2024 IEEE/CVF Winter **Conference on Applications of Computer Vision Workshops** (WACVW 2024)

Waikoloa, Hawaii, USA 1 – 6 January 2024

Pages 1-587

IEEE Catalog Number: CFP24B39-POD ISBN:

979-8-3503-7071-3

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24B39-POD

 ISBN (Print-On-Demand):
 979-8-3503-7071-3

 ISBN (Online):
 979-8-3503-7028-7

ISSN: 2572-4398

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)

WACVW 2024

Table of Contents

Message from the General and Program Chairs Organizing Committee Sponsors	xxiii
Computer Vision with Small Data: A Focus on Infants and End Animals	angered
NORPPA: NOvel Ringed Seal Re-Identification by Pelage Pattern Aggregation	1
Multiple Toddler Tracking in Indoor Videos Somaieh Amraee (Northeastern University; Roux Institute at Northeastern University, USA), Bishoy Galoaa (Northeastern University, USA), Matthew Goodwin (Northeastern University, USA), Elaheh Hatamimajoumerd (Northeastern University; Roux Institute at Northeastern University, USA), and Sarah Ostadabbas (Northeastern University, USA)	11
Challenges in Video-Based Infant Action Recognition: A Critical Examination of the State of the Art	21

KABR: In-Situ Dataset for Kenyan Animal Behavior Recognition From Drone Videos
The Hitchhiker's Guide to Endangered Species Pose Estimation
Efficient Domain Adaptation via Generative Prior for 3D Infant Pose Estimation
Dynamic Gaussian Splatting From Markerless Motion Capture Reconstruct Infants Movements 60 R. James Cotton (Northwestern University) and Colleen Peyton (Northwestern University)
Neural Texture Puppeteer: A Framework for Neural Geometry and Texture Rendering of Articulated Shapes, Enabling Re-Identification at Interactive Speed
Learning Part Segmentation From Synthetic Animals
DigiDogs: Single-View 3D Pose Estimation of Dogs Using Synthetic Training Data
Real-World Surveillance: Applications and Challenges
EarlyBird: Early-Fusion for Multi-View Tracking in the Bird's Eye View

Accenture-MM1: A Multimodal Person Recognition Dataset	2
LiDAR-Assisted 3D Human Detection for Video Surveillance	3
A Multi-Head Approach with Shuffled Segments for Weakly-Supervised Video Anomaly Detection 132 Salem AlMarri (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), UAE), Muhammad Zaigham Zaheer (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), UAE), and Karthik Nandakumar (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), UAE)	••
GEFF: Improving Any Clothes-Changing Person ReID Model Using Gallery Enrichment With Face Features	3
Person Fall Detection UsingWeakly Supervised Methods	4
Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports	3
Temporal 3D Shape Modeling for Video-Based Cloth-Changing Person Re-Identification	3
HOD: New Harmful Object Detection Benchmarks for Robust Surveillance	3

Swin on Axes: Extending Swin Transformers to Quadtree Image Representations	193
Unsupervised 3D Skeleton-Based Action Recognition Using Cross-Attention With Conditioned Generation Capabilities	. 202
Overlooked Video Classification in Weakly Supervised Video Anomaly Detection	. 212
Enhancing Self-Supervised Monocular Depth Estimation via Piece-Wise Pose Estimation and Geometric Constraints	. 221
Investigation of UAV Detection in Images With Complex Backgrounds and Rainy Artifacts	. 232
Spatio-Temporal Activity Detection via Joint Optimization of Spatial and Temporal Localization	. 242
Identifying Loitering Behavior With Trajectory Analysis	251
Unsupervised Person Re-Identification in Aerial Imagery	. 260
FedFSLAR: A Federated Learning Framework for Few-Shot Action Recognition Nguyen Anh Tu (Nazarbayev University, Kazakhstan), Assanali Abu (Nazarbayev University, Kazakhstan), Nartay Aikyn (Nazarbayev University, Kazakhstan), Nursultan Makhanov (Nazarbayev University, Kazakhstan), Min-Ho Lee (Nazarbayev University, Kazakhstan), Khiem Le-Huy (VinUniversity, Viet Nam), and Kok-Seng Wong (VinUniversity, Viet Nam)	. 270
Filter-Pruning of Lightweight Face Detectors Using a Geometric Median Criterion	. 280

