2024 IEEE First International Conference on Artificial Intelligence for Medicine, Health and Care (AIMHC 2024)

Laguna Hills, California, USA 5-7 February 2024

IEEE Catalog Number: CFP24RZ8-POD **ISBN:**

979-8-3503-7199-4

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24RZ8-POD
ISBN (Print-On-Demand):	979-8-3503-7199-4
ISBN (Online):	979-8-3503-7198-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE First International Conference on Artificial Intelligence for Medicine, Health and Care (AIMHC) **AIMHC 2024**

Table of Contents

Message from the General Chairs	xi
Message from the Program Chairs	xii

Analytics of Medical & Health Related Big Data

 Enhanced Identification of Care Preference Documentation in Patients' Discharge Summaries Using Pre-Trained Large Language Models Saksham Arora (Dartmouth College, USA) and Inas Khayal (The Dartmouth Institute & Biomedical Data Science, USA)
EMO-Music: Emotion Recognition Based Music Therapy with Deep Learning on Physiological Signals
Hanzhe Guo (Tsinghua University, China), Jiawen Zhang (Tsinghua University, China), Yueyao Jiang (Tsinghua University, China), Yifei Qi (Tsinghua University, China), Simeng Chen (Tsinghua University, China), Zhen Chen (Tsinghua University, China), Weiran Lin (Tsinghua University, China), Junwei Cao (Tsinghua University, China), and Shuangshou Li (Tsinghua University, China)
Textures and Networks of Healthy and Pathological Voice Signals 14 Tuan D. Pham (Queen Mary University of London, UK) 14
A Smartphone-Based Architecture for Prolonged Monitoring of Gait
Comparison of BERT Implementations for Enhanced Cancer Symptoms Extraction from Electronic Health Records
Machine Learning-Driven Predictions for Janus Kinase 3 Protein Drug Effectiveness

COVID-19 Research & Cardiovascular Disease

 Deep Residual Dilated Convolutional Learning for Detection of Large Vessel Occlusion in Ischemic Stroke Patients
Modeling and Feature Engineering of COVID-19 Statistical Trends Using Social Media Responses 35 Kiev Glasscock (University of Illinois Springfield, USA), Antone Evans 35 (University of Illinois Springfield, USA), Yingyuan Yang (University 36 of Illinois Springfield, USA), and Sunshin Lee (University of Illinois 37 Springfield, USA) 38
 Enhancing Data Accessibility in COVID Research - A Synthetic Data Generator for the RADx Data Hub
Detecting Sinus Bradycardia From ECG Signals Using Signal Processing And Machine Learning 44 Rishi Salvi (Monta Vista High School, California)
Chronic Diseases
 Prediction of BPSD Using Environmental and Vital Sensor Data
 Vital Sign Forecasting for Sepsis Patients in ICUs

Analysis of EEG Signals for Predicting Neurological Recovery in Post-Cardiac Arrest Comatose Patients	64
University, India), and Gowri Srinivasa (PES University, India)	
 Exploration of Multimorbidity Patterns of Chronic Diseases in Patients with Atrial Fibrillation or Flutter(AFF) Using BEHRT and BERTopic : A Feasibility Study Soo Kyung Bae (Yonsei University College of Medicine, South Korea), Yeonjae Kim (Chung-Ang University, South Korea), Hwiyoung Kim (Yonsei University College of Medicine, South Korea), and Bomi Park (Chung-Ang University, South Korea) 	68
Extending Machine Learning-Based Early Sepsis Detection to Different Demographics Surajsinh Parmar (SpassMed Inc., Canada), Tao Shan (University of Waterloo, Canada), San Lee (SpassMed Inc., Canada), Yonghwan Kim (Spass Inc., South Korea), and Jang Yong Kim (St. Mary's Hospital Seoul, South Korea)	70

Computational Neuroscience & Human-Computer Interaction

Incorporating Motor Imagery-Controlled Gaming into Paralysis Rehabilitation
Label-Efficient Sleep Staging Using Transformers Pre-Trained with Position Prediction
LSTM Model for Brain Control Interface Based-Lie Detection
Brain-Computer Interface for Color Perception in Healthcare Using AI and ML Techniques

Humanized Assistant & Knowledge and Data Engineering

Comprehensive Personal Health Knowledge Graph for Effective Management and Utilization of Personal Health Data Rasha Hendawi (North Dakota State University, USA) and Juan Li (North Dakota State University, USA)	92
AI Chatbot for Generating Episodic Future Thinking (EFT) Cue Texts for Health Sareh Ahmadi (Virginia Tech, USA) and Edward A. Fox (Virginia Tech, USA)	101
AI-Powered Social Determinants of Health Extraction from Patient Records: A GPT-Based Investigation <i>Fatemeh Shah-Mohammadi (University of Utah, USA) and Joseph</i> <i>Finkelstein (University of Utah, USA)</i>	. 109

Best Paper Candidates

Wasserstein Distance-Based Graph Kernel for Enhancing Drug Safety and Efficacy Prediction 113 Mohammed Aburidi (University of California Merced, USA) and Roummel Marcia (University of California Merced, USA)
Differentially-Private Federated Learning with Non-IID Data For Surgical Risk Prediction
 Deep Learning Image Analysis of Macular Optical Coherence Tomography Angiography Images for Detection of Progression in Glaucoma
 Smart Medication Management: Enhancing Medication Adherence with an IoT-Based Pill Dispenser and Smart Cup

