2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE 2023)

Virtual Conference 4-6 December 2023

IEEE Catalog Number: CFP23266-POD **ISBN:**

979-8-3503-9312-5

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23266-POD
ISBN (Print-On-Demand):	979-8-3503-9312-5
ISBN (Online):	979-8-3503-9311-8
ISSN:	2159-5410

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE) **BIBE 2023**

Table of Contents

Message from the General Chair	xvi
Message from the Program Chair	xvii
Organizing Committee	xviii
Program Committee	xix

Bioinformatics - Cells

Domain Adaptation Applied to Microrna Target Prediction
PaKman+: Fast Distributed Sequence Assembly with a Concurrent K-mer Counting Algorithm 6 Vamsi K. Kundeti (Intel Corporation, USA)
 Prediction of Secondary Structure for Long Non-Coding RNAs Using a Recursive Cutting Method Based on Deep Learning
CNT: Semi-Automatic Translation from CWL to Nextflow for Genomic Workflows
Transformer-Based de Novo Peptide Sequencing for Data-Independent Acquisition Mass Spectrometry

MRI - PET

3D Image Generation from X-ray Projections Using Generative Adversarial Networks
Dense U-Nets for Enhancement of Undersampled MRI Using Cross-Contrast Feature Transfer 50 Robert Griffin (University of Houston, USA), Rishabh Sharma (University of Houston, USA), Andrew Webb (Leiden University, Netherlands), and Nikolaos Tsekos (University of Houston, USA)
 From Perception to Precision: Navigating Perceptual Loss in MRI Super-Resolution
 Approximate Vertebral Body Instance Segmentation by PET-CT Fusion for Assessment After Hematopoietic Stem Cell Transplantation

Bio - Cells - Neuros

Identifying Clock Gene Signatures for Improved Cancer Chronotherapy Through Gene Expression Analysis <i>Ella Yee (The Harker School, California)</i>	70
Deep Learning for Cell Classification in Histopathology Images Using Large-Scale Manually Annotated Datasets Leon Liu (University of Chicago Laboratory Schools, Chicago), Zhe Li (Northwestern Polytechnical University, China), and Ruijang Li (Stanford University, CA)	. 76
Machine Learning Models for Phenotype Prediction from Genotype Richard Annan (North Carolina A&T State University, USA), Letu Qingge (North Carolina A&T State University, USA), and Pei Yang (Qinghai University, USA)	81
Acceleration of Convolutional Neural Networks Ahmad Chaddad (Guilin University of Electronic Technology, China; The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure, Canada)	87

Integrated Analysis of Bulk and Single-Cell Transcriptomics in Cervical Cancer: Insights	
into BPGM, EGLN3, and SUN1	94
Assem K. Elsherif (Nile University, Egypt), Mohamed Emam (University	
of Porto, Portugal), Asmaa M. Abushady (Nile University, Egypt),	
Mariam Gamaleldin (Nile University, Egypt), Walid Al-Atabany (Nile	
University, Egypt), and Mohamed Elhadidi (Nile University, Egypt)	
Neuro-Cognitive Health Degeneration in a Post-Covid World – A Linguistically Induced	
Sentiment Manipulating Web-App as a Preventative Tool 1	.00
Ryka C. Chopra (Mission San Jose High School, USA) and Suparna	
Chakraborty (University of San Francisco, USA)	

Ultrasound Imaging

 Zero-Shot Performance of the Segment Anything Model (SAM) in 2D Medical Imaging: A comprehensive evaluation and practical guidelines	8
Target Tracking in 4D US Based on Template Matching and Target Forecasting Using Spatio-Temporal Autoencoders 113 Daniel Wulff (University of Lübeck, Germany), Ricardo Sarau 113 (University of Lübeck, Germany), and Floris Ernst (University of Lübeck, Germany) 113 Lübeck, Germany) 114	3
 Robust Semi-Supervised Learning for Histopathology Images Through Self-Supervision Guided Out-of-Distribution Scoring	1
A Two-Stage Neural Network Model for Breast Ultrasound Image Classification	9
Optic Disc Localization from Retinal Fundus Image Using Discrete Cosine and Hough Transforms	4

