32nd Annual Saudi-Japan Symposium on Technology in Petroleum Refining and Petrochemicals 2023

Technology in Fuels & Petrochemicals

Dhahran, Saudi Arabia 5-6 December 2023

ISBN: 978-1-7138-9071-3

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2023) by King Fahd University of Petroleum & Minerals All rights reserved.

Printed with permission by Curran Associates, Inc. (2024)

For permission requests, please contact King Fahd University of Petroleum & Minerals at the address below.

King Fahd University of Petroleum & Minerals Dhahran 31261 Kingdom of Saudi Arabia

Phone: +966 (13) 860 0000

info@kfupm.edu.sa

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Contents

#	Title	Page
	Preface	2
1	JPI direction along carbon neutrality and introduction of our research, direct methane conversion over zeolite catalysts; Atsushi Muramatsu, Tohoku University, Japan	5
2	The Origin of Atmospheric Methane in the Eastern Province, Theis I. Solling, Center for Integrated Petroleum Research, CIPR, KFUPM	6
3	Crude to chemicals – old challenges and new opportunities; Lujain R. Alfilfil, Saudi Aramco R&DC	9
4	Application of ML to predict performance of oxidative dehydrogenation catalysts; Gazali Tanimu, Center for Refining & Advanced Chemicals (CRAC), KFUPM	10
5	Accelerating catalyst discovery using extrapolative ML approach; Takashi Toyao, Institute for Catalysis, Hokkaido University, Japan	11
6	AI and data-driven optimization of one-step crude to chemicals process; Noor Sulais, R&DC, Saudi Aramco R&DC	12
7	Distillate hydrocracking catalyst and process to produce isomerate and steam cracking feedstock; Ashok K. Punetha, Saudi Aramco R&DC	13
8	Molecular kinetic model development and parameter estimation for naphtha reforming; Syed A. Ali, CRAC, KFUPM	14
9	Effect of gallium and platinum distribution encapsulated in silicalite-1 (MFI) zeolite on controlled propane dehydrogenation reaction; Fadhil A. Almukhtar, Saudi Aramco R&DC	15
10	Highly efficient dehydrogenation of isopentane to isoprene: Selectivity control of the catalytic reaction field by electric internal heating system; Ryo Watanabe, Shizuoka University, Japan	16
11	Insights on CO ₂ -mediated oxidative dehydrogenation of propane: Aspen plus simulation and in situ DRIFT experiment; Yahya Gambo, CRAC, KFUPM	17
12	Light olefins cracking by zeolites prepared from refinery waste; Mohammad Reb, Saudi Aramco R&DC	18
13	Carbon dioxide hydrogenation to carbon-neutral liquid fuels by powerful catalyst; Noritatsu Tsubaki, University of Toyama, Japan	19
14	${\rm CO_2}$ hydrogenation to lower olefins using iron supported catalysts; M. Nasiruzzaman Shaikh, Center for Hydrogen & Energy Storage, KFUPM	21
15	Insights into plastic pyrolysis and bio-oil upgrading: process optimization and techno- economic analysis; Omar Abdelaziz, CHE, KFUPM	24
16	Selective aromatics recovery by catalytic conversion of pyrolysis gas from carbon fiber reinforced plastic; Kazumasa Oshima, Kyushu University, Japan	25
17	Challenges and opportunities in converting waste plastic into value-added products; Mohammad Nahid Siddiqui, CHEM, KFUPM	26
18	Challenge of green hydrogen production from air by direct air electrolysis; Etsushi Tsuji, Tottori University, Japan	27
19	Adjusting the crude oil-to-chemical process using unconventional reactors and catalyst formulations, Pedro Castano, KCC, King Abdullah University of Science & Technology (KAUST)	28
20	Fueling future aviation with CO_2 to jet technology; Arthur Foutsitzis, Honeywell UOP, KSA	29
21	3D porous polymers for selective removal of CO_2 and H_2 storage; Othman Sadeq Al Hamouz, CHEM, KFUPM	30
22	Metal-organic frameworks functionalization and design strategies for CO ₂ capture; Nawal M. Alghoraibi, R&DC, Saudi Aramco	31