Evaluating Supervision Levels Trade-Offs for Infrared-Based People Counting David Latortue (LIVIA, Dept. of Systems Engineering, Canada), Moetez Kdayem (LIVIA, Dept. of Systems Engineering, Canada), Fidel A. Guerrero Peña (LIVIA, Dept. of Systems Engineering, Canada), Eric Granger (LIVIA, Dept. of Systems Engineering, Canada), and Marco Pedersoli (LIVIA, Dept. of Systems Engineering, Canada)	. 290
Enhancing Skeleton-Based Action Recognition in Real-World Scenarios Through Realistic Data Augmentation Mickael Cormier (Fraunhofer IOSB; Karlsruhe Institute of Technology; Fraunhofer Center for Machine Learning), Yannik Schmid (Fraunhofer IOSB), and Jürgen Beyerer (Fraunhofer IOSB; Karlsruhe Institute of Technology; Fraunhofer Center for Machine Learning)	300
Security Fence Inspection at Airports Using Object Detection	. 310
TextAug: Test Time Text Augmentation for Multimodal Person Re-Identification	320
Knowledge-Distillation-Based Label Smoothing for Fine-Grained Open-Set Vehicle Recognition Stefan Wolf (Vision and Fusion Lab (IES), Karlsruhe Institute of Technology; Fraunhofer IOSB, Germany), Dennis Loran (Vision and Fusion Lab (IES), Karlsruhe Institute of Technology; Fraunhofer IOSB, Germany), and Jürgen Beyerer (Vision and Fusion Lab (IES), Karlsruhe Institute of Technology; Fraunhofer IOSB; Fraunhofer Center for Machine Learning, Germany)	. 330
Aerial View 3D Human Pose Estimation Using Double Vector Quantized-Variational AutoEncoders Juheon Hwang (Yonsei University, South Korea) and Jiwoo Kang (Sookmyung Women's University, South Korea)	. 341
C2T-Net: Channel-Aware Cross-Fused Transformer-Style Networks for Pedestrian Attribute Recognition	. 351

UPAR Challenge 2024: Pedestrian Attribute Recognition and Attribute-Based Person Retrieval – Dataset, Design, and Results
Image/Video/Audio Quality in Computer Vision and Generative AI
Noise-Free Audio Signal Processing in Noisy Environment: A Hardware and Algorithm Solution 368 Yarong Feng (Customer Experience and Business Trends, Amazon.com), Zongyi Liu (Customer Experience and Business Trends, Amazon.com), Shunyan Luo (Customer Experience and Business Trends, Amazon.com), Yuan Ling (Customer Experience and Business Trends, Amazon.com), Shujing Dong (Customer Experience and Business Trends, Amazon.com), Shuyi Wang (Customer Experience and Business Trends, Amazon.com), and Bruce Ferry (Customer Experience and Business Trends, Amazon.com)
A Diffusion-Based Method for Multi-Turn Compositional Image Generation
Enhancing Surveillance Camera FOV Quality via Semantic Line Detection and Classification With Deep Hough Transform
Perceptual Synchronization Scoring of Dubbed Content Using Phoneme-Viseme Agreement 392 Honey Gupta (Amazon Prime Video)
AutoCaCoNet: Automatic Cartoon Colorization Network Using Self-Attention GAN, Segmentation, and Color Correction
RealPixVSR: Pixel-Level Visual Representation Informed Super-Resolution of Real-World Videos
Impact of Blur and Resolution on Demographic Disparities in 1-to-Many Facial Identification