Classification

 Data Augmentation and Deep Learning in Audio Classification Problems: Alignment Between Training and Test Environments Saiful Huq (Carleton University, Canada), Pengcheng Xi (National Research Council Canada, Canada; Carleton University, Canada), Rafik Goubran (Carleton University, Canada; Bruyère Research Institute, Canada), Frank Knoefel (Bruyère Research Institute, Canada; Carleton University, Canada), and James Green (Carleton University, Canada) 	140
Boosting Classification Tasks with Federated Learning: Concepts, Experiments and Perspectives	. 147
When the Task of Traditional Medicinal Herbs Classification Meets Supervised Prototype Contrastive Learning <i>Kaifeng Guo (Fuzhou University, China) and Boyi Zhang (Fuzhou University, China)</i>	155
Various Multimodal Image Fusion Analyses Using Discrete Wavelets Transform and Gray Wolf Optimization Nenisi J (Amrita Vishwa Vidyapeetham, India) and Rolant Gini J (Amrita Vishwa Vidyapeetham, India)	160
 Fast Flexible Neighbor-Joining Using Multicomputing A. Chastel Lima (University of State of Mato Grosso do Sul, Brazil), Eloi Araujo (Federal University of Mato Grosso de Sul, Brazil), Marco A. Stefanes (Federal University of Mato Grosso de Sul, Brazil), and L.C.S Rozante (Federal University of ABC, Brazil) 	168
Transfer Learning with Deep Convolutional Neural Networks for Respiratory Disease Classification in X-ray Images Lazar Dašić (University of Kragujevac, Serbia), Ognjen Pavić (University of Kragujevac, Serbia), Tijana Geroski (University of Kragujevac, Serbia), Dragan Milovanović (University Clinical Centre Kragujevac; University of Kragujevac Kragujevac, Serbia), Marina Petrović (University Clinical Centre Kragujevac; University of Kragujevac Kragujevac, Serbia), and Nenad Filipović (University of Kragujevac, Serbia)	. 176

Seizures - EEG

Colour Prediction Using Vision Transformer and Continous Wavelet Transform on EEG Signals ... 181 Puranjay Mishra (National Institute of Technology Jamshedpur (NIT JSR), India), Marios Antonakakis (Technical University of Crete (TUC), Greece), Koushlendra Kumar Singh (National Institute of Technology Jamshedpur (NIT JSR), India), and Michalis Zervakis (Technical University of Crete (TUC), Greece)

Unsupervised Detection of Seizure-Related Dynamic Alterations with Autoencoder-Derived Deep Features	95
 A Chaos-Based Non-Linear Analysis Method for Detecting Human Attention Levels in EEG Signals)1
 An Exploration of Optimal Parameters for Efficient Blind Source Separation of EEG Recordings Using AMICA)5

Cancer - Biomarkers - 1

A Graph-Based Approach to Mitigate Drug-Drug Interactions and Optimize Therapeutic	
Regimens	211
Marios Spanakis (University of Crete & Computational Bio-Medicine	
Laboratory Institute of Computer Science Foundation for Research &	
Technology - Hellas Heraklíon, Greece), Eleftheria Tzámali	
(Computational Bio-Medicine Laboratory Institute of Computer Science	
Foundation for Research & Technology - Hellas Heraklion, Greece),	
Georgios Tzedakis (Computational Bio-Medicine Laboratory Institute of	
Computer Science Foundation for Research & Technology - Hellas	
Heraklion, Greece), Emmanouil G. Spanakis (Computational Bio-Medicine	
Laboratory Institute of Computer Science Foundation for Research &	
Technology - Hellas Heraklion, Greece), Aristides Tsatsakis	
(University of Crete & Computational Bio-Medicine Laboratory Institute	
of Computer Science Foundation for Research & Technology - Hellas	
Heraklion, Greece), and Vangelis Sakkalis (Computational Bio-Medicine	
Laboratory Institute of Computer Science Foundation for Research &	
Technology - Hellas Heraklion, Greece)	

