
¹ State Key Laboratory of Integrated Chips and Systems, School of Information Science and Technology, Fudan University, Shanghai, China.	
Advanced Spectral Sensing Methods for Process Monitoring Applications* (8-15) Ray Saupe ¹ , Jörg Martin ¹ , Ronny Otto ¹ , Alexander Weiß ¹ , Volker Stock ² and Yuichiro Shimizu ³	586
¹ Fraunhofer Institute for Electronic Nano Systems, Chemnitz, Germany ² TQ Systems GmbH, Chemnitz, Germany ³ Shinko Electric Industries CO., LTD., Nagano, Japan	
TSV Integrated and Pattern Recognition Based Multimode Degenerated Low- Power3-Dimensional Smart Sensing Chips (8-33) Simian Zhang ¹ , Xiaonan Deng ¹ , Yuqi Wang ¹ , Yifei Wu ¹ , Shengxian Ke ¹ , Jianing Liu ¹ , Yuchun Lin ¹ , Zeli Wang ¹ , Zhengcao Li ¹ and Chen Wang ^{1,2}	590
¹ State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China	
² Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China	
SPAD-Based Line Sensor IC for Chemiluminescence Assays in Microfluidic Channels (8-24)	594
Alexander Zimmer ¹ , Benjamin Saft ² , Maximilian Wiener ² , Jakob Hampel ² , Mirjam Skadell ¹ and Eric Schäfer ²	
¹ X-FAB Global Services GmbH, Erfurt, Germany ² IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH (IMMS GmbH), Ilmenau, Germany	
Newly Developed Low-Reflectivity Black Resist with High Optical Density (8-28) Hiroaki Idei, Teppei Abe and Yoshinori Taguchi Electronic Materials Research Laboratories, Fujifilm Corporation, Yoshida, Shizuoka, Japan	597
UV-C Light Detection with High Performance Photodiodes Integrated in a 0.18 μm Modular CMOS Foundry Technology (8-20) Daniel Gäbler ¹ , Pablo F. Siles ¹ and Ai Qiang ²	600
¹ X-FAB Global Services GmbH, Erfurt, Germany ² X-FAB Sarawak Sdn. Bhd., 1 Silicon Drive, Sama Jaya Free Industrial Zone, Malaysia	
Design and Experiment of a Micro Planar Linear Motor Equipped with Electromagnetic Guide (8-16) Anyuan Pan, Chao Zhi and Ying Zhang <i>Dealour Electric Co., Ltd, Jiaxing, China</i>	603

Chapter VIII – MEMS, Sensors and Emerging Semiconductor Technologies

Performance Enhancement of CMOS Microbolometer with Metal-Insulator- Metal Absorbers (8-17) 606
Jie Liu ¹ , Wenbin Zhou ¹ , Jiang Lan ¹ , Ke Wang ¹ , Yiming Liao ² , Feng Yan ¹ and Xiaoli Ji ¹
¹ School of Electronic Science and Engineering, Nanjing University, Jiangsu, China ² School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
Performance-Enhanced CMOS Polysilicon Microbolometer with Narrow609Supporting Arms (8-18)Wenbin Zhou ¹ , Yaozu Guo ¹ , Jiang Lan ¹ , Yuhao Zhai ² and Ke Wang ¹
¹ School of Electronic Science and Engineering, Nanjing University, Jiangsu, China ² School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
Design of Arbitrarily Polarized CMOS Terahertz Detector Based on Plasmonic Antenna (8-19)
Ke Wang ¹ , Yiming Liao ² , Jiang Lan ¹ , Feng Yan ¹ and Xiaoli Ji ¹
¹ School of Electronic Science and Engineering, Nanjing University, Jiangsu, China ² School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
Investigation of Electrical Characteristics of a Fabricated LGAD Detectors at High and Low Temperatures (8-21)616Yupeng Lu ^{1,2,3} , Peng Sun ^{1,2,3} , Gangping Yan ^{1,2,3} , Luoyun Zhang ^{1,2,3} , Yanyu Yang ^{1,2,3} , Shuang Liu ^{1,2,3} , Gaobo Xu ^{1,2} and Huaxiang Yin ^{1,2,3} 616
¹ Integrated Circuit Advanced Process R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
² State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
³ School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, China
An Intelligent General-Purpose Circuit and System for Broad Sensor Array-Based 619 Applications (8-26) Junye Li ¹ , Siwei Huang ¹ , Jiaheng Han ¹ , Lidong Wu ² , Xiaojin Zhao ¹ , Wei Xu ¹ and Xiaofang Pan ¹
¹ College of Electronic and Information Engineering, Shenzhen University, Shenzhen, China ² Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China
Colloidal Quantum Dot Enhanced Short-Wavelength Infrared Absorption of Avalanche Photodetectors (8-29) Qianchuan Yi ¹ , Binbin Huang ² , Jiayi Wang ¹ , Bin Sun ³ , Tao Wang ¹ , Yuanjun Guan ¹ , Li Zhang ² , Wenxin Jiang ¹ , Xiaopu Gu ¹ , Tianyan Han ² and Lilei Hu ^{1,2}

