2024 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM 2024)

Boulder, Colorado, USA 9-12 January 2024

IEEE Catalog Number: CFP24USN-POD ISBN:

979-8-3503-9449-8

Copyright © 2024, U. S. National Committee for the International Union of Radio Science (USNC-URSI) All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: CFP24USN-POD ISBN (Print-On-Demand): 979-8-3503-9449-8 ISBN (Online): 978-1-946815-19-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com
Web: www.proceedings.com

TABLE OF CONTENTS

RI: EM APPLICATIONS IN BIOMEDICAL DIAGNOSIS, IMAGING AND SENSING
K1.1: COMPARISON OF DIFFERENT MICROWAVE TISSUE PHANTOMS FOR THE DESIGN OF AN
K1.2: ELECTROMAGNETIC UNCERTAINTY ANALYSIS OF 3D BIOLOGICAL PHANTOMS
K1.3: ESTIMATING THE SPATIAL AVERAGE OF BREAST TISSUE PERMITTIVITY USING SINGLE- AND MULTIPLE-CHANNEL TRANSMISSION MEASUREMENTS FOR PATIENT-SPECIFIC MICROWAVE HYPERTHERMIA BEAMFORMER DESIGN Tessa A. Haldes, Susan C. Hagness, University of Wisconsin-Madison, United States
K1.4: INTERNAL BODY TEMPERATURE MEASUREMENTS USING A MINIATURIZED HYBRID
K1.5: THE INFLUENCE OF LOW-INTENSITY RADIOFREQUENCY FIELDS ON SUPEROXIDE
K1.6: COMPARISON OF THE RF FIELDS DISTRIBUTION BETWEEN A HIGH-PERMITTIVITY MATERIAL AND A METASURFACE FOR MAGNETIC RESONANCE IMAGING Sabrina Rotundo, University of Pisa, Italy; Giuseppe Carluccio, New York University, United States; Danilo Brizi, University of Pisa, Italy; Christopher Collins, New York University, United States; Agostino Monorchio, University of Pisa, Italy; Riccardo Lattanzi, New York University, United States
K1.7: LOW-FREQUENCY MAGNETIC FIELD AND CANCER CELLS Marek Bajtoš, University of Zilina, Slovakia; Nhat Dang, Hakki Gurhan, Frank Barnes, University of Colorado Boulder, United States
K1.8: EVALUATING THE MR SAFETY OF PASSIVE IMPLANTS IN SURGICAL AND AFTER HEAL
K1.9: PROPAGATION OF A THE FIELDS FROM A SINGLE COIL IN A HIGH-PERMITTIVITY
K1.10: THE USE OF RF AND MAGNETIC FIELDS FOR COMMUNICATION AND CONTROL
BF1*: TOPICS IN RADIO SCIENCE: IN MEMORY OF W. ROSS STONE
BF1*.1: A TRIBUTE TO THE LEGACY OF ROSS STONE: FROM HERTZ CYLINDRICAL

BF1*.2: A SURVEY OF PROGRESS IN THE NUMERICAL EVALUATION OF SINGULAR AND
BF1*.3: ENHANCEMENT OF TEMPORAL SAMPLING FOR GLOBAL REMOTE SENSING OF WATER
BF1*.4: OPTIMIZATION OF FABRY-PEROT CAVITY ANTENNAS HAVING HORIZONTAL OR
BF1*.5: SOME UNUSUAL METHODOLOGIES AND UNCONVENTIONAL APPLICATIONS IN
BF1*.6: A PARABOLIC METAMATERIAL LENS FOR MATCHING BETWEEN PARALLEL-PLATE
BF1*.7: ATTENUATION OF THE AVERAGE NORTON SURFACE WAVE PROPAGATING ALONG A
BF1*.8: PRINTED FLEXIBLE/WEARABLE ANTENNAS FOR 5G APPLICATIONS: A REVIEW
BF1*.9: TRENDS AND APPROACHES FOR IMPROVING SELF-INTERFERENCE CANCELLATION OF
BF1*.10: A PATHWAY TO SERVICE
GH1*: METEORS, ORBITAL DEBRIS AND DUSTY PLASMAS
GH1*.1: USING NUMERICAL SOLUTIONS OF THE FORCED KORTEWEG-DE VRIES EQUATION
GH1*.2: SATELLITE AND SPACE DEBRIS IDENTIFICATION BY MEASUREMENTS OF IONOSPHERIC INTERACTIONS Paul Bernhardt, University of Alaska Fairbanks, United States; Lauchie Scott, DRDC Ottawa Research Centre, Canada; Andrew Howarth, University of Calgary, Canada; George Morales, University of California Los Angeles, United States; Jeff Baumgardner, Boston Universityu, United States
GH1*.3: EXPERIMENTAL INVESTIGATION OF ORBITAL DEBRIS SOLITON GENERATION

GH1*.4: ELECTROSTATIC AND ELECTROMAGNETIC ORBITAL DEBRIS GENERATED SOLITONS: 30 THEORY AND ANALYSIS TECHNIQUES Chris Crabtree, Guru Ganguli, Alex Fletcher, Rualdo Soto-chavez, US Naval Research Laboratory, United States; Abhijit Sen, Institute for Plasma Research, India
GH1*.5: SIMULATIONS OF NONLINEAR PLASMA STRUCTURES GENERATED BY ORBITAL
GH1*.6: EVOLUTION OF SOLITON STRUCTURES FROM INTERACTION WITH RADAR WAVES
GH1*.7: METEOR HEAD ECHO DETECTION VIA A CONVOLUTIONAL NEURAL NETWORK
GH1*.8: METEOR RADAR PHASE INTERFEROMETRY CALIBRATION WITH AIRCRAFT
GH1*.9: IONIZATION OF HYPERVELOCITY IMPACT IRON PLASMAS VIA A MONTE CARLO COLLISION MODEL Dennis Dong, Raymond Lau, Nicolas Lee, Sigrid Elschot, Stanford University, United States
GH1*.10: PLASMA SENSOR FOR DETECTING METEOROID IMPACTS ON THE MOON
D1: CRYOGENIC RF CIRCUITS
D1.1: SUPERCONDUCTING INTEGRATED FILTERS FOR KINETIC-INDUCTANCE
D1.2: TOWARDS ULTRALOW-NOISE CRYOGENIC INP HIGH ELECTRON MOBILITY
D1.3: SUPERCONDUCTING KINETIC INDUCTANCE-BASED ON-CHIP FREQUENCY
D1.4: CHARACTERIZATION OF HIGH-POWER SUPERCONDUCTING MICROWAVE RESONATORS
D1.5: VHF JOSEPHSON ARBITRARY WAVEFORM SYNTHESIZER