 Attention-Based Multimodal Bilinear Feature Fusion for Lung Cancer Survival Analysis Hongbin Na (University of New South Wales, Australia; Xi'an Jiaotong-Liverpool University, China), Lilin Wang (Xi'an Jiaotong-Liverpool University, China), Xinyao Zhuang (Xi'an Jiaotong-Liverpool University, China), Jianfei He (Xi'an Jiaotong-Liverpool University, China), Zhenyu Liu (Xi'an Jiaotong-Liverpool University, China), Zimu Wang (Xi'an Jiaotong-Liverpool University, China), and Hong-Seng Gan (Xi'an Jiaotong-Liverpool University, China) 	219
The Influence of Image Cropping Sizes on Mammographic Breast Cancer Classification Using CNN	226
Precision Targeting of Non-Small Cell Lung Cancer: Identifying Optimal Drug Targets and FDA-Approved Combinations for Enhanced Therapeutic Efficacy Pranabesh Bhattacharjee (Texas A&M University College Station, USA), Aditya Lahiri (The Children's Hospital of Philadelphia, USA), Norman Peter Reeves (Sumaq Life LLC, East Lansing, USA), and Aniruddha Datta (Texas A&M University College Station, USA)	230
Combination Supplements for Endometrial Cancer Madhurima Mondal (Texas A&M University, USA), Aditya Lahiri (The Children's Hospital of Philadelphia, USA), Haswanth Vundavilli (The University of Texas MD Anderson Cancer Center, USA), Giuseppe Del Priore (Morehouse School of Medicine, USA), Peter Reeves (Sumaq Life LLC, USA), and Aniruddha Datta (Texas A&M University, USA)	238
ECG - 1	
Machine Learning Assessment of Heart Pate Confidence from Video Magnification	244

Machine Learning Assessment of Heart Rate Confidence from Video Magnification Diane Elhajjar (Carleton University, Canada), Bruce Wallace (Carleton University, Canada), Andrew Law (Carleton University, Canada), Rafik Goubran (Carleton University, Canada), and Frank Knoefel (Carleton University, Canada)	244
CNN Based Deep Learning to Detect low Ejection Fraction Using Single Lead ECG Neethu Vasudevan (Cardiac Rhythm Management, Medtronic, Inc, USA), James Howard (Imperial College of London, UK), Sean Landman (Cardiac Rhythm Management, Medtronic, Inc, USA), Shantanu Sarkar (Cardiac Rhythm Management, Medtronic, Inc, USA), and Daniel Keene (Imperial College of London, UK)	250

Electroencephalography-Based Schizophrenia Diagnosis
Abhinav Sattiraju (Tri-institutional Center for Translational Research
in Neuroimaging and Data Science: Georgia State University, Georgia
Institute of Technology, Emory University, USA), Charles A. Ellis
(Tri-institutional Center for Translational Research in Neuroimaging
and Data Science: Georgia State University, Georgia Institute of
Technology, Emory University, USA), Robyn L. Miller (Tri-institutional
Center for Translational Research in Neuroimaging and Data Science:
Georgia State University, Georgia Institute of Technology, Emory
University, USA), and Vince D. Calhoun (Tri-institutional Center for
Translational Research in Neuroimaging and Data Science: Georgia State
University, Georgia Institute of Technology, Emory University, USA)
Image Registration for Multi-View Three-Dimensional Echocardiography Sequences
Nooa (1 Iniversity of Alberta, Canada). Bernadette Foster (1 Iniversity of
Alberta Hosnital Canada) Harald Becher (University of Alberta
Hospital Canada) and Kumaraderran Punithakumar (University of
Alberta. Canada)