¹School of Microelectronics, Shanghai University, Shanghai, China ²Shanghai Industrial μTechnology Research Institute, Shanghai, China ³Nanjing University of Posts and Telecommunications, Nanjing, China

Sources of Dark Current in Backscattered Electron Detectors and a Novel Multiple Guard Ring Design to Lower It (8-30) Tao Wang ¹ , Yuanjun Guan ¹ , Jiayi Wang ¹ , Qianchuan Yi ¹ , Li Zhang ² , Binbing Huang ² , Yanwei Sun ² , Tianyan Han ² and Lilei Hu ^{1,2}					
¹ School of Microelectronics, Shanghai University, Shanghai, China ² Shanghai Industrial µTechnology Research Institute, Shanghai, China					
Chapter IX – Design and Automation of Circuit and Systems					
A Customized Model for Defensing Against Adversarial Attacks (9-31) Jiang Sun and Pingqiang Zhou	629				
School of Information Science and Technology, ShanghaiTech University, Shanghai, China					
Logic Synthesis for XOR-AND Graphs Via Reed-Muller Representations (9-21) Sen Liu, Hongwei Zhou, Yinshui Xia, Lunyao Wang and Zhufei Chu <i>EECS, Ningbo University, Ningbo, China</i>	632				
Integration of Shift-Left Updates into Logic Synthesis and Macro Placement (9-24) Xinfei Guo ^{1,2} , Xiaotian Zhao ¹ and Linyu Zhu ¹	635				
¹ University of Michigan– Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China					
² State Key Laboratory of Integrated Chips and Systems (SKLICS), Fudan University, Shanghai, China					
TimingDTH: Timing-Driven Placement with Deep Three-Head Reinforcement Learning (9-33) Liyi Yuan ¹ , Shuai Yuan ¹ , Dengwei Zhao ² , Qinwei Wang ² , Shikui Tu ² and Yanan Sun ¹	638				
¹ Dept. of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China ² Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China					
Decoupling Capacitor Optimization For 2.5d-Ics with Deep Reinforcement Learning Technique (9-32) Haiyang Feng ¹ , Zhiping Yu ^{1,2} , Leilai Shao ³ and Xiaolei Zhu ¹	641				
¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ² College of Integrated Circuit, Tsinghua University, Beijing, China ³ School of Mechanic Engineering, Shanghai Jiaotong University, Shanghai, China					
A Hardware Accelerator for Sparse Computing Based on NVDLA (9-14) Yizhou Chen, De Ma and Jiada Mao School of Micro-Nano-Electronics, Zhejiang University, China	644				
Integer Arithmetic-Based and Activation-Aware GELU Optimization for Vision Transformer (9-9) Zihan Zou, Chen Zhang, Shikuang Chen, Hui Kou and Bo Liu School of Integrated Circuit, Southeast University, Nanjing, China	647				