F1: POINT-TO-POINT PROPAGATION EFFECTS

F1.1: EFFECTS OF MISMATCH BETWEEN DIGITAL ELEVATION MODELS AND NUMERICAL
F1.2: GRID OPTIMIZATION OF MIXED ENVIRONMENTS FOR RF PROPAGATION
F1.3: THE SENSITIVITY OF RF PROPAGATION TO STABLE ATMOSPHERIC SURFACE LAYER
F1.4: RADAR AND ELECTROMAGNETIC DUCTING IN STABLE ATMOSPHERE OVER WATER
F1.5: INFLUENCE OF EVAPORATION DUCT LATERAL INHOMOGENEITY ON X-BAND
F1.6: PHASE ERROR ANALYSIS FOR SENSING EVAPORATION DUCT HEIGHTS
F1.7: PHASED ARRAY REFRACTIVITY ESTIMATION IN COASTAL DUCTING ENVIRONMENT
F1.8: VALIDATION OF ERA5 REANALYSIS REFRACTIVITY CHARACTERIZATIONS
F1.9: SPEEDY ASSESSMENT OF METEOROLOGICAL EQUIVALENCE FOR RF PROPAGATION
F1.10: EVALUATION OF COAMPS DRIVEN ELECTROMAGNETIC PROPAGATION MODELING
J2: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES & OBSERVATORY REPORTS I
J2.1: NEARFIELD TO FARFIELD METHODS FOR DRONE BEAM MAPPING
J2.2: EM SIMULATION OF THE EFFECTS OF MECHANICAL PERTURBATIONS TO THE HIRAX
J2.3: SAFARI - A DIFFERENTIAL APPROACH TO PROBE THE COSMOLOGICAL SKY-AVERAGED

J2.4: HOLOGRAPHIC BEAM MAPPING FOR THE CANADIAN HYDROGEN INTENSITY MAPPING
J2.5: EXPLORING THE CROSSTALK PROPERTIES OF THE CHIME TELESCOPE
B2: ANTENNA, THEORY, AND DESIGN I
B2.1: MILLIMETER WAVE DUAL-BAND ANTENNA ARRAY ON A THIN FLEXIBLE SUBSTRATE FOR 61 5G APPLICATIONS Saeid Alamdar, Sahar Bagherkhani, Franco De Flaviis, University of California, Irvine, United States; Soheil Saadat, Multi-Fineline Electronix Inc, United States
B2.2: SINGULAR METRIC FOR ANTENNA ARRAY MUTUAL COUPLING: UNVEILING THE ARRAY
B2.3: DEPLOYABLE 18:1 TIGHTLY COUPLED APERTURE WITH INTEGRATED UWB FEED
B2.4: IN-SITU CALIBRATION OF ACTIVE ELECTRONICALLY SCANNED ANTENNA ARRAYS
B2.5: A NOVEL SHAPED SYMMETRIC WIDEBAND DIELECTRIC RESONATOR ANTENNA BY
B2.6: AN ELECTRONICALLY-RECONFIGURABLE MATCHING AND DECOUPLING NETWORK FOR
B2.7: GPR SPIRAL ANTENNA TRANSIENT RESPONSE BASED ON TARGET RCS
B2.8: OVERCOMING THE CHU LIMIT USING SWITCHED-MODE, NON-LTI,
B2.9: OBSTACLE IMAGING THROUGH ORTHOGONAL CODED PHASED ARRAY ANTENNAS
B2.10: TOWARD LARGE-SCALE, HIGH SENSITIVITY TERAHERTZ FOCAL PLANE ARRAYS

G2: IONOSPHERIC RADIO AND PROPAGATION

G2.1: TEC STRUCTURE DIAGNOSTICS	
Charles Rino, Charles Carrano, Keith Groves, Boston College, United States; Romina Nikoukir, Johns Hopkins University, United States	
G2.2: MAGNETIC ANOMALIES POTENTIALLY ATTRIBUTED TO PERSEID BOLIDE REENTRY	
Mickey Batson, Laboratory for Telecommunication Sciences, United States; Nicholas Donnangelo, Blaine Talbut, MITRE Corporation, United States	
G2.3: SWARM-E GPS OBSERVATIONS OF THE POLAR CAP IONOSPHERE	
Christopher Watson, Richard Langely, University of New Brunswick, Canada; Andrew Howarth, Andrew Yau, University of Calgary, Canada	
G2.4: FORECASTING THE IONOSPHERE WITH INTERPRETABLE TRANSFORMER NETWORKS	A
Daniel Alford-Lago, Naval Information Warfare Center Pacific, United States; Chris Curtis, San Diego State University, United States; Alex Ihler, University of California Irvine, United States	
G2.5: GENERATION OF SUPER LOW FREQUENCY SIGNALS AT THE HAARP FACILITY FOR LONG	
Ryan Eskola, Mark Golkowski, University of Colorado Denver, United States	
J2: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES & OBSERVATORY REPORTS II	
J2.1: CORRELATION CALIBRATION: A HYBRID CALIBRATION TOOL FOR NEXT-GENERATION	
RADIO INTERFEROMETERS	
Robert Pascua, Jonathan Sievers, Adrian Liu, McGill University, Canada	
J2.2: RECENT OBSERVATIONS WITH THE MAPPER OF THE IGM SPIN TEMPERATURE	
J2.3: LUSEE NIGHT GROUND SUPPORT EQUIPMENT.PDF	
Seth Curtin, Seth Curtin, University of California, Berkeley, United States	
J2.4: ALBATROS: PAVING THE WAY TO THE COSMIC DARK AGES	
E1: ELECTROMAGNETIC ENVIRONMENT AND INTERFERENCE	
E1.1: ASSESSING AND MITIGATING AGGREGATE INTERFERENCE WITH REAL-TIME SPECTRAL	
BROKERING Samuel Hussey, Jonathan Swindell, Glauco Amigo, Adam Goad, Andrew Clegg, Charles Baylis, Robert Marks, Baylor University, United States	
E1.2: LINEARIZING NONLINEAR POWER-AMPLIFIERS POST-DISTORTION USING CUBIC	
SPLINE COEFFICIENTS	
James Gaudreau, Nicholas Ellis, Patrick Roblin, Joel Johnson, Justin Kuric, Richard Ridgway, Christopher Ball, Ohio State University, United States	
E1.3: TOWARDS ENHANCED BANDWIDTH IN TWTS: AN EXPLORATION OF HELIX STRUCTURE	
OPTIMIZATION Moza Mohamed, Jane Lehr, University of New Mexico, United States	
, the state of $\mathcal{F}_{\mathcal{F}}$ and the state of the state of $\mathcal{F}_{\mathcal{F}}$	

