2023 International Conference on Field Programmable Technology (ICFPT 2023)

Yokohama, Japan 12-14 December 2023

IEEE Catalog Number: C ISBN: 9

CFP23528-POD 979-8-3503-5912-1

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP23528-POD
979-8-3503-5912-1
979-8-3503-5911-4
2837-0430

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 International Conference on Field Programmable Technology (ICFPT) ICFPT 2023

Table of Contents

Message from General Chair and Program Co-Chairs	xii
Organizing Committee	xiv
Program Committee	
Steering Committee	
Artifact Evaluation Committee	
Sponsors and Supporters	xx

Journal Track Papers

On the Malicious Potential of Xilinx' Internal Configuration Access Port (ICAP)	1
Covert-channels in FPGA-enabled SmartSSDs	2
HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks	3
Across Time and Space: Senju's Approach for Scaling Iterative Stencil Loop Accelerators on	
Single and Multiple FPGAs	5
AEKA: FPGA Implementation of Area-Efficient Karatsuba Accelerator for	
Ring-Binary-LWE-based Lightweight PQC	6

Full Paper

A Deep-Learning Data-Driven Approach for Reducing FPGA Routing Runtimes	•
A Tenant Side Compilation Solution for Cloud FPGA Deployment	
GRAFT: GNN-Based Adaptive Framework for Efficient CGRA Mapping	

BSTMSM: A High-Performance FPGA-Based Multi-Scalar Multiplication Hardware Accelerator 35 Baoze Zhao (Sun Yat-sen University, China), Wenjin Huang (Sun Yat-sen University, China), Tianrui Li (Sun Yat-sen University, China), and Yihua Huang (Sun Yat-sen University, China; Southern Marine Science and Engineering Guangdong Laboratory, China)
 FPGA-Accelerated Quantum Transport Measurements
An Efficient Dataflow for Convolutional Generative Models
PolyLUT: Learning Piecewise Polynomials for Ultra-Low Latency FPGA LUT-Based Inference 60 Marta Andronic (Imperial College London, UK) and George A. Constantinides (Imperial College London, UK)
M4BRAM: Mixed-Precision Matrix-Matrix Multiplication in FPGA Block RAMs
VIB: A Versatile Interconnection Block for FPGA Routing Architecture
AUGER: A Multi-Objective Design Space Exploration Framework for CGRAs
 MaxEVA: Maximizing the Efficiency of Matrix Multiplication on Versal AI Engine
HGBO-DSE: Hierarchical GNN and Bayesian Optimization Based HLS Design Space Exploration . 106 Huizhen Kuang (Fudan University, China), Xianfeng Cao (Fudan University, China), Jingyuan Li (Fudan University, China), and Lingli Wang (Fudan University, China)
A High-Frequency Load-Store Queue with Speculative Allocations for High-Level Synthesis 115 Robert Szafarczyk (University of Glasgow, UK), Syed Waqar Nabi (University of Glasgow, UK), and Wim Vanderbauwhede (University of Glasgow, UK)
Efficient FPGA-Based Accelerator for Post-Processing in Object Detection