Preemptive FPGA Scheduling Based on Dynamic Partial Reconfiguration (9-22) Xiaotian Shi, An Zou <i>UM-SJTU JI, Shanghai Jiao Tong University, China</i>				
A 16-Bit 8MSPS SAR ADC with a Configurable Low-Power Comparator (9-13) Yidan Liang ¹ , Di Wang ² , Lingran Pan ¹ and Feijun Zheng ¹ ¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ² Pride Silicon Technology Co., Ltd, Hangzhou, China	653			
Data Flow Graph Partitioning Method for CGRA Temporal Mapping Based on Bayesian Optimization (9-5) Yihan Hu, Jiangnan Li, Wenbo Yin, Lingli Wang and Wai-Shing Luk <i>State Key Laboratory of ASIC & System, Shanghai, China</i>	656			
Verification of 400 GbE on an FPGA Platform with Optical Modules (9-6) Xiaoli Fang ¹ , Chun-Zhang Chen ^{1,2} , Xuhui Liu ¹ , Liang Wang ¹ , Weitao Wu ^{1,3} , Quan Pan ^{1,3} and Hanming Wu ^{1,2}	659			
¹ Peng Cheng Laboratory, Shenzhen, China ² School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ³ School of Microelectronics, Southern University of Science and Technology, Shenzhen, China				
A Transient Enhanced Output Capacitor-Less LDO with Adaptive Biasing and Spike Reduction (9-7) Qianxi Cheng, Chaorun Li, Chen Zhang, Linfeng Zhong and Xin'an Wang School of Electronic and Computer Engineering, Peking University, Shenzhen, China	662			
Design of Large-Scale Power Battery Safety Monitoring System (9-8) Zixiang Yan ^{1,2} , Hanbo Yu ^{1,2} , Qiang Xiao ^{1,2} , Huipin Lin ^{1,3} and Mingyu Gao ^{1,2}	665			
¹ School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China ² Key Laboratory of Equipment Electronics Research, Hangzhou, China ³ College of Electrical Engineering, Zhejiang University, Hangzhou, China				
Design of a 10-BIT 100MSPS SAR ADC (9-10) Chaorun Li ¹ , Junwei Wang ¹ , Qianxi Cheng ¹ , Xinan Wang ¹ and Xing Zhang ²	668			
¹ Shenzhen Graduate School, Peking University, Shenzhen, China ² School of Integrated Circuits, Peking University, Beijing, China				
Runtime Configurable Approximate Computing System for Simulated Annealing Algorithm (9-11) Jian Shi ¹ and Weikang Qian ^{1,2}	671			
¹ University of Michigan-SJTU Joint Institute and ² MoE Key Lab of AI ,Shanghai Jiao Tong University, China				
An 18.3~42.1GHz Octave Frequency Tuning Class-C Quadcore VCO Achieving 204.5 dBc/Hz FOMT (9-12) Shan Lu ^{1,2} , Danyu Wu ³ , Da Fu ^{1,2} , Yuzhen Zhang ¹ , Xuan Guo ¹ , Heng Zhang ^{1,2} and Xinyu Liu ¹	674			
¹ Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China ² School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, China ³ AcelaMicro Co.,Ltd., Suzhou, China				