E1.4: SCALING LAWS FOR SOLID-STATE OPENING SWITCH GENERATORS
B3*: PROGRESS IN RECONFIGURABLE INTELLIGENT SURFACES (RIS)
B3*.1: HETEROGENEOUS INTEGRATION OF BIASING CIRCUITS FOR MMWAVE
B3*.2: FULL RIS-DOMAIN STANDING WAVES FOR ELEMENTS' BIASING
B3*.3: A COMPACT SINGLE-BIT DUAL-POL UNIT CELL DESIGN FOR MMWAVE
B3*.4: WIDEBAND, POLARIZATION-AGILE RECONFIGURABLE INTELLIGENT SURFACES
B3*.5: BPSK MODULATION USING PROGRAMMABLE METASURFACES
H1*: IONOSPHERIC MODIFICATION
H1*.1: EVOLUTION OF ARTIFICIAL IONOSPHERIC IRREGULARITIES: DEPENDENCE ON HAARP
H1*.2: A STUDY OF BISTATIC COHERENT RADAR IMAGING OF IONOSPHERIC IRREGULARITIES
H1*.3: CONTROLLED WHISTLER MODE WAVE INJECTION EXPERIMENTS WITH THE HAARP FACILITY Mark Golkowski, Raahima Khatun-E-Zannat, Ryan Eskola, University of Colorado Denver, United States; Robert Moore, University of Florida, United States
H1*.4: IONOSPHERIC AMPLIFICATION OF WHISTLER MODE WAVES FOR REDUCTION OF
D2*: RF FRONT-ENDS AND ARRAYS FOR SIMULTANEOUS TRANSMIT AND RECEIVE OPERATION
D2*.1: IN-BAND FULL-DUPLEX ARRAY ARCHITECTURES AND PERFORMANCE SURVEY
D2*.2: BROADBAND GAN MMICS FOR ANALOG INTERFERENCE SUPPRESSION

D2*.3: MINIATURIZATION OF RF SIC FILTER ON HIGH-K CERAMIC SUBSTRATE FOR STAR	. 105
Md Rakibur Rahman, Satheesh Bojja-Venkatakrishnan, Markondeyaraj Pulugurtha, John Volakis, Florida International University, United States	
D2*.4: 40-44 GHZ MMIC FREQUENCY TUNABLE BUTLER MATRIX	. 106
Laila Marzall, Zoya Popovic, University of Colorado Boulder, United States	
F2: RANDOM AND COMPLEX MEDIA MODELS IN REMOTE SENSING	
F2.1: INCOHERENT SCATTERING FROM AN OBJECT ABOVE A ROUGH SURFACE	. 108
F2.2: DISCONTINUOUS GALERKIN METHOD FOR RADIATION TRANSFER IN PLANE-PARALLEL	
Research Laboratory, Wright-Patterson AFB, United States	
F2.3: SNOW DIELECTRIC CONSTANT MEASUREMENT FROM BREWSTER'S ANGLE USING	. 112
SUAS-BASED BISTATIC RADAR Omid Reyhanigalangashi, Drew Taylor, Jordan Larson, Shiriniwas Kolpuke, Feras Abushakra, Aabhash Bhandari, Siva Prasa Gogineni, The University of Alabama, United States	пd
F2.4: SIGNIFICANT WAVE HEIGHT ESTIMATION USING UAV Elizabeth Shi, Caglar Yardim, Joe Vinci, Ohio State University, United States	. 114
F2.5: SPECTRAL OPTICAL THEOREM AND RADIATIVE TRANSPORT EQUATION IN RANDOM	. 116
Saba Mudaliar, Air Force Research Laboratory, United States	
J3: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES & OBSERVATORY REPORTS III	
J3.1: DRONE-BASED BEAM MAPPING OF THE ARRAY OF LONG BASELINE ANTENNAS FOR	. 117
J3.2: CORRECTING RELATIVE CLOCK DRIFT BETWEEN INDEPENDENTLY-CLOCKED	. 118
J3.3: WHITE RABBIT: PRECISION TIME AND FREQUENCY DISTRIBUTION FOR PANOSETI AND	. 119
HIGH-SPEED DATA TRANSPORTATION BETWEEN NIC AND GPU OVER 400G NETWORK Wei Liu, Dan Werthimer, University of California, Berkeley, United States; Mitchell C. Burnett, Brigham Young University, Un States; Jonathon Kocz, University of California, Berkeley, United States; Rick Raffanti, techneinstruments, United States	nited
J3.4: DEPLOYMENT OF AN RESOC-BASED CORRELATOR AT THE DEEP DISH DEVELOPMENT	. 120
J3.5: PROFILING AND OPTIMIZING THE HIGH PERFORMANCE GRIDDER	. 122

B4: ANTENNA, THEORY, AND DESIGN II

B4.1: MM-WAVE UWB TIGHTLY COUPLED DIPOLE ARRAY REALIZED USING A HYBRID PCB - 12: 3D PRINTING FABRICATION APPROACH Michail Anastasiadis, FIU, United States; Md Rakibul Islam, Galtronics USA Ltd., United States; Jorge Caripidis Troccola, John Volakis, FIU, United States
B4.2: PLANAR REFLECTION-LESS LENS BASED ON MINIATURIZED-ELEMENT FREQUENCY
B4.3: MIMO WIFI IMAGING BASED ON RECONFIGURABLE PASSIVE EM SKINS
B4.4: WIDEBAND ANALOG INTERFERENCE CANCELLATION USING TRUE TIME DELAYS,
B4.5: SUBSTRATE INTEGRATED IMPEDANCE SURFACE AND THEIR APPLICATIONS IN
BK5*: ADVANCES IN WIRELESS POWER TRANSFER AND HARVESTING FOR BIOMEDICAL COMMUNICATION AND APPLICATIONS
BK5*.1: BODY-WORN HUBS IN MEDICAL APPLICATIONS: ENABLING SELF-POWERED
BK5*.2: EXPERIMENTAL PARAMETRIC STUDY OF DUAL-LAYER PLANAR WEARABLE
BK5*.3: LIQUID METAL NANOPARTICLES-INFUSED WEARABLE CSCMR WPT SYSTEMS
BK5*.4: NON-UNIFORM METASURFACE FOR IMPROVING THE INDUCTIVE WIRELESS POWER
BK5*.5: INCORPORATION OF DNG METAMATERIAL FOR ENHANCING EFFICIENCY OF RF WPT
BK5*.6: SELF-POWERED WEARABLE DEVICES INTEGRATED WITH VIRTUAL REALITY
BK5*.7: FULL-BODY CASE STUDY OF WEARABLE MAGNETOINDUCTIVE WAVEGUIDES

