2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID 2024)

Kolkata, India 6 – 10 January 2024

IEEE Catalog Number: CFP24041-POD **ISBN:**

979-8-3503-8441-3

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP24041-POD
979-8-3503-8441-3
979-8-3503-8440-6
1063-9667

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID) **VLSID 2024**

Table of Contents

2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID)

Low Loss Gate Engineered Superjunction Insulated Gate Bipolar Transistor for High Speed Application
Mahesh Vaidya (Indian Institute of Science Bengaluru), and Alok Naugarhiya (National Institute of Technology Raipur)
 Artificial Neural Network-Based Solution for PSP MOSFET Model Card Extraction
Sensitivity Enhancement of TMD MOSFET-Based Biosensor by Modeling and Optimization of Back Gate Parameters
 K-Means Clustering with ANN Based Classification to Predict Current-Voltage Characteristics of Advanced FETs
Improving Retention Time of 1T DRAM Using Electrostatic Barrier: Proposal and Analysis25 Shivendra Singh (Indraprastha Institute of Information Technology, India), Ekta Tiwari (Indraprastha Institute of Information Technology, India), Abhinav Gupta (Indraprastha Institute of Information Technology, India), and Sneh Saurabh (Indraprastha Institute of Information Technology, India)
Design and Analysis of an Area and Power Efficient Programmable Delay Cell

Understanding 2-Propanol Sensing Mechanism of Pd Modified Graphene Based Gas Sensor
Indranil Maity (Institute of Engineering and Management (IEM-K); University of Engineering and Management, India), Shivam Das (Institute of Engineering and Management (IEM-K); University of Engineering and Management, India), Malay Gangopadhyay (Institute of Engineering and Management (IEM-K); University of Engineering and Management, India), and Indrajit Maity (Institute of Radio Physics and Electronics (IRPE), University of Calcutta (CU), India)
Design of MoS2 Based Inverter Circuits Considering Interface Trap Effect
 Unveiling Thermal Cross Talk in 5nm Gate-All-Around Stacked Nanosheet FETs: A Machine Learning Perspective
Institute of Technology Uttarakhand, India), and Jyoti Patel (Indian Institute of Technology Roorkee (IITR), India)
FLIP: An Artificial Neural Network-Based Post-Routing Incremental Placer
Machine Learning Based Waveform Predictions Using Discrete Wavelet Transform for Automated Verification of Analog and Mixed Signal Integrated Circuits
Reinforcement Learning Based Droplet Routing Technique in Hexagonal Digital Microfluidic Biochips Using Dueling Network
Use of Current-Mode and Voltage-Mode Receivers Together for On-chip Multipoint-to-Multipoint Data Transmission Across Global Interconnects
A 0.8V, Tri-State Inverter Based SRAM Cell for SoC Applications
A 3nm Ultra High-Speed (4.5GHz) SRAM Cache Design With Wide DVFS Range
Phase Frequency Detector with Zero-Reset Pulse for Low-Spur Phase-Locked Loop Applications 90

Marichamy Divya (VIT, India), Siva Kumar Rapina (MSDG, Microchip Technology, India), and Kumaravel S (VIT, India)