DeepLIR: Attention-Based Approach for Mask-Based Lensless Image Reconstruction
Consolidating Separate Degradations Model via Weights Fusion and Distillation
A Lightweight Generalizable Evaluation and Enhancement Framework for Generative Models and Generated Samples
Super Efficient Neural Network for Compression Artifacts Reduction and Super Resolution 460 Wen Ma (Amazon Lab126), Qiuwen Lou (Amazon Lab126), Arman Kazemi (Amazon Lab126), Julian Faraone (Amazon Lab126), and Tariq Afzal (Amazon Lab126)
HIDRO-VQA: High Dynamic Range Oracle for Video Quality Assessment
Generating Point Cloud Augmentations via Class-Conditioned Diffusion Model
Inflation With Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution 489 Xin Yuan (University of Chicago), Jinoo Baek (Google), Keyang Xu (Google), Omer Tov (Google), and Hongliang Fei (Google)
How Does Contrastive Learning Organize Images?
Pretraining
SLVP: Self-Supervised Language-Video Pre-Training for Referring Video Object Segmentation 507 <i>Jie Mei (University of Washington), AJ Piergiovanni (Google Research, Brain Team), Jenq-Neng Hwang (University of Washington), and Wei Li (Google Research, Brain Team)</i>
COMEDIAN: Self-Supervised Learning and Knowledge Distillation for Action Spotting Using Transformers

E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer)
Zero-Shot Edge Detection With SCESAME: Spectral Clustering-Based Ensemble for Segment Anything Model Estimation	L
Metric Learning for 3D Point Clouds Using Optimal Transport	<u>}</u>
Evaluating Pretrained Models for Deployable Lifelong Learning	
Labeling Indoor Scenes With Fusion of Out-of-the-Box Perception Models)
Does the Fairness of Your Pre-Training Hold Up? Examining the Influence of Pre-Training Techniques on Skin Tone Bias in Skin Lesion Classification)
RDIR: Capturing Temporally-Invariant Representations of Multiple Objects in Videos	3
Semi-Supervised Cross-Spectral Face Recognition With Small Datasets	3
Source-Free Domain Adaptation for RGB-D Semantic Segmentation With Vision Transformers 607 Giulia Rizzoli (University of Padova, Italy), Donald Shenaj (University of Padova, Italy), and Pietro Zanuttigh (University of Padova, Italy)	7
Cross-Modal Contrastive Learning With Asymmetric Co-Attention Network for Video Moment Retrieval	7
Self-Supervised Pre-Training for Semantic Segmentation in an Indoor Scene	5

A Unified Framework for Cropland Field Boundary Detection and Segmentation
Smart Computing and Internet of Things Design
Designing a Secure and Scalable Service Model Using Blockchain and MQTT for IoT Devices 645 Tse-Chuan Hsu (Soochow University, Taiwan) and Han-Sheng Lu (Soochow University, Taiwan)
Image Detection of Rare Orthopedic Diseases Based on Explainable AI
Consumer Evaluation Using Machine Learning for the Predictive Analysis of Consumer Purchase Indicators
MLP Kernel-Based To Predict the Optimal Conditions of Transglutaminase on Protein Polymerization
Semi-Supervised SPO Tree Classifier Based on the DPC Framework 671 Zhou Liang (Lingnan Normal University, China), Liqiong Lu (Lingnan Normal University, China), Junjie Yang (Lingnan Normal University, China), Weiming Hong (Lingnan Normal University, China), and Dong-Meau Chang (Lingnan Normal University, China)
Security and Privacy Concerns in Information Usability 679 Liang-Chih Yang (National Taipei University)
Towards On-Device Learning on the Edge: Ways To Select Neurons To Update Under a Budget Constraint
An Effective Deep Neural Network in Edge Computing Enabled Internet of Things for Plant Diseases Monitoring

