2023 Eleventh International Conference on Advanced Cloud and Big Data (CBD 2023)

Danzhou, China 18 – 19 December 2023

IEEE Catalog Number: CFP2303Y-POD ISBN:

979-8-3503-5338-9

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2303Y-POD

 ISBN (Print-On-Demand):
 979-8-3503-5338-9

 ISBN (Online):
 979-8-3503-5337-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-040

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 Eleventh International Conference on Advanced Cloud and Big Data (CBD) CBD 2023

Table of Contents

Message from the General Conference Chairs xiii
Message from the Program Chairs xiv
CBD 2023 Organizing Committeexv
CBD 2023 Program Committee xvi
Keynotesxix
CBD-1: AI at Cloud and Edge Computing
Cloud-Edge Collaboration via Preference-based Reinforcement Learning in Semantic
Communications
Cooperative and Dynamic UAV-Based Mobile Sink Deployment using Deep Reinforcement Learning
Mingyue Shao (Shandong University of Science and Technology), Hanjiang Luo (Shandong University of Science and Technology), Rukhsana Ruby (Shenzhen University), Pengyan Dong (Shandong University of Science and Technology), and Hang Tao (Shandong University of Science and Technology)
Learning-Based Collaborative Service Placement for AI-oriented Mobile Edge Computing
Offloading Dependency Mobile Tasks to Computing Power Network

CBD-2: Cloud and Big data Management

Deep Reinforcement Learning-Based Load Balancing Algorithm for Sliced Ultra-Dense Network 27 Ao Sun (Beijing University of Technology, China), Feng Yang (Beijing University of Technology, China), Wenjun Wu (Beijing University of Technology, China), Tengda Wang (Beijing University of Technology, China), and Yang Sun (Beijing University of Technology, China)
Efficient Cloud Cluster Resource Scheduling with Deep Reinforcement Learning
Multi-UAVs Collaborative Search Scheme in Marine Environments using Deep Reinforcement
Learning
Power and Latency Collaborative Optimizations of Object Detection CNN on Edge Devices Under Limited Energy Budget
An Intelligent Action Decision Algorithm for Exoskeleton in Edge Networks Environment based on Deep Reinforcement Learning
CBD-3: Data and Security (I)
Network Anomaly Flow Detection Framework Based on Collaborative Cloud-edge in the Smart Grid Network
Retraining Generative Adversarial Autoencoder for Video Anomaly Detection

A Lightweight RFID Security Authentication Protocol for Smart Medical Systems
CBD-4: Data and Security (II)
A Fast Recommendation Algorithm for Data Streams Based on Differential Privacy
A Blockchain-Based Searchable Encryption Scheme for Efficient Data Sharing
Cloud Storage Auditing: From One Cloud to Dual, and More
SEM-DT: A Secure and Efficient One-to-Many Data Trading Scheme Based on Blockchain
CBD-5: Data and Security (III)
A CGAN-based Few-shot Method for Zero-day Attack Detection in the Internet of Vehicles
A Rumor Source Identification Method Based on Node Embeddings and Community Detection in Social Networks