An Improved Charge-Pump Design to Increase Tuning Range and Reduce Spurs in FMCW Radar
Synthesizers
A sub- μ W Fully Integrated Compact CMOS Temperature Sensor for Passive RFID Applications 101
Chilaka Jayaram (National Institute of Technology Warangal, India) and Patri Sreehari Rao (National Institute of Technology Warangal, India)
Flux Controlled Grounded Meminductor Emulator Using Single DVCCTA
A Neuro Inspired Pulse Density Modulator Sensing Unipolar and Bipolar Current Signals 113 Tamal Chowdhury (IIT Kharagpur, India) and Pradip Mandal (IIT Kharagpur, India)
A Compact Low-Power 29 Gb/s Pseudo Random Quaternary Sequence Generator in 65 nm CMOS
Ishan Mishra (Indian Institute of Technology Bombay, India), Ganpat Anant Parulekar (Indian Institute of Technology Bombay, India), and Shalabh Gupta (Indian Institute of Technology Bombay, India)
Design of 3 bit/cell NAND Memory Array Based on Ferroelectric Field Effect Transistor 125 Albert Daimari (Tezpur University, India), Ankit Chakusaru Deori (Tezpur University, India), Arnab Ratna Pawe (Tezpur University, India), and Ratul Kumar Baruah (Tezpur University, India)
An On-Chip Thermoelectric Cooler Controller With Improved Driving Current of 2 A at 0.5 Ω Load
Sowmyashree S (Indian Institute of Technology Mandi, India) and Hitesh Shrimali (Indian Institute of Technology Mandi, India)
Design and Implementation of SPAD-Based Linearly Stable Multi-Mode Configurable TAC Pixel 135
Minal Bisen (Indian Institute of Technology, Bhilai, India), Kapil Jainwal (Indian Institute of Technology, Hyderabad, India), and Nitin Khanna (Indian Institute of Technology, Bhilai, India)
A 7.1 GHz +23.7 dBm OIP3 1-dB NF Cascode LNA for Next-Generation Wi-Fi Using a 130 nm SOI CMOS Technology
A 1.6 - 2.5 GHz Receiver for Software Defined Radio with High Linearity Mode

Parallel-Series Diode-Based Ring Amplifier for Switched Capacitor Circuits
A Low Power Dual-Band Sub-Sampling Phase Locked Loop with sub-100 fs RMS Jitter and <-255-dB FOMjitter
A Low Power and Low Noise, Self Body Biased Low Noise Amplifier
Closed Form Expression of Input Matching of a Wideband Single-Ended to Differential LNA 168 Sanchari Das (University at Buffalo, USA) and Bibhu Datta Sahoo (University at Buffalo, USA)
An Integrated Multipurpose Low-Power Electrochemical Readout Interface with On-chip Input Waveform Generator 174 Sayan Sarkar (Hong Kong University of Science and Technology) and 174 Abhishek Anand (National Institute of Technology Durgapur) 174
 Towards Model-Size Agnostic, Compute-Free, Memorization-Based Inference of Deep Learning 180 Davide Giacomini (University of Illinois Chicago (UIC), USA), Maeesha Binte Hashem (University of Illinois Chicago (UIC), USA), Jeremiah Suarez (Illinois Mathematics and Science Academy, USA), and Amit Ranjan Trivedi (University of Illinois at Chicago (UIC), USA)
Hardware-Based Detection of Malicious Firmware Modification in Microgrids
 Multiplierless In-Filter Computing for tinyML Platforms
Optimizing Medical Image Analysis: Leveraging Efficient Hardware and AI Algorithms 198 Subhadeep Dolai (Liverpool John Moores University, UK) and Ekata Mitra (Portland State University, USA)
SpiCS-Net: Circuit Switched Network on Chip for Area-Efficient Spiking Recurrent Neural Networks 204 Manu Rathore (The University of Tennessee, USA) and Garrett S. Rose (The University of Tennessee, USA)
Low-Complexity Classification Technique and Hardware-Efficient Classify-Unit Architecture for CNN Accelerator 210 Najrul Islam (Indian Institute of Technology Mandi), Rahul Shrestha 210 (Indian Institute of Technology Mandi), and Shubhajit Roy Chowdhury 210 (Indian Institute of Technology Mandi), and Shubhajit Roy Chowdhury 210
Bit-Beading: Stringing Bit-Level MAC Results for Accelerating Neural Networks

