2023 Seventh IEEE International Conference on Robotic Computing (IRC 2023)

Laguna Hills, California, USA 11-13 December 2023

IEEE Catalog Number: CFP23H16-POD **ISBN:**

979-8-3503-9575-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23H16-POD
ISBN (Print-On-Demand):	979-8-3503-9575-4
ISBN (Online):	979-8-3503-9574-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 Seventh IEEE International Conference on Robotic Computing (IRC) IRC 2023

Table of Contents

Message from the General Co-Chairs	xiv
Message from the Program Co-Chairs	xv

Computer Vision

Language-Based Augmentation to Address Shortcut Learning in Object-Goal Navigation Dennis Hoftijzer (University of Twente, The Netherlands), Gertjan Burghouts (TNO, The Netherlands), and Luuk Spreeuwers (University of Twente, The Netherlands)	L
An Algorithm for Two-Dimensional Pattern Detection by Combining Echo State Network-Based Weak Classifiers)
Robotic Assembly Planning from Video Demonstration	7
 Learning Indoors Free-Space Segmentation for a Mobile Robot from Positive Instances	L
Tactile Sensing with Contextually Guided CNNs: A Semisupervised Approach for Texture 25 Classification 25 Olcay Kursun (Auburn University at Montgomery), Beiimbet Sarsekeyev 25 (University of Central Arkansas), Mahdi Hasanzadeh (North Carolina A&T 25 State University), Ahmad Patooghy (North Carolina A&T State 26 University), and Oleg Favorov (University of North Carolina at Chapel 46 Hill) 47	5
Multi-Label Annotation for Visual Multi-Task Learning Models	l

Place and Object Localization

DAR-Based Localization System for Kidnapped Robots
obotic Odor Source Localization via End-to-End Recurrent Deep Reinforcement Learning
IoV-SLAM: Using Motion Vectors for Real-Time Single-CPU Visual SLAM
Iulti-Modal Robotic Platform Development for Odor Source Localization
utonomous Drone-Chasing System: A Comprehensive Solution for Reducing the Risk of litigation Failure
elf-Supervised Drone Detection using Acoustic Data
lobot Navigation
llet-Based Batch Informed Trees (FB-BIT*): Rapid Convergence Path Planning for Curvature onstrained Vehicles

An Approach to Cooperative, Wide Area Visual Navigation by Leveraging Blockchain Consensus.. 79 Damian Lyons (Fordham University, USA) and Mohamed Rahouti (Fordham University, USA)

Household Navigation and Manipulation for Everyday Object Rearrangement Tasks	84
Shrutheesh Raman Iyer (Aurora Operations, Inc.), Anwesan Pal	
(Contextual Robotics Institute, UC San Diego), Jiaming Hu (Contextual	
Robotics Institute, UC San Diego), Akanimoh Adeleye (Contextual	
Robotics Institute, UC San Diego), Aditya Aggarwal (Contextual	
Robotics Institute, UC San Diego), and Henrik I. Christensen	
(Contextual Robotics Institute, UC San Diego)	

Real-Time Implementation of Model Predictive Control for Fast Trajectory Tracking of a	
Quad Rotorcraft UAS	90
Hengameh Mirhajianmoghadam (New Mexico State University, USA),	
Nicholas Grijalva (New Mexico State University, USA), and Luis Rodolfo	
Garcia Carrillo (New Mexico State University, USA)	
Stealth Centric A*: Bio-Inspired Navigation for Ground Robots	92
Ryan Anderson (Utah State University, USA), Taylor Anderson (Utah	
State University, USA), Carter Bailey (Utah State University, USA),	
Jeffrey Anderson (Utah State Unversity, USA), and Mario Harper (Utah	
State University, USA)	

Human-Robot Interaction

 Emotion Detection in Social Robotics: Empath-Obscura - An Ensemble Approach with Novel Face Augmentation using SPIGA	4
 Fleet2D: A Fast and Light Simulator for Home Robotics	2
Co-Speech Gestures for Human-Robot Collaboration	3
Towards Natural and Intuitive Human-Robot Collaboration Based on Goal-Oriented Human Gaze Intention Recognition Taeyhang Lim (Hanyang University, South Korea), Joosun Lee (Hanyang University, Republic of Korea), and Wansoo Kim (Hanyang University ERICA, Republic of Korea)	5
Customizable Home Rehabilitation Robot for Hemiplegic Patient to Improve Finger Independence	1
Understanding Agreement in Giver and Receiver Intentions on Grasp in Human-Human Handover 125 Noah Wiederhold (Clarkson University, USA), Sean Banerjee (Clarkson	