Michael Suche, Lauren Linkous, Erdem Topsakal, Virginia Commonwealth University, United States	3
BK5*.9: TEXTILE-BASED RECONFIGURABLE DUAL-BAND FREQUENCY SELECTIVE SURFACE	5
Amber Nunnally, Erdem Topsakal, Virginia Commonwealth University, United States	
BK5*.10: STUDY OF AN E TEXTILE RECTANGLE TAPERED SLOT VIVALDI ANTENNA FOR	P
B6: PROPAGATION, SCATTERING, AND SENSING I	
B6.1: A THEORETICAL MODEL FOR FINITE-ELEMENT MAGNETOINDUCTIVE WAVEGUIDES Samuel Coogle, Connor Jenkins, Asimina Kiourti, The Ohio State University, United States	3
B6.2: CIRCUIT ANALYSIS OF CROSSTALK IN A PARALLEL PLATE WAVEGUIDE CONTAINING AN)
Edward Ruester, University of Colorado, United States, INCK Rival, Electronic Expertise Eta, United States	
B6.3: NEAR-FIELD RADIOMETRY WITH SPATIAL FOCUSING 151 Joseph Dunbar, University of Colorado Boulder, United States; Gabriel Santamaria Botello, Colorado School of Mines, United States; Zoya Popovic, University of Colorado Boulder, United States	ı
B6.4: SCATTERING BY AN OCTANT-SPHERE LOCATED INSIDE A TRIHEDRAL REFLECTOR	2
B6.5: PULSED NON-COHERENT QPSK LOW PROBABILITY OF INTERCEPT WAVEFORMS FOR	3
B6.6: CONVOLUTIONAL NEURAL NETWORKS FOR SUBSURFACE ELECTRICAL PROPERTIES	4
Sahar Bagherkhani, Saeid Alamdar, Franco De Flaviis, University of California, Irvine, United States	
B6.7: ADVANCES IN GEOMETRICAL CLASSIFICATION OF SNOWFLAKES USING AI AND IMAGES	5
	_
B6.8: EXACT SOLUTION FOR A DIPOLE ABOVE TWO-LAYERED SEMI-OBLATE SPHEROIDAL	,
Anastasiia Rozhkova, University of Illinois Chicago, United States; Ermanno Citraro, Politecnico di Torino, Italy; Danilo Erricolo, University of Illinois Chicago, United States; Francesco Andriulli, Politecnico di Torino, Italy	
B6.9: DOWNSCALING THE GOES ABI DATA IN SUPPORT OF HIGH-RESOLUTION WILDFIRE	9
Yifan Yang, Haonan Chen, Colorado State University, United States	
B6.10: ON THE POTENTIAL OF PASSIVE METASURFACE SKINS FOR ENHANCED BIOMEDICAL)
Amin Rastgordani, Danilo Erricolo, University of Illinois Chicago, United States; Giacomo Oliveri, University of Trento, Italy	

H2*: ACTIVE EXPERIMENTS IN LABORATORY AND SPACE PLASMAS

H2*.1: FAST ION INJECTION IN THE LARGE PLASMA DEVICE TO MODEL EMIC AND FAST WAVE	J/A
H2*.2: QUANTIFYING THE EFFECTS OF ELECTRON SHOT NOISE ON A CURRENT BIASED	63
H2*.3: FIRST RESULTS FROM THE LIEFSI CAMPAIGN – SETUP AND CALIBRATION	65
H2*.4: FIRST RESULTS FROM THE LIEFSI CAMPAIGN - INTERPRETATIONS AND APPLICATIONS	
H2*.5: PLASMA IMPEDANCE TOMOGRAPHY: A NONINVASIVE PLASMA IMAGING DIAGNOSTIC	67
D3*: HYPERSPECTRAL SENSING FOR SPACE APPLICATIONS	
D3*.1: DIGITAL SPECTROMETER ASICS ARE ENABLING HYPERSPECTRAL MICROWAVE SENSING Priscilla Mohammed, Morgan State University, United States; Paul Racette, NASA Goddard Space Flight Center, United States; Gytis Baranauskas, Dalius Baranauskas, Denis Zelenin, Pacific MicroChip Corporation, United States	
D3*.2: BROADBAND HYPERSPECTRAL SOUNDERS FOR ATMOSPHERIC REMOTE SENSING	
D3*.3: NEW MICROWAVE REFLECTARRARY TECHNOLOGY TO ENABLE HYPERSPECTRAL	70
D3*.4: PHOTONIC-INTEGRATED MODULATORS AS MILLIMETER AND SUBMILLIMETER-WAVE	71
D3*.5: RYDBERG ATOMS FOR HYPERSPECTRAL RADIOMETRY IN THE PLANETARY BOUNDARY LAYER Shane Verploegh, Eric Bottomley, Michelle Warter, John Guthrie, Infleqtion, United States	72
FGH3*: REMOTE SENSING USING GNSS-R AND SOOP SYSTEMS	
FGH3*.1: THE NASA CYGNSS MISSION AND ITS TROPICAL CYCLONE MEASUREMENT	73

FGH3*.2: A BLENDED CYGNSS SOIL MOISTURE PRODUCT PARTITIONED WITH ANCILLARY
Erik Hodges, University of Southern California, United States; Clara Chew, Muon Space, United States; Eric Small, University of Colorado,, United States; Mohammad Al, The Ohio State University, United States; Jeffrey D. Ouellette, U.S. Naval Research Laboratory, United States; Joel T. Johnson, The Ohio State University, United States; Fangni Lei, University of Connecticut, United States; Mehmet Kurum, University of Georgia, United States; Ali Gurbuz, Volkan Senyurek, Mississippi State University, United States; Xiaolan Xu, Rashmi Shah, Simon Yueh, Akiko Hayashi, Jet Propulsion Laboratory, California Institute of Technology, United States; Paulo T. Setti Jr., Sajad Tabibi, University of Luxembourg, Luxembourg; Emanuele Santi, Simone Pettinato, National Research Council – Institute of Applied Physics (CNR-IFAC), Italy; T. Max Roberts, Ian Colwell, Stephen Lowe, Muon Space, United States; Christopher S. Ruf, University of Michigan, United States; Mahta Moghaddam, University of Southern California, United States
FGH3*.3: GNSS-R WETLAND MONITORING
FGH3*.4: AN APPROACH FOR RESERVOIR WATER LEVEL RETRIEVALS USING CYGNSS LEVEL-1
FGH3*.5: GNSS SIGNALS OF OPPORTUNITY SYNTHETIC APERTURE RADAR CONCEPT FOR
FGH3*.6: PASSIVE L-BAND GNSS-R AND ACTIVE C- AND KA-BAND RADAR INLAND WATER WIND
FGH3*.7: EXPLOITING DENSE COHERENT REFLECTION TRACK AREAS IN THE INDONESIAN
FGH3*.8: STUDYING CHANGES IN PERMAFROST AREAS USING GNSS REFLECTIONS
FGH3*.9: GNSS REFLECTOMETRY FOR REMOTE SENSING OF ROSS ICE SHELF SURFACE
FGH3*.10: INITIAL EVALUATION OF PLANETIQ GRAZING GNSS COHERENT REFLECTIONS FOR
J3*: RFI MITIGATION AND SPECTRUM MANAGEMENT I
J3*.1: THE RADIO FREQUENCY INTERFERENCE ENVIRONMENT OF THE VERY LARGE ARRAY
J3*.2: NEAR REAL-TIME RADIO FREQUENCY INTERFERENCE MONITORING DATABASE FOR THE