Reconfigurable Processing-in-Memory Architecture for Data Intensive Applications
HARVEST: Towards Efficient Sparse DNN Accelerators Using Programmable Thresholds 228 Soumendu Kumar Ghosh (NPU IP, CGAI (CCG), Intel Corporation, USA), Shamik Kundu (University of Texas at Dallas, USA), Arnab Raha (NPU IP, CGAI (CCG), Intel Corporation, USA), Deepak A. Mathaikutty (NPU IP, CGAI (CCG), Intel Corporation, USA), and Vijay Raghunathan (Purdue University, USA)
Low Complexity High Speed Deep Neural Network Augmented Wireless Channel Estimation 235
Syed Asrar ul Haq (IIIT Delhi, India), Varun Singh (IIIT Delhi, India), Bhanu Teja Tanaji (IIIT Delhi, India), and Sumit Darak (IIIT Delhi, India)
FP-BMAC: Efficient Approximate Floating-Point Bit-Parallel MAC Processor Using IMC 241 Saketh Gajawada (IIIT-Bangalore, India), Aryan Gupta (IIT Gandhinagar, India), Kailash Prasad (IIT Gandhinagar, India), and Joycee Mekei (IIT Gandhinagar, India)
FP-ATM: A Flexible Floating Point NOR Adder Tree Macro for In-Memory Computing
COMPRIZE: Assessing the Fusion of Quantization and Compression on DNN Hardware Accelerators
Certifiable and Efficient Autonomous Cyber-Physical Systems Design
Autonomous Automotives on the Edge
Certifying Learning-Enabled Autonomous Cyber Physical Systems — A Deployment Perspective . 270
Suraj Singh (Indian Institute of Technology Kharagpur, India), Somnath Hazra (Indian Institute of Technology Kharagpur, India), Sumanta Dey (Indian Institute of Technology Kharagpur, India), and Soumyajit Dey

(Indian Institute of Technology Kharagpur, India)

SMT-Based Control Safety Property Checking in Cyber-Physical Systems Under Timing Uncertainties 276
Anand Yeolekar (TCS Research, Tata Consultancy Services, India;
Technical University of Munich, Germany), Ravindra Metta (TCS Research, Tata Consultancy Services, India: Technical University of
Munich, Germany), and Samariit Chakraborty (The University of North
Carolina at Chapel Hill, USA)
 MLESD: Machine Learning Assisted Faster On-Chip ESD Convergence Strategy
Unlocking the Power of Machine Learning for Faster PCB Package and Board PDN Convergence 287
Manoranjan Prasad (Intel Technology India Pvt. Ltd., India), Santanu
Kundu (Intel Technology India Pvt. Ltd., India), Lennart Renker
(Product Endolement Solutions Group, Intel Deutschland GmoH, Germany), and Rakesh Ranjan (Intel Technology India Pvt. Ltd., India)
DFT Static Verification Using Early RTL Exploration and Debug for Mobile SoC and Edge AI Applications
Vinod Viswanath (Real Intent, Inc., USA) and Kanad Chakraborty (Real Intent, Inc., USA)
 Artificial Neural Network-Based Prediction and Alleviation of Congestion During Placement . 300 Pooja Beniwal (Indraprastha Institute of Information Technology, India) and Sneh Saurabh (Indraprastha Institute of Information Technology, India)
A Dynamic Programming Based Graph Traversal Approach for Efficient Implementation of Nearest Neighbor Architecture in 2D
Sinha (Dr. B.C.Roy Engineering College; Indian Institute of Technology, Dhanbad (Former Research Fellow), India), Chandan Bandyopadhyay (Dr. B.C.Roy Engineering College, India; University of Bremen, Germany), Laxmidhar Biswal (International Institute of Information Technology, India), Robert Wille (Technical University of
A Method to Accurately Simulate and Detect Transition Time Instants in Piecewise Linear
SMPS Circuits
Authenticating Edge Neural Network Through Hardware Security Modules and Quantum-Safe Key Management
DRL-Based Multi-Stream Scheduling of Inference Pipelines on Edge Devices