Colour Creation Muse (CCM): Focusing on Primary Colours for An Imagination Based Creativity Generation)()
Chong Zeng (University of Leicester, UK; Longyan University, China),	, 0
Hongji Yang (University of Leicester, UK), Zhongxi Lu (University of	
Leicester, UK), Xiaofei Zhao (Tiangong University, China), and Zhiying	
Xiu (Jilin Jianzhu University, China)	
The Optimizated CIELAB Colour Model for All-Analog Photoelectronic High Speed Vision-Task Chip (ACCEL) by Creative Computing Approach	18
Yinwei Liu (University of Leicester, UK) and Yuchen Jiang (Renmin	,,,
University of China, China)	
Vision-Based Structural Inspections in Civil Engineering	
Dacl-Challenge: Semantic Segmentation During Visual Bridge Inspections	16
Johannes Flotzinger (University of the Bundeswehr Munich, Germany),	
Philipp J. Rösch (University of the Bundeswehr Munich, Germany), Christian Benz (Bauhaus-Universität Weimar, Germany), Muneer Ahmad	
(NetApp, Germany), Murat Cankaya (University of the Bundeswehr Munich,	
Germany), Helmut Mayer (University of the Bundeswehr Munich, Germany), Volker Rodehorst (Bauhaus-Universität Weimar, Germany), Norbert Oswald	
(University of the Bundeswehr Munich, Germany), and Thomas Braml	
(University of the Bundeswehr Munich, Germany)	
Physical Retail AI	
Peak Period Demand Forecasting With Proxy Data: GNN-Enhanced Meta-Learning	26
PMTL: A Progressive Multi-Level Training Framework for Retail Taxonomy Classification	36
Gaurab Bhattacharya (Tata Consultancy Services, India), Gaurav Sharma	
(Tata Consultancy Services, India), Kallol Chatterjee (Tata	
Consultancy Services, India), Chakrapani Chakrapani (Tata Consultancy	
Services, India), Bagya Lakshmi V (Tata Consultancy Services, India),	
Jayavardhana Gubbi (Tata Consultancy Services, India), Arpan Pal (Tata Consultancy Services, India), and Ramachandran Rajagopalan (Tata	
Consultancy Services, India) Consultancy Services, India)	
Self-Supervised Human–Object Interaction of Complex Scenes With Context-Aware Mixing:	
Towards In-Store Consumer Behavior Analysis	4
Takashi Kikuchi (Fujitsu Research, Japan) and Shun Takeuchi (Fujitsu	
Research, Japan)	
Complex-Valued Deep Learning and SARFish Challenge	
The SARFish Dataset and Challenge	52
Connor Luckett (Defence Science and Technology Group, Australia),	
Benjamin McCarthy (Defence Science and Technology Group, Australia), Tri-Tan Cao (Defence Science and Technology Group, Australia), and	
Antonio Robles-Kelly (Defence Science and Technology Group, Australia)	

3D Geometry Generation for Scientific Computing

Computer Vision for Earth Observation Applications

CNet: A Novel Seabed Coral Reef Image Segmentation Approach Based on Deep Learning	57
GAST: Geometry-Aware Structure Transformer	'6
Modernized Training of U-Net for Aerial Semantic Segmentation	35
TinyWT: A Large-Scale Wind Turbine Dataset of Satellite Images for Tiny Object Detection	14

Maritime Computer Vision

Sea You Later: Metadata-Guided Long-Term Re-Identification for UAV-Based Multi-Object Tracking	805
ReIDTracker Sea: Multi-Object Tracking in Maritime Computer Vision	813
SafeSea: Synthetic Data Generation for Adverse & Low Probability Maritime Conditions	821
An Automated Method for the Creation of Oriented Bounding Boxes in Remote Sensing Ship Detection Datasets	830
SeaDSC: A Video-Based Unsupervised Method for Dynamic Scene Change Detection in Unmanned Surface Vehicles Linh Trinh (University of Antwerp-imec, Belgium), Ali Anwar (University of Antwerp-imec, Belgium), and Siegfried Mercelis (University of Antwerp-imec, Belgium)	
Active Learning Strategy Using Contrastive Learning and K-Means for Aquatic Invasive Species Recognition	848
Image and AIS Data Fusion Technique for Maritime Computer Vision Applications	859