J3*.3: RADIO FREQUENCY INTERFERENCE (RFI) GEOLOCATION FOR RADIO	185
Mark Ruzindana, David DeBoer, University of California Berkeley, United States; Alexander Pollak, Wael Farah, Hat C Radio Observatory, United States; Kevin Gifford, Arvind Aradhya, Stefan Tschimben, University of Colorado Boulder, U States; Cole Forrester, Brockton Stover, Aaron Parsons, Josh Dillon, University of California Berkeley, United States	
J3*.4: RFI ISSUES FOR THE NEXT GENERATION VERY LARGE ARRAY (NGVLA)	186
J3*.5: RFI CONSIDERATIONS FOR THE DSA-2000	187
BF7*: QUANTUM TECHNOLOGY APPLICATIONS IN ELECTROMAGNETICS AND REMOTE SENSING	
BF7*.1: INVESTIGATING QUANTUM ENTANGLEMENT USING CANONICAL QUANTIZATION AND	189
Jie Zhu, Purdue University, United States; Dong-Yeop Na, Pohang University of Science and Technology, Korea (South, Chew, Purdue University, United States); Weng
BF7*.2: TOWARDS AN ANALYTICAL QUANTUM FULL-WAVE SOLUTION OF A TRANSMON QUBIT	191
BF7*.3: EFFICIENT SOURCES OF ENTANGLED SINGLE-PHOTON PAIRS WITH NONLINEAR PLASMONIC METASURFACES Sky Semone, Christos Argyropoulos, The Pennsylvania State University, United States	192
BF7*.4: RYDBERG ATOM BASED SENSORS: RADIO-FREQUENCY FIELD DETECTION TO	,
BF7*.6: QUANTUM STATISTICAL ASPECTS OF EMISSION AND ABSORPTION IN REMOTE SENSING AND IMAGING Saba Mudaliar, Air Force Research Laboratory, United States	195
BF7*.7: CALCULATING MULTI-QUBIT EXCHANGE COUPLING RATES FOR TRANSMON QUBITS	196
BF7*.8: COMPACT CRYOCOOLED RF DIRECTION FINDER	N/A
BF7*.9: SUB-WAVELENGTH ANGLE-OF-ARRIVAL MEASUREMENT AT 1.1 GHZ IN A RYDBERG	199
C1: ADAPTIVE RADAR AND ARRAY SIGNAL PROCESSING TECHNIQUES	
C1.1: LOW PROBABILITY OF DETECTION COMMUNICATION VIA POLARIZATION DIVERSITY: AN EXPERIMENTAL STUDY Morriel Kasher, Rutgers University, United States; Fikadu T. Dagefu, Jihun Choi, DEVCOM Army Research Laborator	
States; Chryssalenia Koumpouzi, Predrag Spasojevic, Rutgers University, United States	

C1.2: PREDISTORTION FOR A X-BAND WAVE-SENSING RADAR POWER AMPLIFIER
C1.3: SIGNAL CLASSIFICATION FOR SPECTRUM SHARING WITH MACHINE LEARNING USING A
C1.4: PROGRESS TOWARDS QUANTUM-ENHANCED MICROWAVE REMOTE SENSING AND
C1.5: FROM LABORATORY TO PLATFORM: THE IMPACT OF ADAPTIVE SPECTRUM USAGE ON
H3*: PHYSICS OF THE RADIATION BELTS: COUPLING OF DIFFERENT PLASMA POPULATIONS BY MEANS OF PLASMA WAVES
H3*.1: ENERGY COUPLING FROM MAGNETOSONIC WAVES TO HIGH-FREQUENCY
H3*.2: WHISTLER-MODE WAVES IN THE INNER MAGNETOSPHERE: RECENT PROGRESS ON
H3*.3: SIMULATION STUDY OF WHISTLER MODE WAVES IN THE MAGNETOSPHERE USING
H3*.4: LOCAL ACCELERATION OF RELATIVISTIC ELECTRONS TO ULTRA-RELATIVISTIC
H3*.5: DETERMINING WHEN, WHERE, AND WHY RADIATION BELT DROPOUTS DO AND DON'T OCCUR Lauren Blum, Stanislaus Nnadih, LASP, United States; Craig Rodger, University of Otago, New Zealand; Zheng Xiang, Wuhan University, China; Weichao Tu, Xingzhi Lyu, West Virginia University, United States; Domenique Freund, University of Colorado Boulder, United States
G3*: BEACON SATELLITE SCIENCE AND APPLICATIONS: IN MEMORY OF PATRICIA DOHERTY
G3*.1: CONFIRMATION OF A POWER LAW PHASE SCREEN THEORY RELATING TEC RATE OF

G3*.2: OBSERVING MORE EQUATORIAL IRREGULARITY PHYSICS USING GNSS	212
G3*.3: IONOSPHERIC GRADIENTS ASSESSMENT FOR GBAS OPERATIONS IN LOW-LATITUDE	213
Teddy Surco Espejo, Charles Carrano, Keith Groves, Institute for Scientific Research/Boston College, United States	
G3*.4: INSTABILITY VARIABILITY CHARACTERISTICS DERIVED FROM BEACON SATELLITE OBSERVATIONS Keith Groves, John Retterer, Charles Carrano, Christopher Bridgwood, Boston College, United States	214
G3*.5: A DISTRIBUTED ARRAY OF LOW-COST GNSS-BASED SENSORS FOR MONITORING AND	215
G3*.6: SPATIAL IMAGING AND ZONAL DRIFT MOTION TRACKING OF EQUATORIAL PLASMA	216
J4*: NGVLA ANTENNA DEVELOPMENT	
J4*.1: NGVLA 18M ANTENNA DESIGN & PROTOTYPE PROJECT OVERVIEW	217
J4*.2: NGVLA ANTENNA TECHNOLOGY AND PROTOTYPE STATUS	218
J4*.3: UPDATES ON THE OPTICS DESIGN OF THE NGVLA 18-METER REFLECTOR SYSTEM	219
J4*.4: ANTENNA ELECTRONICS DESIGN FOR THE NEXT-GENERATION VERY LARGE ARRAY	220
J4*.5: NGVLA ANTENNA PROTOTYPE ELECTRONICS AND RADIOMETRIC TESTING	221
J4*.6: FRONT END SUBSYSTEM DEVELOPMENT FOR A NEXT GENERATION VERY LARGE ARRAY Wes Grammer, Silver Sturgis, NRAO, United States	222
A1*: CLUTTER, NOISE, TROPOSCATTER MEASUREMENTS AND MODELS	
A1*.1: THE IMPACT OF SEASONAL FOLIAGE CHANGES ON CLUTTER MODELING	223
A1*.2: PRELIMINARY MID-BAND TROPOSCATTER MEASUREMENT RESULTS USING DIFFERENT	225
A1*.3: AN IN SITU CHARACTERIZATION OF 1.7 GHZ BUILDING ENTRY LOSS	227