An Adaptive Differential Private Federated Learning in Secure IoT Rixin Xu (National Computer Network Emergency Response Technical Team/Coordination Center, China), Qing Li (Tianjin Jinnan Meteorological Service, China), Wenqiang Cao (School of Computer Science and Technology, Beijing Institute of Technology, China), Jingbo Yan (National Computer Network Emergency Response Technical Team/Coordination Center, China), and Youqi Li (School of Computer Science and Technology, Beijing Institute of Technology, China)	110
Cooperative Detection of Camouflaged Malicious TLS Traffic Jingang Wang (School of Internet of Things, Nanjing University of Posts and Telecommunications), Tianyi He (School of Internet of Things, Nanjing University of Posts and Telecommunications), Gaofeng He (School of Internet of Things, Nanjing University of Posts and Telecommunications), Haiting Zhu (School of Internet of Things, Nanjing University of Posts and Telecommunications), Bingfeng Xu (College of Information Science and Technology, Nanjing Forestry University), and Lu Zhang (School of Computer Science, Nanjing Audit University)	116
Time series anomaly detection based on TimeGAN and LSTM neural network	122
CBD-6: Data Analysis and Processing (I)	
CBD-6: Data Analysis and Processing (I) A Study on a Multi-model Fusion Framework for Automatic Website Classification and Recognition Shiming Lin (School of Informatics, Xiamen University, China), Feiyan Ma (Department of Computer Engineering, Changji University, China), Lijuan Zhao (Department of Computer Engineering, Changji University, China), and Changjun Song (Department of Computer Engineering, Changji University, China)	128
A Study on a Multi-model Fusion Framework for Automatic Website Classification and Recognition Shiming Lin (School of Informatics, Xiamen University, China), Feiyan Ma (Department of Computer Engineering, Changji University, China), Lijuan Zhao (Department of Computer Engineering, Changji University, China), and Changjun Song (Department of Computer Engineering, Changji	
A Study on a Multi-model Fusion Framework for Automatic Website Classification and Recognition Shiming Lin (School of Informatics, Xiamen University, China), Feiyan Ma (Department of Computer Engineering, Changji University, China), Lijuan Zhao (Department of Computer Engineering, Changji University, China), and Changjun Song (Department of Computer Engineering, Changji University, China) Lightweight Multi-Scale Spatiotemporal Graph Convolutional Network for Skeleton-Based Action Recognition Zhiyun Zheng (Zhengzhou University), Qilong Yuan (Zhengzhou University), Huaizhu Zhang (Zhengzhou University), and Junfeng Wang	134

Real Time Dust Detection with Image Pyramid and Improved ResNeSt Bingchan Li (Jiangsu Maritime Institute) and Bo Mao (Nanjing University of Finance and Economics)	152
CBD-7: Data Analysis and Processing (II)	
Progressive Neural Networks for Continuous Classification of Retinal Optical Coherence Tomography Images Di Wang (Nanjing University of Science and Technology), Kun Huang (Nanjing University of Science and Technology), and Qiang Chen (Nanjing University of Science and Technology)	156
DC-YOLO: Improved YOLOv7 Based on Deformable Convolution and Attention Mechanism for Fabric Defect Detection	162
From Homoglyphs to Enhancedhomoglyphs: Enhancing NLP Backdoor Strategies through Charact Substitution	
A Generative Text Summarization Method Based on mT5 and Large Language Models	174
STEP: Generating Semantic Text Embeddings with Prompt Wenqiang Cao (School of Computer Science and Technology, Beijing Institute of Technology, China), Qing Li (Tianjin Jinnan Meteorological Service, China), Siying Zhang (Peking University, China), Rixin Xu (National Computer Network Emergency Response Technical Team/Coordination Center, China), and Youqi Li (School of Computer Science and Technology, Beijing Institute of Technology, China)	180
CBD-8: Data Analysis and Processing (III)	
Label Distribution-based Open-world Semi-supervised Learning	186

Yue Yao (School of Computer and Electronic Information, Nanjing Normal University, China), Qian Gao (School of Computer and Electronic Information, Nanjing Normal University, China), Guoqiang Zhang (School of Artificial Intelligence, Hainan Normal University, China), Yi Yin (School of Computer and Electronic Information, Nanjing Normal University, China), Lingling Shen (School of Computer and Electronic Information, Nanjing Normal University, China), and Qiaojun Qian (School of Computer and Electronic Information, Nanjing Normal University, China)	192
Rich Information Driven Popularity Prediction on Weibo Xinyang Shen (Soochow University), Zhen Wu (Soochow University), Jingya Zhou (Soochow University), Yujian Zhu (Soochow University), and Weiqing Xu (Soochow University)	200
Research on Persistent Advantage Learning Based Deep Q Network for Computational Offloading in Edge Computing Cong Wang (Northeastern University at Qinhuangdao), Mingmin Zuo (Northeastern University), Shuai Liu (Northeastern University), and Di Li (Northeastern University)	206
CBD-9: Machine/Deep Learning (I)	
•	
A Temporal Sequence Framework based on Self-Attention for Student Dropout Prediction in MOOCs Shixuan Chen (Nanjing Normal University, China), Bin Zhao (Nanjing Normal University, China), and Genlin Ji (Nanjing Normal University, China)	211
A Temporal Sequence Framework based on Self-Attention for Student Dropout Prediction in MOOCs Shixuan Chen (Nanjing Normal University, China), Bin Zhao (Nanjing Normal University, China), and Genlin Ji (Nanjing Normal University,	211
A Temporal Sequence Framework based on Self-Attention for Student Dropout Prediction in MOOCs Shixuan Chen (Nanjing Normal University, China), Bin Zhao (Nanjing Normal University, China), and Genlin Ji (Nanjing Normal University, China) Measuring the Variation of Function Invocation for Cold Start Optimization in Serverless Environments Yue Wang (Nanjing University of Aeronautics and Astronautics, China), Xingyu Yan (Nanjing University of Aeronautics and Astronautics, China), Bohan Li (Nanjing University of Aeronautics and Astronautics, China), and Shuai Xu (Nanjing University of Aeronautics and	