Ljubljana), Matej Kristan (University of Ljubljana), Janez Perš (University of Ljubljana), Matija Teršek (Luxonis), Arnold Wiliem (Sentient Vision Systems; Queensland University of Technology), Martin Messmer (University of Tuebingen), Cheng-Yen Yang (University of Washington), Hsiang-Wei Huang (University of Washington), Zhongyu Jiang (University of Washington), Heng-Cheng Kuo (University of Washington), Jie Mei (University of Washington), Jeng-Neng Hwang (University of Washington), Daniel Stadler (Fraunhofer IOSB; Fraunhofer Center for Machine Learning), Lars Sommer (Fraunhofer IOSB; Fraunhofer Center for Machine Learning), Kaer Huang (Lenovo Research), Aiguo Zheng (Lenovo), Weitu Chong (Fudan University), Kanokphan Lertniphonphan (Lenovo Research), Jun Xie (Lenovo Research), Feng Chen (Lenovo Research), Jian Li (Lenovo), Zhepeng Wang (Lenovo Research), Luca Zedda (University of Cagliari), Andrea Loddo (University of Cagliari), Cecilia Di Ruberto (University of Cagliari), Tuan-Anh Vu (The Hong Kong University of Science and Technology), Hai Nguyen-Truong (The Hong Kong University of Science and Technology), Tan-Sang Ha (The Hong Kong University of Science and Technology), Quan-Dung Pham (The Hong Kong University of Science and Technology), Sai-Kit Yeung (The Hong Kong University of Science and Technology), Yuan Feng (Dalian Maritime University), Nguyen Thanh Thien (University) of Information Technology), Lixin Tian (Dalian Maritime University), Sheng-Yao Kuan (University of Washington), Yuan-Hao Ho (University of Washington), Angel Bueno Rodriguez (German Aerospace Center), Borja Carrillo-Perez (German Aerospace Center), Alexander Klein (German Aerospace Center), Antje Alex (German Aerospace Center), Yannik Steiniger (German Aerospace Center), Felix Sattler (German Aerospace Center), Edgardo Solano-Carrillo (German Aerospace Center), Matej Fabijanić (University of Zagreb), Magdalena Šimunec (University of Zagreb), Nadir Kapetanović (University of Zagreb), Andreas Michel (Fraunhofer IOSB), Wolfgang Gross (Fraunhofer IOSB), and Martin Weinmann (Karlsruhe Institute of Technology)

Face Recognition Challenge in the Era of Synthetic Data

FRCSyn Challenge at WACV 2024: Face Recognition Challenge in the Era of Synthetic Data 892 Pietro Melzi (Universidad Autonoma de Madrid, Spain), Ruben Tolosana (Universidad Autonoma de Madrid, Spain), Ruben Vera-Rodriguez (Universidad Autonoma de Madrid, Spain), Minchul Kim (Michigan State University, US), Christian Rathgeb (Hochschule Darmstadt, Germany), Xiaoming Liu (Michigan State Ŭniversity, US), Ivan DeAndres-Tame (Universidad Autonoma de Madrid, Spain), Aythami Morales (Universidad Autonoma de Madrid, Spain), Julian Fierrez (Ŭniversidad Autonoma de Madrid, Spain), Javier Ortega-Garcia (Universidad Autonoma de Madrid, Spain), Weisong Zhao (IIE, CAS; School of Cyber Security, UCAS, China), Xiangyu Zhu (MAIS, CASIA; School of Artificial Intelligence, UCAS, China), Zheyu Yan (MAIS, CASIA, China), Xiao-Yu Zhang (IIE, CAS; School of Cyber Security, UCAS, China), Jinlin Wu (CAIR, HKISI, CAS, China), Zhen Lei (MAIS, CASIA; School of Artificial Intelligence, UCAS; CAIR, HKISI, CAS, China), Suvidha Tripathi (LENS, Inc., USA), Mahak Kothari (LENS, Inc., USA), Haider Zama (LENS, Inc., USA), Debayan Deb (LENS, Inc., USA), Bernardo Biesseck (Federal University of Paraná; Federal Institute of Mato Grosso, Brazil), Pedro Vidal (Federal University of Paraná, Curitiba, PR, Brazil), Roger Granada (unico - idTech, Brazil), Guilherme Fickel (unico - idTech, Brazil), Gustavo Führ (unico - idTech, Brazil), David Menotti (Federal University of Paraná, Curitiba, PR, Brazil), Alexander Unnervik (Idiap Research Institute; Ecole Polytechnique Fédérale de Lausanne, Switzerland), Anjith George (Idiap Research Institute, Switzerland), Christophe Écabert (Idiap Research Institute, Switzerland), Hatef Otroshi Shahreza (Idiap Research Institute; Ecole Polytechnique Fédérale de Lausanne, Switzerland), Parsa Rahimi (Idiap Research Institute; Ecole Polytechnique Fédérale de Lausanne, Switzerland), Sébastien Marcel (Ídiap Research Institute; Université de Lausanne, Switzerland), Ioannis Sarridis (Centre for Research and Technology Hellas, Greece), Christos Koutlis (Centre for Research and Technology Hellas, Greece), Georgia Baltsou (Centre for Research and Technology Hellas, Greece), Symeon Papadopoulos (Centre for Research and Technology Hellas, Greece), Christos Diou (Harokopio University of Athens, Ğreece), Nicolò Di Domenico (University of Bologna, Cesena Campus, Italy), Guido Borghi (University of Bologna, Cesena Campus, Italy), Lorenžo Pellegrini (University of Bologna, Cesena Campus, Italy), Enrique Mas-Candela (Facephi, Spain), Ángela Sánchez-Pérez (Facephi, Spain), Andrea Atzori (University of Cagliari, Italy), Fadi Boutros (Fraunhofer IGD; TU Darmstadt, Germany), Naser Damer (Fraunhofer IGD; TU Darmstadt, Germany), Gianni Fenu (University of Cagliari, Italy), and Mirko Marras (University of Cagliari, Italy)