Long Short Term Memory (LSTM)-based Cuffless Continuous Blood Pressure Monitoring 330 Vijay Kumar (Indian Institute of Technology Delhi, India), Goldy Goldy (Indian Institute of Technology Delhi, India), Kolin Paul (Indian Institute of Technology Delhi, India), and Mahesh Chowdhary (ST Microelectronics, United States)
A Pulse Oximeter and a Controller Designed for Automatic Regulation of Oxygen Concentrators
CAD Tools Pathway in Hardware Security
MIST: Many-ISA Scheduling Technique for Heterogeneous-ISA Architectures
ERS: Energy-Efficient Real-Time DAG Scheduling on Uniform Multiprocessor Embedded Systems
Debabrata Senapati (SRM University - AP, India), Dharmendra Maurya (IIT Guwahati, India), Arnab Sarkar (IIT Kharagpur, India), and Chandan Karfa (IIT Guwahati, India)
An Efficient Neural Network Controller for Autonomous Lane-Keeping Assist System
Early Execution for Soft Error Detection
 Vigil: A RISC-V SoC Architecture for 2-Fold Hybrid CNN-kNN Based Fall Detector Implementation on FPGA
Margin Propagation Based Analog Soft-Gates for Probabilistic Computing

In-Memory SAT-Solver for Self-Verification of Programmable Memristive Architectures
Thermal Crosstalk Analysis in ReRAM Passive Crossbar Arrays 390 Shubham Pande (Indian Institute of Technology(IIT) Madras, India), Bhaswar Chakrabarti (Indian Institute of Technology(IIT) Madras, India), and Anjan Chakravorty (Indian Institute of Technology(IIT) Madras, India) Madras, India) Madras, India)
Optimized QAOA ansatz circuit design for two-body Hamiltonian problems
Accelerating Fluid Loading in Sample Preparation with Fully Programmable Valve Arrays 402 Mohit Kumar (Indian Institute of Technology (IIT) Guwahati, India), Abhik Kumar Khan (Indian Institute of Technology (IIT) Guwahati, India), Sudip Roy (IIT Roorkee, India), Krishnendu Chakrabarty (Arizona State University, USA), and Sukanta Bhattacharjee (Indian Institute of Technology (IIT) Guwahati, India)
Analysis of the Effects of Crosstalk Errors on Various Quantum Circuits
Finding a Promising Oxide Material for Resistive Random Access Memory with Graphene Electrode 414 Kanupriya Varshney (Indian Institute of Technology Ropar, India), Mani 414 S. Yadav (Indian Institute of Technology Ropar, India), Devarshi Mrinal Das (Indian Institute of Technology Ropar, India), Devarshi Rawat (Indian Institute of Technology Ropar, India), and Brajesh Rawat (Indian Institute of Technology Ropar, India)
Retention Time Constrained Bioassay Scheduling on Flow-Based Microfluidic Biochips with Latches 419 Tamal Mandal (IIT Roorkee, India), Debraj Kundu (IIT Roorkee, India), 419 and Sudip Roy (IIT Roorkee, India) 419
 Heterogeneous CMOS-MEMS Based Boost Converter for 2.4 GHz RF Energy Harvester
Hybrid CMOS-Memristor Logic for Boosting the Power-Efficiency in Error Tolerant Applications 431 Monika Pokharia (IIT Gandhinagar, India), Kailash Prasad (IIT Gandhinagar, India), Ravi Hegde (IIT Gandhinagar, India), and Joycee Mekie (IIT Gandhinagar, India)