Effective Resistance Estimation for Large Circuits Using Random Walk Algorithm (9-15)	677
Jinyu Zhang, Xuan Xiao, Xiaomeng Jiao, Minghou Cheng, Xiaolue Lai and Zhenya Zhou Empyrean Technology Co., Ltd, Beijing, China	
A Novel Smart Sampling Approach with Broader Compatibility in Semiconductor Manufacturing (9-20)	680
Tianyue Lai, Xiaolei Zhang and Yanqiu Zhang Fujian Jinhua Integrated Circuit Co., Ltd., Quanzhou, China	
Designing and Accelerating Spiking Neural Network based on High-level Synthesis (9-25)	683
Heng Zi ¹ , Kang Zhao ¹ and Wei Zhang ²	
¹ Beijing University of Posts and Telecommunications, Beijing, China ² The Hong Kong University of Science and Technology, Hong Kong, China	
Stochastic Computing Hardware Design and Optimization for Convolutional Neutral Networks (9-27) Zhinan Chen ¹ , Haoyu wang ¹ , Yiming Xu ¹ , Zili Li ¹ , Yudi Zhao ² and Shisheng Xiong ¹ _{Micro}	686
Nano System Center, School of Information Science and Technology, Fudan University, Shanghai, China	
² Key Laboratory of the Ministry of Education for Optoelectronic Measurement Eggingology and Instrument, Beijing Information Science and Technology University, Beijing,	
A 106tops/W SRAM Compute-In-Memory Macro in 28nm with Reconfigurable Bitwise Operation for AI (9-28) Yigi Meng ¹ , Yekuan Chen ¹ , Yiling Chen ¹ , Guoguan Sun ³ , De Ma ² and Xiaolei Zhu ¹ (r	689
of VLSI Design, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	
² College of computer science and technology, Zhejiang University ³ Zhejiang Lab, Hangzhou, China	
APPLICATION OF COMMUNITY DETECTION BASED PARALLEL MOEA/D ALGORITHM IN RF POWER AMPLIFIER CIRCUIT DESIGN (9-29) Jiejin Zhou ¹ , Yunhao Li ² , Jiarui Bao ¹ , Yifan Xu ¹ , Hongtao Xu ^{2*} , Ye Lu ^{1*}	692
State Rey Labordiory officergiea Chips and Systems, School of Information Science	

²School of Mieroelectronics, Fudan University, Shahghai, China

A HARDWARE ACCELERATOR OF THE CONVOLUTIONAL SPIKE NEURAL 695 NETWORK BASED ON STDP ONLINE LEARNING (9-30) Qinxin Chen¹, Xiao Dong², De Ma² and Xiaolei. Zhu^{1*}

¹School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ²College of computer science and technology, Zhejiang University, Hangzhou, China

Chapter X – AI and IC Manufacturing

A NOVEL DES ENCRYPTION CIRCUIT BASED ON RRAM XOR GATES (10-32) 698 Haoxiong Bi^{1#}, Jiabao Ye^{1#}, Yueiun Zhang^{2&}, Bing Chen^{1, 3*} ¹School of Micro- and Nano-Electronics, Zhejiang University, Hangzhou, China ²Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China ³Hangzhou Research Institute of Xidian University, Hangzhou, China A Physical Based 2D Monte Carlo Simulation of MO-ECRAM Programming for 701 **Device Optimization (10-40)** Haotong Zhu, Peng Huang, Xiaoyan Liu and Jinfeng Kang School of Integrated Circuits, Peking University, Beijing, China Universal Process Migration Solution of MAGICAL for Analog IC Layout Automation 704 (10-37)Yufeng Wei¹, Yifan Xu¹, Keren Zhu² and Ye Lu¹ ¹State Key Lab. of Integrated Chips and Systems and School of Information Science and Technology, Fudan University, Shanghai, China ²Department of Computer Science and Engineering at The Chinese University of Hong Kong, Hong Kong, China Metal-Oxide-Metal Capacitor Simulation and Modeling by Virtual Fabrication (10-4) 707 Qingpeng Wang, Yu Jia Zhong, Quan Deng, Pengfei Lyu, Lifei Sun, Yu De Chen, Jacky Huang, Benjamin Vincent, Ivan Chakarov and Joseph Ervin Lam Research Company, Shanghai, China

A SelectiveNet-based Method for Defect Classification in Semiconductor 710 Manufacturing (10-46)