University, USA), and Natasha Kholgade Banerjee (Clarkson University, USA)

Mobile Robots (I)

Optimizing SLAM Evaluation Footprint through Dynamic Range Coverage Analysis of Datasets Islam Ali (University of Alberta, Canada) and Hong Zhang (University of Alberta, Canada)	127
A Change Detection Method for Misaligned Point Clouds in Mobile Robot System Masaya Fujiwaka (NEC, Japan), Manabu Nakanoya (NEC, Japan), and Kousuke Nogami (NEC, Japan)	135
Detecting Ballistic Motions in Quadruped Robots: A Boosted Tree Motif Classifier for Understanding Reinforcement Learning <i>Christopher Allred (Utah State University), Jason Pusey (Army Research Laboratory), and Mario Harper (Utah State University)</i>	143
Point Cloud Distance Metrics for Evaluation of Deep Point Networks Sukhan Lee (SungKyunKwan University) and Jaewoong Kim (SungKyunKwan University)	152
Algorithmic Framework for Analyzing and Simulating Multi-Axial Robotic Transformations in Spatial Coordinates Andrew O. Benyeogor (International Leadership of Texas, USA), Tobore L. Igbigbi (Central Michigan University, USA), Mbadiwe S. Benyeogor (University of Muenster, Germany), Abubakar A. Dahiru (National	156
Information Technology Development Agency (NITDA), Nigeria), Prosper Agumey (Accra Technical University, Ghana), and Ekarika B. Uwak (Obafemi Awolowo University, Nigeria)	

Best Paper Session

Towards 6D MCL for LiDARs in 3D TSDF Maps on Embedded Systems with GPUs
A Skeleton-Based Approach for Rock Crack Detection Towards A Climbing Robot Application 166 Josselin Somerville Roberts (Stanford University), Paul-Emile Giacomelli (Stanford University), Yoni Gozlan (Stanford University), and Julia Di (Stanford University)
Automated Multimodal Data Annotation via Calibration With Indoor Positioning System
Input and Editing of Force Profiles of In-Contact Robot Motions via a Touch Graphical user Interface

Mobile Robots (II)

 FeatSense - A Feature-Based Registration Algorithm with GPU-Accelerated TSDF-Mapping Backend for NVIDIA Jetson Boards Julian Gaal (Osnabrück University, Germany), Thomas Wiemann (Fulda University of Applied Sciences, Germany; German Research Center for Artificial Intelligence (DFKI), Germany), Alexander Mock (Osnabrück University, Germany), and Mario Porrmann (Osnabrück University, Germany) 	198
Modeling of Temperature-Dependent Joint Friction in Industrial Robots using Neural Networks Minh Trinh (RWTH Aachen University, Germany), Ritesh Yadav (RWTH Aachen University, Germany), Ruben Schwiedernoch (RWTH Aachen University, Germany), Lukas Gründel (RWTH Aachen University, Germany), Oliver Petrovic (RWTH Aachen University, Germany), and Christian Brecher (RWTH Aachen University, Germany)	206
A Fail-Operational Control Architecture for Autonomous Mobile Robots Based on State Machine Replication Manuel Schrick (Hamburg University of Technology, Germany) and Jochen Kreutzfeldt (Hamburg University of Technology, Germany)	214
Simultaneous Frontier-Based Exploration and Topological Mapping Davide Brugali (University of Bergamo, Italy) and Jose Raul Luizaga Yujra (University of Bergamo, Italy)	219

Object Detection

UDW: A Dataset for Automated Monitoring of Cargo-Handling During Sling-Load Operations 223 Marvin Brenner (University of the Bundeswehr Munich, Germany) and Peter Stütz (University of the Bundeswehr Munich, Germany)
 Bin-Picking of Novel Objects through Category-Agnostic-Segmentation: RGB Matters
A Framework for Training 3D Object Detection Models on a Limited Amount of Real Data
 Efficient Multi-Object Pose Estimation using Multi-Resolution Deformable Attention and Query Aggregation