A1*.4: SPATIAL STRUCTURE OF THE URBAN RF NOISE FIELD IN BOSTON, MA	9
A1*.5: AN IMPROVED-ACCURACY DISCRETE SAMPLING CRITERION FOR THE ESTIMATION OF	1
B8: PROPAGATION, SCATTERING, AND SENSING II	
B8.1: AN IN-SITU MEASUREMENT SYSTEM USING DOWNCONVERSION Trevor Van Hoosier, Emma Lever, Adam Goad, Samuel Hussey, Jonathan Swindell, Charles Baylis, Baylor University, United States; Albin Gasiewski, Aravind Venkitasubramony, University of Colorado, United States; Robert Marks, Baylor University, United States	3
B8.2: ACTIVE LOW-NOISE MATCHING WITH SUBHARMONIC PARAMETRIC AMPLIFIER Eaterneh Sadr, Majid Manteghi, Virginia polytechnic institute and state university, United States	4
B8.3: WAVE MANIPULATING RIS FOR ENHANCED TOMOGRAPHIC IMAGING: CONCEPT AND RECENT ADVANCES Carlo Tortoriello, Danilo Erricolo, University of Illinois Chicago, United States; Giacomo Oliveri, Università degli Studi di Trento, Italy	6
B8.4: TRANSMISSION THROUGH A PERFORATED THICK METALLIC SCREEN	8
B8.5: RF CHARACTERIZATION OF ZIRCONIA RIBBON CERAMIC USING T-RESONATOR METHOD	9
H4: WAVES AND INTERACTIONS IN PLASMAS	
H4.1: WHISTLER-MODE WAVES IN THE MAGNETIC DUCTS	1
H4.2: GUIDING OF THE WHISTLER-MODE WAVES BY THE LOCALIZED DEPLETIONS OF THE	2
H4.3: ASSOCIATION OF RELATIVISTIC MICROBURSTS DURATION WITH CHORUS WAVE	3
H4.4: UNVEILING ZEBRA-LIKE PATTERNS IN TYPE III RADIO BURSTS: MULTI-SPACECRAFT	4
H4.5: DEVELOPMENT OF THE AMBIPOLAR ELECTRIC FIELD IN A COMPRESSED CURRENT	5
H4.6: PRELIMINARY FINDINGS OF STIMULATED BRILLOUIN SCATTERING WITH SATELLITE	6

ORIGIN James LaBelle, Stephanie Damish, David McGaw, Terrence Kovacs, John Griffin, Dartmouth College, United States; Anton Kashcheyev, P. T. Jayachandran, University of New Brunswick, Canada
H4.8: REDUCED-ORDER MODELING OF BACKWARD WAVE OSCILLATOR FIELDS FOR
H4.9: OBSERVATIONAL PROPERTIES OF HARMONIC EMIC WAVES IN THE EARTH
H4.10: ULF QUARTER-WAVES AT HIGH AND MIDDLE LATITUDES
D4: WIDE BANDGAP SEMICONDUCTORS & RADAR APPLICATIONS
D4.1: INVESTIGATING HIGH-GAIN IN GALLIUM NITRIDE PHOTOCONDUCTIVE SWITCHES. 253 Nicolas Gonzalez, Jane Lehr, The University of New Mexico, United States
D4.2: LOW-LOSS D-BAND SIW POWER DIVIDER FOR INTEGRATED SYSTEMS
D4.3: AMPLIFIED THZ DETECTION IN P-DIAMOND TERAFET INDUCED BY FIXED DRAIN
D4.4: MULTI-DIMENSIONAL IMAGE COMPLETION FOR AUTOMATED POWER AMPLIFIER
D4.5: SIMULTANEOUS MULTIDIMENSIONAL OPTIMIZATION FOR FAST AMPLIFIER DESIGN
D4.6: REAL-TIME CIRCUIT OPTIMIZATION FOR SIMULTANEOUS RADAR AND
D4.7: UTILIZING DISTRIBUTED CIRCUIT TOPOLOGY TECHNIQUES TO ACHIEVE REDUCED
D4.8: SECOND-ORDER EXCEPTIONAL POINT OF DEGENERACY IN TWO DIRECTLY COUPLED

14": ROUGH SURFACE SCAFFERING AND ELECTROMAGNETICS: IN HONOR OF GART BROWN
F4*.1: RESEARCH AND SERVICE: CELEBRATING A ROLE MODEL IN THE RADIO SCIENCE
F4*.2: THE RAYLEIGH HYPOTHESIS IN THE THEORY OF WAVE SCATTERING FROM ROUGH
F4*.3: ANALYTICAL MODELING OF ELECTROMAGNETIC FIELDS SCATTERED FROM A TARGET
F4*.4: APPRAISAL OF THE RICE-SQUARED MODEL FOR SCATTERING FROM AN OBJECT ABOVE A
F4*.5: SCATTERING FROM A FOREST WITH AN UNDERLYING ROUGH SURFACE
F4*.6: TWO-SCALE SCATTERING MODEL: DETERMINING THE SCALE SEPARATION VIA DIRECT
F4*.7: ESTIMATION OF THE SPECTRAL DIVISION PARAMETER IN A TWO-SCALE MODEL FOR
F4*.8: GROUP-BASED COMPRESSION OF FMM DATA STRUCTURES FOR NON-OSCILLATORY
F4*.9: ADDITIONAL INSIGHT INTO THE METHOD OF SMOOTHING AS APPLIES TO ROUGH
J5*: RFI MITIGATION AND SPECTRUM MANAGEMENT II
J5*.1: RADIO FREQUENCY INTERFERENCE MONITORING AND ANALYSIS FOR GROUND-BASED
J5*.2: NEW RESULTS ON MITIGATION OF SATELLITE INTERFERENCE BY COHERENT
J5*.3: DETECTION OF SATELLITE EMISSION AT MILLIMETER-WAVES USING COSMIC

J5*.4: GRIDFLAG: A UV PLANE FLAGGING ALGORITHM FOR HIGH FIDELITY
J5*.5: OPERATIONAL DATA SHARING (ODS) FRAMEWORK - A COEXISTENCE STRATEGY FOR
J5*.6: AN ADVANCED TESTBED FOR PASSIVE/ACTIVE COEXISTENCE RESEARCH: A
J5*.7: FACILITATING SPECTRUM SHARING BETWEEN PASSIVE AND ACTIVE USERS AT A
J5*.8: DYNAMIC RFI MANAGEMENT IN RADIO ASTRONOMY USING PSEUDONYMETRY
B9*.1: DESIGN, FABRICATION, AND EXPERIMENTAL CHARACTERIZATION OF AN
B9*.2: A COMPACT MULTI-RESONANT SIW CAVITY-BACKED SLOT ANTENNA WITH
B9*.3: WIDEBAND CIRCULARLY POLARIZED ARRAY USING TIGHTLY COUPLED DIPOLE ARRAY THEORY Muhammad Mubasshir Hossain, Stavros Koulouridis, Satheesh Bojja Venkatakrishnan, John L. Volakis, Florida International University, United States
B9*.4: RECONFIGURABLE DIODE-BASED AND LIQUID METAL ANTENNA FOR 5 GHZ WI-FI
B9*.5: AN EXTREMELY WIDEBAND 3-D PRINTED COMPACT ANTENNA FOR MIMO APPLICATIONS