Qian Jin¹, Yibo Qiao¹, Yining Chen^{1,2}, Cheng Zhuo¹ and Qi Sun¹

¹School of Micro-Nano Electronics, Zhejiang University, China ²HIC-ZJU, China

A.I. Driven Process Control by Machine Learning Based Virtual Metrology for High 713 Product Mix Manufacturing (10-21)

Hyung Joo Lee¹, Sanghyun Choi¹, Nathan Greeneltch², Srividya Jayaram², Shiwei Zhang³, Qijian Wan³ and Chunshan Du³

¹Siemens EDA, Digital Industries Software, Seongnam, Gyeonggi, Republic of Korea ²Siemens EDA, Digital Industries Software, Wilsonville, OR, USA

³Siemens EDA, Digital Industries Software, Shanghai, China

Machine Learning Technologies for Semiconductor Manufacturing (10-25)716Lifei Sun, Pengfei Lyu, Xiao Zhang, Junjie Wu, Qingpeng Wang, Joseph Ervin and Yushan716ChiLam Research Service Co., Ltd., Shanghai, China

Deep-Learning-Based Proxy Modeling for Microscopic Process of Plasma Etching (10-22) 723 Shuhang Chen¹, Yujun Liu¹, Dong Ni²

¹College of Control Science and Engineering, Zhejiang University, Hangzhou, China ²School of Mirco-Nano Electronics, Zhejiang University, Hangzhou, China

Predicting Material Removal Rate in Chemical Mechanical Polishing (CMP) Using Explainable Machine Learning Methods (10-33) Jiahui Zuo ¹ , Zeyang Chen ¹ , Yuanzheng Cui ^{1,2} , Yongpeng Cheng ^{1,2} , Yitao Ma ^{1,2} , Huixin Chen ³ , Shaowei Chen ³ , Guodong Zhou ^{1,2} and Dawei Gao ^{1,3}	728
¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China	
³ Zhejiang ICsprout Semiconductor Co., Ltd, Hangzhou, China	
α-In₂Se₃/MoTe₂ heterojunction for p-type junction field-effect transistors with ferroelectric memory characteristics (10-44) Tianjiao Zhang ^{1,2} and Yuda Zhao ^{1,2}	731
¹ School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China ² ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China	
Investigation of the Carrier Velocity in Short Channel Ge MOSFET with NiGe Metal Source/Drain (10-48)	734
Jing Yan, Junkang Li and Rui Zhang School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China	
A First-Principles Study on the Stable Phase in Yttrium-Doped HfO ₂ (10-42) Xiaomin Xiao, Chenxi Yu, Fei Liu and Jinfeng Kang School of Integrated Circuits, Peking University, Beijing, China	737
Tiny Neural Network Representing MOSFET Physical Effect Sub-Model (10-41) Shuhan Wang, Zheng Zhou, Xiaoyan Liu and Xing Zhang School of Integrated Circuits, Peking University, Beijing, China	740
Anomaly Detection of CDSEM Images (10-24) Meng Xue, Guiyun Mao, Yong Wang, Xu Chen and Zhengying Wei Shanghai Huali Microelectronics Corporation, Shanghai, China	743
PMOS Leakage Reduction Through SiGe Morphology & IMP Profile Fine Tune (10-26) Wenzhao Fu, Bohan Jiang, Cong Lin and Ying Xu Shanghai Huali Integrated Circuit Corporation, Shanghai, China	746
The Defect Formation and Reduction of 55nm Ultra-low Power (55ULP) BEOL Process (10-27) Oing Mao, Chao Han and Jinfeng Wang	750
Shanghai Huali microelectronics Corporation, Shanghai, China	
A Novel GAN-Based Data Augmentation Algorithm for Semiconductor Defect Inspection (10-28) Yang Liu ¹ , Yuanjun Guan ¹ , Tianyan Han ² , Can Ma ¹ , Jiayi Wang ¹ , Tao Wang ¹ , Qianchuan Yi ¹ and Lilei Hu ^{1,2}	755
¹ School of Microelectronics, Shanghai University, Shanghai, China ² Shanghai Industrial μTechnology Research Institute, Shanghai, China	