Intelligent Healthcare & AI Assisted Living

Interactive-Wear: An Intelligent Watch Application to aid Memory for Intentions and	
Everyday Functioning in Older Adults with Cognitive Impairments	. 145
Sasha Neil Pimento (University of California, USA), Hritvik Agarwal	
(University of California, USA), Bryan Minor (Washington State	
Universitų, USA), Saumya Karia (University of Texas, Dallas, USA),	
Diane Cook (Washington State University, USA), Maureen	
Schmitter-Edgecombe (Washington State University, USA), Sarah	
Tomaszewski Farias (University of California, USA), Rahma Lorabi	
(University of California, USA), and Alyssa Weakley (University of	
California, ÚSA)	
Personalized Health Assistant with Reinforcement Learning	. 153
Jennifer Jin (California State University - San Bernardino, CA, USA),	
Mira Kim (California State University - Fullerton, CA, USA), and Soo	
Dong Kim (Soongsil University, Seoul, Korea)	

Computational Medicine & Precision Medicine

Towards Better Debriefing Through Context-Aware Video Segmentation in Standardized Patient	
Encounter Ear Exams	. 162
Sol Vedovato (University of Texas Southwestern Medical Center, USA),	
Shinyoung Kang (University of Texas Southwestern Medical Center, USA),	
Michael J. Holcomb (University of Texas Southwestern Medical Center,	
USA), Krystle K. Campbell (University of Texas Southwestern Medical	
Center, USA), Daniel J. Scott (University of Texas Southwestern	
Medical Center, USA), Thomas O. Dalton (University of Texas	
Southwestern Medical Center, USA), Gaudenz Danuser (University of	
Texas Southwestern Medical Center, USA), and Andrew R. Jamieson	
(University of Texas Southwestern Medical Center, USA)	
Deep Learning (I)	
Deep Leaning (1)	

The Multi-Tier Artificial Intelligence Prediction Architecture: A Novel Approach to Intracranial Hemorrhage Detection	166
Forecasting Exercise Exertion Levels Using LSTM Modeling of Wearable Physiological Data Aref Smiley (The University of Utah School of Medicine, USA) and Joseph Finkelstein (The University of Utah School of Medicine, USA)	173
Predicting Incipient Symptom Deterioration from Serial Patient-Reported Data During Cancer	
Chemotherapy Course Using LSTM Modeling	177
Joseph Finkelstein (University of Utah, USA), Aref Smiley (University	
of Utah, USA), Christina Echeverria (University of Utah, USA), and	
Kathi Mooney (University of Utah, USA)	

Robotic Intelligence & Computer Vision

Parkinson's Disease Classification from Scanned Images of Spiral Drawings Anusid Wachiracharoenwong (National Science and Technology Development Agency, Thailand), Panyawut Sriiesaranusorn (National Science and Technology Development Agency, Thailand), Decho Surangsrirat (National Science and Technology Development Agency, Thailand), Pattara Leelaprute (Kasetsart University, Thailand), Pattamon Panyakaew (Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thailand), and Roongroj Bhidayasiri (Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thailand)	185
Robotic Healthcare Companion for the Elderly and the Differently Abled with Indoor Human Following and Fall Detection Capability Savin Seneviratne (General Sir John Kotelawala Defence University, Sri Lanka), Jiana De Zoysa (General Sir John Kotelawala Defence University, Sri Lanka), Sithara Senarathne (General Sir John Kotelawala Defence University, Sri Lanka), Chandula Padmasiri (General Sir John Kotelawala Defence University, Sri Lanka), and PSH Pallemulla (General Sir John Kotelawala Defence University, Sri Lanka)	187
Medical Surgery Stream Segmentation to Detect and Track Robotic Tools Abdul Khader Syed (Plaksha University), Vysakh Ramakrishnan (Plaksha University), Arian Mansur (Harvard Medical School), Chi-Fu Jeffrey Yang (Massachusetts General Hospital), Lana Schumacher (Massachusetts General Hospital), and Sandeep Manjanna (Plaksha University)	194
Multimodal Interaction in an Adaptive Dementia Exercise Robot Mirkovic Nadine (University of Regensburg, Germany) and Christian Wolff (University of Regensburg, Germany)	201
Mapping the Invisible: Face-GPS for Facial Muscle Dynamics in Videos Zhikang Dong (Stony Brook University, New York), Juni Kim (Stanford Online High School, California), and Pawel Polak (Stony Brook University, New York)	209

Deep Learning (II)

A Machine Learning Approach to Solving Biochemical Systems Joshua Ologbonyo (The University of Alabama, USA), Emmanuel Adara (The University of Alabama, USA), and Roger Sidje (The University of Alabama, USA)	214
Neural Network Model for Tissue Thickness Estimation Henna Jethani (University of Colorado at Boulder, USA) and Zoya Popovic (University of Colorado at Boulder, USA)	220
3D Reconstruction of the Carotid Artery from Handheld Ultrasound Videos Abhishikta Bandyopadhyay (University of Maryland Baltimore County, USA), Omkar Kulkarni (University of Maryland Baltimore County, USA), and Tim Oates (University of Maryland Baltimore County, USA)	228

Invited Papers

Reducing Diagnostic Uncertainty Using Large Language Models Joseph Finkelstein (University of Utah, USA), Wanting Cui (University of Utah, USA), Keaton Morgan (University of Utah, USA), and Kensaku Kawamoto (University of Utah, USA)	236
 Explainable Multiple Receptive Attention Network for Expert Cardiologist Compatible Incomplete Kawasaki Disease Diagnosis on Echocardiography	243
 Evaluating and Improving the Performance and Racial Fairness of Algorithms for GFR Estimation Linying Zhang (Columbia University, USA; Washington University in St. Louis, USA), Lauren R. Richter (Columbia University, USA), Tevin Kim (Columbia University, USA), and George Hripcsak (Columbia University, USA) USA) 	251
Author Index	259