A2: ADVANCES IN ANTENNA DESIGN

A2.1: CONFORMAL, COMPACT AND LOW-PROFILE ANTENNA FOR MEDICAL BODY AREA NETWORK APPLICATIONS Mohammad Hashmi, Nazarbayev University, Kazakhstan; Dinesh Rano, Birla Institute of Technology and Science, India	N/A
A2.2: DESIGN OF PENTABAND ANTENNA WITH HIGH FREQUENCY RATIO FOR CUBESAT	. N/A
A2.3: A PRACTICAL SUPERLUMINAL POLARIZATION CURRENT ANTENNA: THEORY, DESIGN, AND	. 296
A2.4: EFFICIENT 15 GHZ ANTENNA BASED ON A MINIATURE 5G WIRELESS COMMUNICATION	. 298
E2: HISTORY AND FUTURE OF USNC COMMISSION E	
E2.1: TRENDS IN COMMISSION E IN NATIONAL RADIO SCIENCE MEETINGS Robert Gardner, Consultant, United States; Leigh Gardner, London School of Economics and Political Science, United States	
E2.2: CYCLOSTATIONARY CHANNEL POWER MEASUREMENTS FOR CBRS COEXISTENCE ASSESSMENT Daniel Kuester, NIST, United States; Anthony Romaniello, Peter Mathys, NTIA, United States	300
E2.3: AN ANALYSIS OF LOW-COST SDRS TO MEET CITY-WIDE SPECTRUM UTILIZATION	
E2.4: MODELING 5G INTERFERENCE ON A WEATHER RADIOMETER	. 304
B10*: ANTENNAS FOR PLANETARY EXPLORATION	
B10*.1: NASA DRAGONFLY LANDER LOW GAIN ANTENNA DESIGN, FABRICATION, AND TESTING	305
B10*.2: SATELLITE KA-BAND ADDITIVE MANUFACTURED ANTENNA	
B10*.3: HIGH POWER MICROWAVE EFFECTS IN ANTENNAS FOR PLANETARY EXPLORATION	308
A3: ADVANCES IN ELECTROMAGNETIC MEASUREMENTS: ANTENNAS AND BEYOND	
A3.1: DIRECTION-OF-ARRIVAL ESTIMATION USING A UNIFORM LINEAR ARRAY CONSIDERING	309

A3.2: COMPARISON OF ANTENNA PARAMETERS ACQUIRED IN THE REACTIVE NEARFIELD,
A3.3: OPTIMIZING ANTENNA ELEMENT DISTRIBUTION FOR ENHANCED GAIN IN SPARSE ARRAY
A3.4: DIFFERENT GEOMETRICAL REPRESENTATIONS OF PARTIALLY REFLECTED SURFACES
A3.5: REVISITING THE WATER PERMITTIVITY: 0-50 GHZ MEASUREMENTS AT TEMPERATURES
A3.6: STATISTICAL ELECTRICAL EFFECT DETECTION
C2: ADVANCES IN SOFTWARE DEFINED AND ADAPTIVE RADIO SYSTEMS
C2.1: BRIDGING THE DIGITAL DIVIDE IN RURAL AMERICA WITH SUPERLUMINAL
C2.2: MULTI-MODE ARRAY FEED OPERATIONS WITH THE WESTFORD RADIO TELESCOPE
C2.3: DIRECT-RF FULL DUPLEX RADIO WITH 22-DB/200-MHZ DIGITAL SELF-INTERFERENCE
C2.4: DISCRETE-TIME SYNCHRONIZATION FOR NARROW-BAND SIGNALS
C2.5: NEAR-FIELD MIMO RIS CHANNEL CAPACITY
C2.6: DIGITAL TWIN MODELS TO ENABLE DESIGN OPTIMIZATION OF ULTRA-WIDE BAND
B11: THEORY, MATERIALS, AND DEVICES
B11.1: PURE MAGNETIC DIPOLE RADIATION RESULTING FROM SPHERICAL ELECTRIC
B11.2: STATISTICS OF ELECTROMAGNETIC FIELDS EXCITED IN A FINITE LENGTH

B11.3: BIANISOTROPIC MATERIAL CHARACTERIZATION USING A RECTANGULAR-TO-SQUARE
B11.4: BATTERY-LESS AND WIRELESS NEUROSENSING SYSTEM FOR MONITORING OF
B11.5: LINK BUDGET ANALYSIS OF INTERROGATION OF SURFACE ACOUSTIC WAVE SENSORS
H5*: HELIOSPHERIC OBSERVATIONS OF WAVES IN PLASMAS
H5*.1: NON-LIGHTNING-GENERATED WHISTLER WAVES IN NEAR-VENUS SPACE
H5*.2: STATISTICS ON WHISTLER WAVES PROPAGATION DIRECTION FROM PARKER SOLAR
H5*.3: TURBULENTLY GENERATED KINETIC ALFVÉN WAVE POWER ASSOCIATED WITH
H5*.4: A SERIES OF SMALL-SCALE MAGNETIC FLUX ROPES ORIGINATING FROM THE NARROW
H5*.5: PATTERNS AND PROPERTIES OF ION CYCLOTRON WAVES AROUND VENUS
GH4*: MACHINE LEARNING TECHNIQUES FOR NEAR EARTH SPACE SCIENCE
GH4*.1: SPACE WEATHER MODELING AT THE UNIVERSITY OF COLORADO DEEP LEARNING
GH4*.2: GLOBAL ELECTRON PRECIPITATION DRIVEN BY WHISTLER MODE WAVES USING A

GH4*.3: DISTRIBUTION AND EVOLUTION OF CHORUS WAVES MODELED BY A NEURAL
GH4*.4: FORECASTING GLOBAL VTEC DATA FROM VISTA WITH HIGH SPATIAL AND TEMPORAL
GH4*.5: THE RESPONSE OF IONOSPHERIC CURRENTS TO EXTERNAL DRIVERS
GH4*.6: NEURAL NETWORK-BASED CLASSIFICATION OF POLAR CAP AND AURORAL
F5*: MICROWAVE REMOTE SENSING OF THE EARTH
F5*.1: MICROWAVE PHOTONIC ULTRA-WIDEBAND RADIOMETER FOR PLANETARY BOUNDARY
F5*.2: P- AND L-BAND RETRIEVAL OF ROOT-ZONE SOIL MOISTURE AND TEMPERATURE
F5*.3: SOIL MOISTURE DURING 2015 SPRING FLOOD EVENTS FROM THE SMAP RADAR
F5*.4: IMPROVING A MACHINE LEARNING MODEL FOR SATELLITE PRECIPITATION
F5*.5: RADAR PARTIAL BEAM BLOCKAGE CORRECTION FOR IMPROVING PRECIPITATION
F5*.6: WINTER EVENT OBSERVATIONS AT WALLOPS FLIGHT FACILITY IN 2022 AND ONGOING