- 3 -

#	Poster Title	Page
P1	2-Pentene cracking over bifunctional MFI-type zeolites; Mohammed Alkhunaizi, Saudi Aramco R&DC	32
P2	Post-Synthesis Functionalization of Covalent Organic Frameworks for Carbon Dioxide Capture from Air (DAC); Mona Al-Otaibi, Saudi Aramco R&DC	33
Р3	Resilience of transalkylation catalyst towards industrial contaminants; Mosab T. Kheyami, Saudi Aramco R&DC	34
P4	Polypropylene cracking proceeding in micropores of MFI type zeolite; Tomohiro Fukumasa, Center Research Green Sustainable Chemistry, Tottori University	35
P5	Towards sustainable CO ₂ valorization: Harnessing Cu single atoms and nanoparticles; Esraa Kotob, CHEM, KFUPM	36
P6	Catalytic conversion of LDPE plastic via pyrolysis process; Feras Alqudayri, CRAC, KFUPM	37
P7	Thermocatalytic pyrolysis of microalgae biomass over Y-zeolite catalyst towards clean fuel and valuable chemicals; Hayat A. Haddad, CHE, KFUPM	39
P8	Effect of plastic composition on synergetic interactions, kinetic, thermodynamic properties from co-pyrolysis of date palm waste and waste foam; Ahmad Nawaz, CHE, KFUPM	40
P9	Enhanced selectivity of benzene-toluene-ethyl benzene and xylene in direct conversion of n-butanol to aromatics over Zn-HZSM-5 catalysts; Tatinaidu Kella, CRAC, KFUPM	41
P10	Chemical modification and characterization of cellulose acetate; Abdulrahman Musa, CRAC, KFUPM	42
P11	Role of naphthenic-aromatic hydrocarbon in autoxidation of heavy vacuum gas oil for carbon fiber precursors; Mustafa M. Amin, CHE, KFUPM	43
P12	Methanol synthesis from CO ₂ hydrogenation process: from catalyst design to technology Development; Nagendra Kulal, CRAC, KFUPM	44
P13	Well-designed glucose precursor carbon/g-C ₃ N ₄ nanocomposite for enhanced photocatalytic CO ₂ conversion to fuels; Abdullah Bafaqeer, CRAC, KFUPM	45
P14	TiO_2 based photocatalyst for solar hydrogen production from water; Muhammad Waqas, CRAC, KFUPM	46
P15	Highly efficient Ni/SiO ₂ -MgO catalyst for CO ₂ methanation in synthetic natural gas production: Thermodynamics and catalytic insights; Ijaz Hussain, CRAC, KFUPM	47
P16	Enhancing the efficiency of Ti_2C MXene electrocatalyst via zinc oxide nanorod intercalation for CO_2 electrochemical conversion to methane selectively; Abdulalhi Abdulhakam, CHEM, KFUPM	48
P17	Dual activity of zinc oxide-MXene nanocomposite for enhancing the electrochemical conversion of CO ₂ to value-added product; Abdulalhi Abdulhakam, CHEM, KFUPM	49
P18	Highly efficient fibrous silica lanthanum oxide-supported nickel catalyst for dry reforming of methane; Mohammed Awad, CHEM, KFUPM	50
P19	Controlled synthesis of zinc layered double hydroxides for superior electrochemical CO ₂ reduction; Omer Ahmed Taialla, CHEM, KFUPM	51
P20	Spent FCC catalyst in pesticides microextraction: a sustainable approach towards waste recycling/reuse; Shaima' Alsabbahen, CHEM, KFUPM	52
P21	Turning waste into value: K-promoted red mud as an effective catalyst for CO ₂ hydrogenation to olefins; Mahbuba Aktary, MSE/IRC-HES, KFUPM	54
P22	Production of dimethyl carbonate from CO_2 by using cerium oxide-based catalyst; Mohammed Alqarni, CRAC, KFUPM	55
P23	Molecular dynamics simulation of refrigerant separation using zeolite: A comprehensive study on adsorption; Abrar A. Elhussein, CHE, KFUPM	56
P24	Ruthenium supported on lanthanide oxyhydrides: as an efficient ammonia synthesis catalysts, Walid Al Maksoud, KAUST Catalysis Center	57
P25	Fibrous silica supported Bi/Ni oxide catalysts for oxidative dehydrogenation of n-butane, Ridhwan Lawal, CHE, KFUPM	58
	Symposium Program	59