Design for Trust Utilizing Rareness Reduction
Optimal Placement of TDC Sensor for Enhanced Power Side-Channel Assessment on FPGAs 443 Debayan Das (Indian Institute of Science, India), Majid Sabbagh (Intel Corporation, USA), Rana Elnaggar (Intel Corporation, USA), Guang Chen (Intel Corporation, USA), Sayak Ray (Intel Corporation, USA), and Jason Fung (Intel Corporation, USA)
Vig-WaR: Vigilantly Watching Ransomware for Robust Trapping and Containment
 KiD: A Hardware Design Framework Targeting Unified NTT Multiplication for CRYSTALS- Kyber and CRYSTALS- Dilithium on FPGA
Pattern Based Synthetic Benchmark Generation for Hardware Security Applications
Enhancing Hardware Trojan Security Through Reference-Free Clustering Using Representatives 467
Ashutosh Ghimire (Wright State University, USA), Mohammed Alkurdi (Wright State University, USA), and Fathi Amsaad (Wright State University, USA)
Stealthy SWAPs: Adversarial SWAP Injection in Multi-tenant Quantum Computing
Characteristic Exploitation of Programmable Delay Line Influenced Oscillator Circuit as Hardware Security Primitive
A High Throughput ASCON Architecture for Secure Edge IoT Devices
 SRIL: Securing Registers from Information Leakage at Register Transfer Level
ROBUST: RTL Obfuscation Using Bi-Functional Polymorphic Operators
Enhancing Output Corruption Through GSHE Switch Based Logic Encryption

Security Implications of Approximation: A Study of Trojan Attacks on Approximate Adders and Multipliers
Vishesh Mishra (IIT Kanpur, India), Sparsh Mittal (IIT Roorkee, India), Nirbhay Mishra (Chandigarh University, India), and Rekha Singhal (TCS Research, India)
Evaluating the Robustness of Large Scale eFPGA-Based Hardware Redaction
Trojan Localization Using Information Flow Tracking Properties in SoC Designs
Processing-in-Memory Architecture with Precision-Scaling for Malware Detection
SDR-PUF: Sequence-Dependent Reconfigurable SRAM PUF with an Exponential CRP Space 535 Kailash Prasad (Indian Institute of Technology, Gandhinagar, India), Neel Shah (Indian Institute of Technology, Gandhinagar, India), Jinay Dagli (Indian Institute of Technology, Gandhinagar, India), and Joycee Mekie (Indian Institute of Technology, Gandhinagar, India)
Quantifying the Efficacy of Logic Locking Methods 541 Joseph Sweeney (Carnegie Mellon University), Deepali Garg (Carnegie 541 Mellon University), and Lawrence Pileggi (Carnegie Mellon University) 541
SAT and SCOPE Attacks on Deceptive Multiplexer Logic Locking
Logic Locking Emulator on FPGA: A Conceptual View
 Harnessing Entropy: RRAM Crossbar-Based Unified PUF and RNG

 Experimental Validation of Memristor-Aided Logic Using 1T1R TaOx RRAM Crossbar Array . 565 Ankit Bende (Forschungszentrum Jüelich GmbH, Germany), Simranjeet Singh (Forschungszentrum Jülich GmbH, Germany; Indian Institute of Technology Bombay, India), Chandan Kumar Jha (University of Bremen, Germany), Tim Kempen (Forschungszentrum Jüelich GmbH, Germany), Felix Cüeppers (Forschungszentrum Jüelich GmbH, Germany), Christopher Bengel (IWE-2 RWTH Aachen, Germany), André Zambanini (Forschungszentrum Jüelich GmbH, Germany), Dennis Nielinger (Forschungszentrum Jüelich GmbH, Germany), Sachin Patkar (Indian Institute of Technology Bombay, India), Rolf Drechsler (University of Bremen, Germany), Rainer Waser (Forschungszentrum Jüelich GmbH, Germany), Farhad Merchant (Newcastle University, UK), and Vikas Rana (Forschungszentrum Jüelich GmbH,
Designing Hash and Encryption Engines Using Quantum Computing
Input Distribution Aware Library of Approximate Adders Based on Memristor-Aided Logic 577 Chandan Kumar Jha (Institute of Computer Science, University of Bremen, Germany), Sallar Ahmadi-Pour (Institute of Computer Science, University of Bremen, Germany), and Rolf Drechsler (Institute of Computer Science, University of Bremen; DFKI GmbH, Germany)
Bitwise Logic Using Phase Change Memory Devices Based on the Pinatubo Architecture 583 Noa Aflalo (Technion – Israel Institute of Technology, Israel), Eilam Yalon (Technion – Israel Institute of Technology, Israel), and Shahar Kvatinsky (Technion – Israel Institute of Technology, Israel)
Design of VFC with Programmable Frequency Ramp to Control on-Chip Switching Current Profile 587 Pritam Bhattacharjee (Vellore Institute of Technology, India) and Alak 587 Majumder (National Institute of Technology, India) 587
OEDASA: Optimization Enabled Error-Diluted Approximate Systolic Array Design for an Image Processing Application
A 0.8-V, 593-pA Trim-Free Duty-Cycled All CMOS Current Reference for Ultra-Low Power IoT Applications
EBACA: Efficient Bfloat16-Based Activation Function Implementation Using Enhanced CORDIC Architecture