CBD-10: Machine/Deep Learning (II)

Jian Cao (Southeast University, China) and Jiuxin Cao (Southeast University, China)	
Knowledge Graph Embedding Based Graph Convolutional Network for Link Prediction	241
Uneven Hybrid Clickstream Generation Based on Multi-Layer Perceptron	247
Better Data Distillation by Condensing the Interpolated Graphs	255
A Constructive Method Based on Dynamic Solution Space for Travelling Salesman Problem Xiaoxin Bai (Southeast University, China), Lu Li (Suzhou Centennail College, China), and Hanqian Wu (Southeast University, China)	261
CBD-11: Machine/Deep Learning (III)	
CBD-11: Machine/Deep Learning (III) A-FAR: Research on Anti-obscuring Face Recognition Based on Improved FaceNet Model	267
A-FAR: Research on Anti-obscuring Face Recognition Based on Improved FaceNet Model	
A-FAR: Research on Anti-obscuring Face Recognition Based on Improved FaceNet Model	

Optimization on Architecture of Time-Sensitive Software-Defined Network Yuchun Gou (Lanzhou University, China), Xuetao Jiang (Lanzhou University, China), Zezheng Liu (Lanzhou University, China), Gongpo Gyamyang (Tibetan Information and Tech Research Center, China), Rui Zhou (Lanzhou University, China), Qingguo Zhou (Lanzhou University, China), and Deke Guo (National University of Defense Technology, China)	. 285
CBD-12: Machine/Deep Learning (IV)	
Point-Multipoint Communication Scheduling in Industrial Internet: A Quick Survey Yufeng Chen (School of Computer Science and Engineering, School of Software, Southeast University, Nanjing, China; China Telecom Nanjing Branch, China), Ping Jiang (School of Computer Science and Engineering, School of Software, Southeast University, China), Yida Qu (China Telecom, China), Mengqi Wu (China Telecom, China), Lu Luo (School of Computer Science and Engineering, School of Software, Southeast University, China), Ming Yang (School of Computer Science and Engineering, School of Software, Southeast University, China), and Wenqian Lu (China Telecom Nanjing Branch, China)	291
SpringNet: Enhancing Hardware-Dependent Model Adaptation through Efficient Cost Prediction. Guangtong Li (Southeast University, China), Mengyang Liu (Southeast University, China), Ye Wan (Southeast University, China), and Fang Dong (Southeast University, China)	. 297
DDAL: A Drift Detection Active Learning Mechanism Shuren Li (Aerospace System Engineering Shanghai), Weinan Wang (Aerospace System Engineering Shanghai), XIangqian Jiang (Aerospace System Engineering Shanghai), Jun Hua (Aerospace System Engineering Shanghai), Jiawei Mao (Aerospace System Engineering Shanghai), Yibin Lu (Aerospace System Engineering Shanghai), Xuan Jia (Aerospace System Engineering Shanghai), Di Wang (Aerospace System Engineering Shanghai), Zheng Wang (Nanjing University of Science and Technology), and Yifei Lu (Nanjing University of Science and Technology)	. 303
GNMS: A novel method for model stealing based on GAN Moxuan Zeng (Hainan University, China), Yangzhong Wang (Hainan University, China), Yangming Zhang (Hainan University, China), Jun Niu (Xidian University, China), and Yuqing Zhang (University of Chinese Academy of Sciences, China)	. 309
Author Index	. 315