Robotic Tomato Detection using YOLOv3 with Pre- and Post-Processing: Evaluation through Gazebo Simulation and Real-World Laboratory Testing	255
Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility 2 Eugen Šlapak (Technical University of Košice, Slovakia), Adam Petík (Technical University of Košice, Slovakia), Marcel Vološin (Technical University of Košice, Slovakia), Matúš Dopiriak (Technical University of Košice, Slovakia), Juraj Gazda (Technical University of Košice, Slovakia), and Zdenek Becvar (Czech Technical University in Prague, Czech Republic)	260
Autonomous Vehicles (I)	
BumpyPatch: Heightmap-Based Outdoor Point Cloud Segmentation to Find Less Bumpy Road 2 Jiwon Park (Kyung Hee University, Republic of Korea) and Hyoseok Hwang (Kyung Hee University, Republic of Korea)	265
 Repeat Trial Analysis of an EA for Flight Control Correction and Control Model Extraction in a Flapping-Wing Vehicle	273
Localizability Estimation for Autonomous Driving: A Deep Learning-Based Place Recognition Approach	280
Can Robots Be Responsible: A Bumper Theory Approach to Robot Moral Conditioning	284
Personalized Trajectory Prediction for Driving Behavior Modeling in Ramp-Merging Scenarios 2 Siyan Li (University of California at Riverside, USA), Chuheng Wei (University of California at Riverside, USA), Guoyuan Wu (University of California at Riverside, USA), Matthew J. Barth (University of California at Riverside, USA), Amr Abdelraouf (Toyota North America InfoTech Labs, USA), Rohit Gupta (Toyota North America InfoTech Labs, USA), and Kyungtae Han (Toyota North America InfoTech Labs, USA)	288
 Unifying Ontological Framework for All-Terrain Datasets	<u>'</u> 92

Autonomous Vehicles (II)

 AutonomROS: A ReconROS-Based Autonomous Driving Unit	97
 Enhancing Perception in Robot-Guided Vehicle Tests: A Rapid Long-Range Obstacle Detector 30 David Hermann (Porsche Engineering Services GmbH, Germany), Chao Wei (Porsche Engineering Services GmbH, Germany), Clara Marina Martínez (Porsche Engineering Services GmbH, Germany), Gereon Hinz (Technical University of Munich, Germany), and Alois Knoll (Technical University of Munich))5
 Mitigating Emergency Stop Collisions in AGV Fleets in Case of Control Failure	14

Multi-Robot Systems

Consensus-Based Resource Scheduling for Collaborative Multi-Robot Tasks	323
Utility AI for Dynamic Task Offloading in the Multi-Edge Infrastructure	331
Traffic Management for Swarm Production	339
Multi-Robot Coordinated Motion Planning at Intersections using Lattice-Guided dRRT*	348
RealCaPP: Real-Time Capable Plug & Produce Service Architecture for Distributed Robot Control	352

First Workshop on Computational Human-Robot Interaction (CHRI 2023)

Analyzing the Impact of Distractions on Driver Attention: Insights from Eye Movement Behaviors in a Driving Simulator Pradeep Narayana (San Jose State University, USA) and Nada Attar (San Jose State University, USA)	356
RoboMind: Supporting Older Adults through Robotic Web Applications	360
Omid Veisi (Siegen University, Business Informatics and New Media,	
Germany), Maryam Akbarinigjeh (Siegen University, Business Informatics	
and New Media, Germany), Saeed Motaee (Islamic Azad University,	
Borujerd branch, Computer Science, Iran), Claudia Müller (Siegen	
University, Business Informatics and New Media, Germany), Rainer	
Wieching (Siegen University, Business Informatics and New Media,	
Germany), and Volker Wulf (Siegen University, Business Informatics and	
New Media, Germany)	

6th International Workshop on New Frontiers in Computational Robotics + Semantic Multimedia Computing (Fall Edition)

Cluster-based Dynamic Object Filtering via Egocentric Motion Detection for Building Static 3D Point Cloud Maps	368
 Development of an MRI Guided Auxiliary Robot for Spinal Injections	373
Consistency, Uncertainty or Inconsistency Detection in Multimodal Emotion Recognition	377

9th Workshop on Collaboration of Humans, Agents, Robots, Machines and Sensors (CHARMS 2023)

Distributed Agent-Based Collaborative Learning in Cross-Individual Wearable Sensor-Based	201
Human Activity Recognition Ahmad Esmaeili (Purdue University, USA), Zahra Ghorrati (Purdue	. 381
University, USA), and Eric T. Matson (Purdue University, USA)	
Enhancing Robustness of Indoor Robotic Navigation with Free-Space Segmentation Models	
Against Adversarial Attacks	. 389
Qiyuan An (University of Texas at Arlington, USA), Christos	
Sevastopoulos (University of Texas at Arlington, USA), and Fillia	
Makedon (University of Texas at Arlington, USA)	

Author Index	395
--------------	-----