Multi-port Register File Implementation Using SDP Approach for Optimized Area and Power 611 Vijay Kumar Vala (Mediatek Bangalore Private Limited.) and Priyanka Gupta (Mediatek Bangalore Private limited)
FPGA Specific Speed-Area Optimized Architectures of Arithmetic Cores with Scan Insertion for Carry Chain Based Multi-level Logic Implementation
A High Performance and Low Power Subthreshold Voltage Level Shifter Design
Broadband Spectrum Generation in Silicon Nanocrystal-Based Dual-Slot Waveguide
Generation of Asymmetric Triangular Pulse by a Dispersion and Nonlinearity Engineered Silicon Core Optical Fiber
A Novel Approach to Control a DC-DC Converter Using Its Empirical Physical Model
 Wear Leveling-Aware Active Battery Cell Balancing
A Novel Controlled Shutdown Scheme for DCDC Converters Enabling Energy Recycling 649 Anup J Deka (Intel Technology India Pot Ltd, India) and Shobhit Tyagi (Intel Technology India Pot Ltd, India)
Voltage Mode Charge Pump Regulator with Improved Compensation and Dynamic Body Biasing Scheme
Power Integrity Analysis for Interoperability of BoW Chiplet Interfaces
Optimizing Task Scheduling in Multi-thread Real-Time Systems Using Augmented Particle Swarm Optimization

 Evolvable Hardware for Fault Mitigation in Control Circuits
 Fault-Tolerant Floating-Point Multiplier Design for Mission Critical Systems
On Managing Test-Time, Power, and Layer Assignment in 3D SoCs with Built-in-Self-Repair Modules
LLC Block Reuse Predictor Design Using Deep Learning to Mitigate Soft Error in Multicore 690 Avishek Choudhury (New Alipore College, India), Brototi Mondal (Sammilani Mahavidyalaya, India), Kolin Paul (IIT Delhi, India), and Biplab K Sikdar (IIEST Shibpur, India)
An Amalgamated Testability Measure Derived from Machine Intelligence
FGG: Feedback Guided Generation to Accelerate Functional Coverage Closure on 702 Network-on-Chip Processors 702 N Vamshi Krishna (Invecas Technologies Pvt. Ltd, BITS-Pilani, 702 Hyderabad Campus), Anushka Chaudhary (BITS-Pilani, Hyderabad Campus), and Soumya J (BITS-Pilani, Hyderabad Campus)
Structural Testing: Vmin Silicon Issues and Solutions 708 Prashant Sonone (Intel Technology India Pvt. Ltd, India) and Pradeep R (Intel Technology India Pvt. Ltd., India)
Near-Threshold-at-Gate Based Test for Stuck-on Fault in Scan-Chain Testing
X-Tolerant Logic BIST for Automotive Designs Using Observation Scan Technology
Revisiting Test Compression Configuration in Context of Multi-core Testing Using Packetized Scan Network 724 Subhadip Kundu (Qualcomm India Pvt. Ltd.) and Jais Abraham (Qualcomm 724 India Pvt. Ltd.) 724
 Genetic Algorithm Based Efficient Grouping Technique for Post Bond Test and Crosstalk Faults Among TSVs

Author Index	
--------------	--