Large Language and Vision Models for Autonomous Driving

Drive As You Speak: Enabling Human-Like Interaction With Large Language Models in Autonomous Vehicles	. 902
University, USA) Drive Like a Human: Rethinking Autonomous Driving With Large Language Models Daocheng Fu (Shanghai AI Lab), Xin Li (Shanghai AI Lab; East China Normal University), Licheng Wen (Shanghai AI Lab), Min Dou (Shanghai AI Lab), Pinlong Cai (Shanghai AI Lab), Botian Shi (Shanghai AI Lab), and Yu Qiao (Shanghai AI Lab)	. 910

A Safer Vision-Based Autonomous Planning System for Quadrotor UAVs With Dynamic Obstacle Trajectory Prediction and Its Application With LLMs Jiageng Zhong (Wuhan University), Ming Li (Wuhan University; ETH Zürich), Yinliang Chen (Wuhan University), Zihang Wei (WFLS), Fan Yang (HUST), and Haoran Shen (Wuhan University)	920
NuScenes-MQA: Integrated Evaluation of Captions and QA for Autonomous Driving Datasets Using Markup Annotations	930
LIP-Loc: LiDAR Image Pretraining for Cross-Modal Localization Sai Shubodh Puligilla (Robotics Research Center, KCIS, IIIT Hyderabad), Mohammad Omama (University of Texas at Austin), Husain Zaidi (Microsoft), Udit Singh Parihar (Robotics Research Center, KCIS, IIIT Hyderabad), and Madhava Krishna (Robotics Research Center, KCIS, IIIT Hyderabad)	939
Latency Driven Spatially Sparse Optimization for Multi-Branch CNNs for Semantic	
Segmentation Georgios Zampokas (Imperial College London, UK; Information Technologies Institute, Centre for Research and Technology Hellas, Greece), Christos-Savvas Bouganis (Imperial College London, UK), and Dimitrios Tzovaras (Information Technologies Institute, Centre for Research and Technology Hellas, Greece)	949
A Survey on Multimodal Large Language Models for Autonomous Driving	958
VLAAD: Vision and Language Assistant for Autonomous Driving	980
Human-Centric Autonomous SystemsWith LLMs for User Command Reasoning	988