Convolutional Neural Lithography (10-34)	Network	(CNN)	Based	Process	Window	Analysis	for	758
Zeyang Chen ¹ , Jiahui Zu Guodong Zhou ^{1,2}	io ¹ , Tianhao	Huang ¹ ,	, Pan Liu	ı ¹ , Yuanzh	neng Cui ^{1,2} ,	Sheng Li ³	and ³	
¹ School of Micro-Nano El ² ZJU-Hangzhou Global University, Hangzhou, Ch	lectronics, Z Scientific lina	hejiang U and T	University lechnolog	, Hangzho ical Inno	ou, China wation Ce	enter, Zhej	jiang	
³ Zhejiang ICsprout Semic	onductor Co	o., Ltd, H	angzhou,	China				
Structure Optimization Jiayu Ma, Lu Wang, Chen Shanghai Huali Integrated	of 4X nm N ngdong Lian <i>d Circuit Co</i>	OR Flas g and Jur prporation	h for Im 1 Qian 1, Shangh	proving C tai, China	Cell Perfori	nance (10-	36)	761
Improved EM Performa Metal Gate Process (10-3	ince by Adj 38)	usting E	tching P	rofile of T	op Metal f	or 28HK		764
Zherui Cao, Chunshan Zh Shanghai Huali Integrated	ao, Wuzhi Z d Circuit Co	Zhang, Xi Prporation	aolin Xu n, <i>Shangh</i>	and Yami ai, China	n Cao			
Digitalization Solutions Semiconductor Smart F Ruiji Wang <i>Semiconductor AMHS Ro</i> <i>Jiaxing, China</i>	for Autom actories (10 &D Center,	ated Ma)-39) Huaxin (nterial H (Jiaxing)	andling S Intelligent	ystems in t Manufacti	uring Co., 1	LTD,	766
A Method for Predicting Cat Boost (10-51) Yu Cai ¹ , Yumeng Shi ² , Sh	g the Film T niqi Wang ¹ a	T hicknes s nd Yinin	s of IC D g Chen ¹	eposited I	Films Base	d on FCBF	ř_	770
¹ School of Microelectronic ² School of Micro-Nano El	cs, Universi lectronics, Z	ty of Scie hejiang U	nce and T University	Technology , Hangzho	y of China, ou, China	Hefei, Chin	ia	
High Performance Waf and RGB SEM Images (Zhongyu Shi ¹ , Zhouzhouz	Čer Defect ((10-53) zhou Mei ² , L	C lassific a Lichao Ze	ation Mong 1 and Y	odel Based	d on Featu	ire Fusion		773
¹ School of Microelectronic ² School of Micro-Nano El	cs, Universi lectronics, Z	ty of Scie hejiang U	nce and I Iniversity	Technology v, Hangzho	y of China, ou, China	Hefei, Chin	ıa	
Model of Organic Ferro Kairui Ding ¹ , Changqing Xu ¹ , Yuanyuan Zhu ¹ , Run	electric Tra Li ¹ , Haoyan 1 Li ² and Hu	n sistors g Luo ¹ , F abin Sun	for Neur Ruixian S	al Networ ong ¹ , Ziwe	r ks (10-59) ei Liu ¹ , We	nkai Tan ¹ , Z	Zhiqi	776
¹ College of Integrated Carling Telecommunications, Nan	ircuit Scien bjing, China	ce and E	Engineeri	ng, Nanjin	ng Universi	ty of Posts	and	
² Guangdong Greater Bay	Area Institu	te of Inte	grated C	ircuit and	System Gud	angzhou, Cl	hina	