Cancer - Biomarkers - 2

Lung-RADS+AI: A Tool for Quantifying the Risk of Lung Cancer in Computed Tomography	
Reports.	. 292
Tarcísio Lima Ferreira (Federal University of Alagoas, Brazil),	
Marcelo Costa Oliveira (Federal University of Alagoas, Brazil), and	
Thales Miranda de Almeida Vieira (Federal University of Alagoas,	
Brazil)	
Personalized Clustering of Glucose Time Series in Patients with Type-1 Diabetes Mellitus	
Using Self Organized Maps During Nocturnal Sleep	. 298
Fotios S. Konstantakopoulos (University of Ioannina, Greece), Daphne	
N. Katsarou (University Of Ioannina, Greece), Eleni I. Georga	
(University of Ioannina, Greece), Maria Christou (University Hospital	
of Ioannina, Greece), Stelios Tigas (University Hospital of Ioannina,	
Greece), and Dimitrios I. Fotiadis (University Of Ioannina, Greece)	

ECG - 2

DECODE: A New Cloud-Based Framework for Advanced Visualization, Simulation, and Optimization Treatment of Peripheral Artery Disease
Convolutional Neural Networks for the Segmentation of Coronary Arteries
 Finite Element Analysis of Patient-Specific Heart Model with Simulated Aortic Stenosis
 Machine Learning Models Predict Fatal Myocardial Infarction Within 10-Years Follow-up Utilizing Explainable AI

Miscellaneous - 1

Seam Removal for Patch-Based Ultra-High-Resolution Stain Normalization Chi-Chen Lee (National Yang Ming Chiao Tung University (NYCU), Taiwan) and Chi-Han Peng (National Yang Ming Chiao Tung University (NYCU), Taiwan)	325
 How do Norms and Noise Impact Clustering Results? A Robustness Analysis Applied to Digital Pathology <i>Giulia Nicoletti (University of Turin, Italy), Caterina Marchiò</i> (Candiolo Cancer Institute, FPO-IRCCS, Italy), Samanta Rosati (Polytechnic of Turin, Italy), Enrico Berrino (Candiolo Cancer Institute, FPO-IRCCS, Italy), Maria Costanza Aquilano (Unit of Surgical Pathology and Cytogenetics, Department of Hematology, Oncology and Molecular, ASST Grande Ospedale Metropolitano, Italy), Emanuela Bonoldi (Unit of Surgical Pathology and Cytogenetics, Department of Hematology, Oncology and Molecular, ASST Grande Ospedale Metropolitano, Italy), Gabriella Balestra (Polytechnic of Turin, Italy), Daniele Regge (Candiolo Cancer Institute, FPO-IRCCS, Italy), and Valentina Giannini (University of Turin, Italy) 	. 333
An Empirical Study Concerning the Impact of Perceived Usefulness and Ease of use on the Adoption of AI-Empowered Medical Applications Dimitrios P. Panagoulias (University of Piraeus, Greece), Maria Virvou (University of Piraeus, Greece), and George A. Tsihrintzis (University of Piraeus, Greece)	338
 Unified Framework for Real-Time Fluid Simulation in Virtual Rotator Cuff Arthroscopic Skill Trainer (ViRCAST) Aditya Dendukuri (University of California Santa Barbara, California), Mustafa Tunc (Google, California), Doga Demirel (Florida Polytechnic University, Florida), Sinan Kockara (Rice University, Texas), and Tansel Halic (Intuitive Surgical, Georgia) 	. 346
Immersion into 3D Biomedical Data via Holographic AR Interfaces Based on the Universal Scene Description (USD) Standard <i>Khang Q. Tran (University of Houston, USA), Hosein Neeli (University</i> <i>of Houston, USA), Nikolaos V. Tsekos (University of Houston, USA), and</i> <i>Jose D. Velazco-Garcia (Tietronix Software, Inc., USA)</i>	. 354

Dementia

A Transfer Learning-Based Smart Homecare Assistive Technology to Support Activities of	
Daily Living for People with Mild Dementia	359
Žiaowei Čhen (Oklahoma State University, USA), Guoliang Fan (Oklahoma	
State University, USA), Emily Roberts (Ŏklahoma State University,	
USA), and Jr Steven Howell (Oklahoma State University, USA)	