Automated Spatial and Temporal Anomaly Detection

An Exploratory Study on Human-Centric Video Anomaly Detection Through Variational Autoencoders and Trajectory Prediction	5
K-NNN: Nearest Neighbors of Neighbors for Anomaly Detection	5
Manipulation, Adversarial and Presentation Attacks In Biometrics	
Forensic Iris Image Synthesis	5
Deepfake Detection by Exploiting Surface Anomalies: The SurFake Approach	1
Does Capture Background Influence the Accuracy of the Deep Learning Based Fingerphoto Presentation Attack Detection Techniques?	1
Fused Classification for Differential Face Morphing Detection	3
On the Vulnerability of Deepfake Detectors to Attacks Generated by Denoising Diffusion Models	1
Semi-Supervised Deep Domain Adaptation for Deepfake Detection	1
Alpha-Wolves and Alpha-Mammals: Exploring Dictionary Attacks on Iris Recognition Systems 1072 Sudipta Banerjee (New York University), Anubhav Jain (New York University), Zehua Jiang (New York University), Nasir Memon (New York University), Julian Togelius (New York University), and Arun Ross (Michigan State University)	2
InvestigatingWeight-Perturbed Deep Neural Networks With Application in Iris Presentation Attack Detection	2

Iris Presentation Attack: Assessing the Impact of Combining Vanadium Dioxide Films With Artificial Eyes
Darshika Jauhari (Michigan State University), Renu Sharma (Michigan
State University), Cunjian Chen (Michigan State University), Nelson
Sepulveda (Michigan State University), and Arun Ross (Michigan State
University)
Vision-Based Understanding for Low-Resource Languages
Enhancement of Bengali OCR by Specialized Models and Advanced Techniques for Diverse Document Types
AKM Shahariar Azad Rabby (Apurba Technologies, Bangladesh; The
University of Alabama at Birmingham, USA), Hasmot Ali (Apurba
Technologies, Bangladesh), Majedul Islam (Apurba Technologies, Bangladesh), Sheikh Abujar (The University of Alabama at Birmingham,
USA), and Fuad Rahman (Apurba Technologies, USA)
Fog-Resilient Bangla Car Plate Recognition Using Dark Channel Prior and YOLO
(BRAC University, Bangladesh), Mahamudul Hasan Himel (BRAC University,
Bangladesh), Rubaba Rashid (BRAC University, Bangladesh), Iffat Jahan
Chowdhury (BRAC University, Bangladesh), Joyanta Jyoti Mondal
(University of Alabama at Birmingham, USA), Farhadul Islam (BRAC
University, Bangladesh), and Jannatun Noor (BRAC University,
Bangladesh)
Fingerspelling PoseNet: Enhancing Fingerspelling Translation With Pose-Based Transformer Models
Pooya Fayyazsanavi (George Mason University), Negar Nejatishahidin
(George Mason University), and Jana Košecká (George Mason University)
Facial Hair Area in Face Recognition Across Demographics: Small Size, Big Effect
Haiyu Wu (University of Notre Dame), Sicong Tian (Indiana University
South Bend), Aman Bhatta (University of Notre Dame), Kağan Öztürk
(University of Notre Dame), Karl Ricanek (University of North Carolina
Wilmington), and Kevin W. Bowyer (University of Notre Dame)
7
Demographic Variations in Performance of Biometric Algorithms
Enhancing Soft Biometric Face Template Privacy With Mutual Information-Based Image Attacks. 114: Zohra Rezgui (University of Twente, The Netherlands), Nicola Strisciuglio (University of Twente, The Netherlands), and Raymond Veldhuis (University of Twente, The Netherlands; Norwegian University of Science and Technology, Norway)
Mitigating Demographic Bias in Face Recognition via Regularized Score Calibration
Ketan Kotwal (Idiap Research Institute, Switzerland) and Sébastien
Marcel (Idiap Research Institute; University of Lausanne, Switzerland)
,
WhoWore It Best? And Who Paid Less? Effects of Privacy-Preserving Techniques Across
Demographics
(Florida Institute of Technology, USA)
(I with the with of I controlly), (1011)

The CHROMA-FIT Dataset: Characterizing Human Ranges of Melanin for Increased	
Tone-Awareness	1170
Gabriella Pangelinan (Florida Institute of Technology, USA), Xavier	
Merino (Florida Institute of Technology, USA), Samuel Langborgh	
(Florida Institute of Technology, USA), Kushal Vangara (Florida	
Institute of Technology, USA), Joyce Annan (Florida Institute of	
Technology, USA), Audison Beaubrun (Florida Institute of Technology,	
USA), Troy Weekes (Florida Institute of Technology, USA), and Michael	
C. King (Florida Institute of Technology, USA)	

Author Index