F5*.7: INVESTIGATING THE RELATIONSHIP BETWEEN LIGHTNING AND GNSS SIGNAL	d
F5*.8: SPECTRAL CALIBRATION OF THE ELECTROJET ZEEMAN IMAGING EXPLORER	57
J6*: CHIME/FRB OUTRIGGERS I	
J6*.1: THE CHIME/FRB OUTRIGGER PROGRAM	58
J6*.2: CHARACTERIZING THE PERFORMANCE OF THE FIRST CHIME/FRB OUTRIGGER AS A	59
J6*.3: CHIME/FRB OUTRIGGERS: REMOVING SYSTEMATIC BASELINE DELAYS USING	60
J6*.4: REMOVING CLOCK-DRIFT AND IONOSPHERIC ERRORS FROM THE CHIME-KKO VLBI	61
J6*.5: PYCALC11: A PYTHON INTERFACE TO THE CALC VLBI DELAY MODEL	62
J6*.6: ARCSECOND LOCALIZATIONS WITH THE FIRST CHIME-OUTRIGGERS TELESCOPE	64
D5*: RECENT ADVANCES IN RECONFIGURABLE INTELLIGENT SURFACES	
D5*.1: NETWORK-BASED DESIGN OF RECONFIGURABLE INTELLIGENT SURFACES	65
D5*.2: DIGITALLY-MODULATED OOK RECONFIGURABLE INTELLIGENT SURFACES FOR	66
D5*.3: 1-BIT, WIDEBAND MMWAVE PHASE SHIFTER FOR RECONFIGURABLE INTELLIGENT	68
D5*.4: LIQUID-METAL-BASED RECONFIGURABLE INTELLIGENT SURFACES	

D5*.5: LOADING RIMS OF RADIO TELESCOPES WITH RECONFIGURABLE REFLECTARRAYS FOR
Jordan Budhu, Virginia Tech, United States; Sean V. Hum, University of Toronto, Canada; Steven Ellingson, R. Michael Buehrer, Virginia Tech, United States
D5*.6: COMPACT, LOW-DISPERSION, METALO-DIELECTRIC GRADIENT-INDEX LENSES WITH
Benjamin Davis, Jonathan Chisum, University of Notre Dame, United States
B12: NUMERICAL METHODS
B12.1: PARTICLE TRAJECTORY ERROR IN FINITE ELEMENT PARTICLE-IN-CELL KINETIC
B12.2: MACHINE LEARNING ASSISTED OPTIMIZATION METHODS FOR AUTOMATED ANTENNA
DESIGN Lauren Linkous, Erdem Topsakal, VCU, United States
B12.3: ADAPTIVE SOLUTION SPACE IN PARTICLE SWARM OPTIMIZATION
B12.4: PREDICTING IONIC CONDUCTIVITY OF SOLID-STATE BATTERY CATHODES USING
Mai Le, University of Houston, United States; Hieu Le, Texas A&M, United States; Jiefu Chen, Xuqing Wu, Yan Yao, University of Houston, United States
B12.5: ACCURACY AND CONVERGENCE STUDIES OF SURROGATE METHODS FOR
B12.6: CGFFT ITERATIVE SOLVER OF INTEGRAL EQUATIONS LAUNCHED ON A NEURAL
H6: HELIOSPHERIC PLASMA PROCESSES
H6.1: WAVE VECTOR OF H+ BAND EMIC WAVES AND CORRESPONDING ELECTRON
H6.2: LOWER-HYBRID WAVES AND NONLINEAR WHISTLER WAVE GENERATION IN SOLAR
A. Rualdo Soto-Chavez, Chris Crabtree, Guru Ganguli, Alex C. Fletcher, US Naval Research Laboratory, United States
H6.3: FIRST DIRECT RADIATION RESISTANCE MEASUREMENT ON A LOOP DIPOLE ANTENNA
H6.4: MODULATION OF INTERSTELLAR DUST BY SOLAR ROTATION INSIDE HELIOSPHERE

G5: RADAR AND RADIO TECHNIQUES FOR IONOSPHERIC DIAGNOSTICS

DURING THE APRIL 8, 2024 TOTAL SOLAR ECLIPSE Chris Watson, Anton Kashcheyev, Thayyil Jayachandran, Richard Chadwick, University of New Brunswick, Canada
G5.2: IMPROVEMENTS TO GNSS-BASED IONOSPHERIC MONITORING USING
G5.3: SIMULTANEOUS MEASUREMENTS OF TEMPORAL AND SPATIAL PHASE STRUCTURE
G5.4: CLIMATOLOGY OF EQUATORIAL F-REGION UHF COHERENT BACKSCATTER RADAR
G5.5: A MODERN VLF RECEIVER FOR USE IN AN ARRAY FOR VLF IMAGING OF THE D-REGION
G5.6: AUGMENTING THE OBSERVATIONAL CAPABILITIES OF THE JICAMARCA RADIO
J7*: CHIME/FRB OUTRIGGERS II
J7*.1: GREEN BANK CHIME/FRB OUTRIGGERS OVERVIEW AND CURRENT STATUS
J7*.2: COMMISSIONING THE CHIME OUTRIGGER TELESCOPE AT GREEN BANK: N2
J7*.3: COMMISSIONING STATUS OF THE GREEN BANK CHIME/FRB OUTRIGGER
J7*.4: A VLBI CALIBRATION SYSTEM WITH REAL-TIME PULSAR GATING FOR FRB
J7*.5: PYFX: SOFTWARE CORRELATOR FOR WIDE-FIELD VLBI WITH CHIME/FRB
J7*.6: LPDA ARRAYS FOR LOCALISING BRIGHT NEARBY FRBS FROM CHIME SIDELOBES

B13*: COMPLEX EM AND META STRUCTURES

B13*.1: SPACE-TIME NONLOCAL METASURFACES FOR EVENT-BASED IMAGE PROCESSING	404
B13*.2: SIGNAL COMPRESSION WITH WAVES	406
B13*.3: TERAHERTZ FARADAY ROTATION BASED ON OPTICALLY PUMPED GRAPHENE COUPLED	407
B13*.4: ELECTROMAGNETIC WAVE PROPAGATION AND AMPLIFICATION IN ANISOTROPIC	408
B13*.5: HIGH PERFORMANCE AND SPECTRALLY SELECTIVE IR SENSING BASED ON	409
B13*.6: SUBWAVELENGTH-STRUCTURED WAVEGUIDES FOR FREE-ELECTRON-PHOTON	410