Predicting the Onset of Dementia in Initially Healthy Individuals Using Demographic and Clinical Data	364
 Molecular Docking and ADMET of Levodopa Against Leucine-Rich Repeat Kinases, and In-Vitro Mobility Analysis in C. Elegans for Parkinson's Disease	369
Ensemble and Transformer Models for Infectious Disease Prediction	377
Anomaly Detection in Real Scarce Data: A Case Study on Monitoring Elderly's Physical Activity and Sleep	385

Miscellaneous - 2

Comparison Between Different Approaches for the Creation of the Training set: how Clustering and Dimensionality Impact the Performance of a Deep Learning Model
NLICE: Synthetic Medical Record Generation for Effective Primary Healthcare Differential Diagnosis
Zaid Al-Ars (Delft University of Technology, The Netherlands), Obinna Agba (Delft University of Technology, The Netherlands), Zhuoran Guo (Delft University of Technology, The Netherlands), Christiaan Boerkamp (Delft University of Technology, The Netherlands), Ziyaad Jaber (Medvice Digital Health, The Netherlands), and Tareq Jaber (Medvice Digital Health, The Netherlands)
Detection of Fluid Intake Swallowing Events Using Acoustic Signals and Template Matching 403

Xin Chen (King's College London, United Kingdom) and Ernest Kamavuako (King's College London, United Kingdom)

Rapid Detection of Penetration-Aspiration from Fluoroscopic Videos in Dysphagia Patients 409 Sanjeevi G (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, India), Uma Gopalakrishnan (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, India), Rahul Krishnan Pathinarupothi (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, India), Arya Cj (Amrita Institute of Medical Sciences and Research Center, India), and Subramania Iyer K (Amrita Institute of Medical Sciences and Research Center, India)
Medical Metaverse: A New Virtual Health Experience
 Transi-Net: An Explainable Deep Learning Model Ensemble For Prostate's Transition Zone Segmentation

Miscellaneous - 3

Assessment of Muscle Activity with Laparoscopic Tools Through EMG. Novel Proposal for Bivariate Amplitude-Frequency Analysis Irene Alandí-Rocafull (Universitat Politècnica de València (UPV), Spain), José L. Martínez-de-Juan (Universitat Politècnica de València (UPV), Spain), Andrés Conejero-Rodilla (Universitat Politècnica de València (UPV), Spain), Horacio M. Pace Bedetti (Universitat Politècnica de València (UPV), Spain), and Gema Prats-Boluda (Universitat Politècnica de València de València de València de València de València de València (UPV), Spain), Spain), spain), spain)	427
Quantifying Exam Stress Progressions Using Electrodermal Activity and Machine Learning Abigail Hsu (University of Cambridge, USA)	434
ChatGPT: An Artificial Intelligence-Based Approach to Enhance Medical Applications Ahmad Chaddad (Guilin University of Electronic Technology, China; The Laboratory for Imagery, Vision and Artificial Intelligence, Canada), Changhong He (Guilin University of Electronic Technology, China), and Yuchen Jiang (Guilin University of Electronic Technology, China)	439
Towards Real-Time Polyp Segmentation During Colonoscopy Using an EfficientNet-Based UNet Architecture	447

Application of Neural Network in Prediction of Frequency Response of Drivers During Driving	. 452
Igor Saveljic (University of Kragujevac, Serbia), Slavica Macuzic	
Saveljic (University of Kragujevac, Serbia), Branko Arsic (University	
of Kragujevac, Serbia), and Nenad Filipovic (University of Kragujevac,	
Serbia)	
Optimization of Physics-Informed Neural Networks for Efficient Surrogate Modeling of	
Huxley's Muscle Model in Multi-Scale Finite Element Simulations	. 457
Bogdan Milićević (University of Kragujevac, Serbia), Miloš Ivanović	
(University of Kragujevac, Serbia), Boban Stojanović (University of	
Kragujevac, Serbia), Miljan Milošević (Metropolitan University,	
Serbia), Vladimir Milovanović (University of Kragujevac), Miloš Kojić	
(Houston Methodist Research, USA), and Nenad Filipović (University of	
Kragujevac, Serbia)	