 Extending Data Flow Architectures for Convolutional Neural Networks to Multiple FPGAs 132 Mohamed Ibrahim (University of Toronto, Canada; Intel Corporation), Zhipeng Zhao (Carnegie Mellon University, United States), Mathew Hall (Microsoft, United States), and Vaughn Betz (University of Toronto, Canada; Vector Institute for AI)
Assuring Netlist-to-Bitstream Equivalence Using Physical Netlist Generation and Structural Comparison
Respect the Difference: Reinforcement Learning for Heterogeneous FPGA Placement
SSiMD: Supporting Six Signed Multiplications in a DSP Block for Low-Precision CNN on FPGAs. 161 Qi Liu (ZheJiang University, China), Mo Sun (ZheJiang University, China), Jie Sun (ZheJiang University, China), Liqiang Lu (ZheJiang University, China), Jieru Zhao (Shanghai Jiao Tong University), and Zeke Wang (ZheJiang University, China)
LUTNet-RC: Look-Up Tables Networks for Reservoir Computing on an FPGA
SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on FPGA Devices 179 Alexander Montgomerie-Corcoran (Imperial College London, UK), Petros Toupas (Imperial College London, UK), Zhewen Yu (Imperial College London, UK), and Christos-Savvas Bouganis (Imperial College London, UK)
Mercury: An Automated Remote Side-Channel Attack to Nvidia Deep Learning Accelerator 188 Xiaobei Yan (Nanyang Technological University, Singapore), Xiaoxuan Lou (Nanyang Technological University, Singapore), Guowen Xu (City University of Hong Kong, China), Han Qiu (Tsinghua University, China), Shangwei Guo (Chongqing University, China), Chip Hong Chang (Nanyang Technological University, Singapore), and Tianwei Zhang (Nanyang Technological University, Singapore)
Into the Third Dimension: Architecture Exploration Tools for 3D Reconfigurable 198 Acceleration Devices 198 Andrew Boutros (University of Toronto, Canada), Fatemehsadat Mahmoudi 198 (University of Toronto, Canada), Amin Mohaghegh (University of 197 Toronto, Canada), Stephen More (University of Toronto, Canada), and 198 Vaughn Betz (University of Toronto, Canada) 198
Integrated Multi-Ported Memory Distribution for Temporal-Multiplexing Workloads on FPGAs 209 Chia-Chen Yen (National Taiwan University, Taiwan), Mi-Yen Yeh (Academia Sinica, Taiwan), and Ming-Syan Chen (National Taiwan University, Taiwan)

OD-REM: On-Demand Regular Expression Matching on FPGAs for Efficient Deep Packet Inspection	. 217
Weihai Xu (Southeast University, China; Purple Mountain Laboratories, China), Zheng Zhou (Southeast University, China; Purple Mountain	217
Laboratories, China), Jin Zhang (Purple Mountain Laboratories, China),	
Yiming Jiang (National Digital Switching Engineering; Technological	
Research Center, China), and Peng Yi (National Digital Switching Engineering; Technological Research Center, China)	
Engineering, Technologicul Research Center, China)	
Short Paper	
Asymmetry in Butterfly Fat Tree FPGA NoC Dongjoon Park (University of Pennsylvania, USA), Zhijing Yao (University of Pennsylvania, USA), Yuanlong Xiao (University of Pennsylvania, USA), and André DeHon (University of Pennsylvania, USA)	227
Accelerated Real-Time Classification of Evolving Data Streams Using Adaptive Random	
Forests Frank Ridder (University of Twente, The Netherlands), Kuan-Hsun Chen	232
(University of Twente, The Netherlands), and Nikolaos Alachiotis	
(University of Twente, The Netherlands)	
SqueezeBlock: A Transparent Weight Compression Scheme for Deep Neural Networks Mo Song (The University of Hong Kong, Hong Kong), Jiajun Wu (The	238
University of Hong Kong, Hong Kong), Yuhao Ding (The University of	
Hong Kong, Hong Kong), and Hayden Kwok-Hay So (The University of Hong Kong, Hong Kong)	
Efficiently Removing Sparsity for High-Throughput Stream Processing Philippos Papaphilippou (Trinity College Dublin, Ireland; Imperial College London, UK), Zhiqiang Que (Imperial College London, UK), and Wayne Luk (Imperial College London, UK)	244
Ph.D. Forum	
Explore the Feedback Interconnects in Intra-Cluster Routing for FPGAs Kaichuang Shi (Fudan University, China), Hao Zhou (Fudan University, China), and Lingli Wang (Fudan University, China)	250
An FPGA-GPU Heterogeneous System and Implementation for On-Board Remote Sensing Data Processing	254
Tingting Qiao (Beijing Institute of Technology, China), Yu Xie	0 1
(Beijing Institute of Technology, China), He Chen (Beijing Institute	
of Technology, China), and Yizhuang Xie (Beijing Institute of Technology, China)	
An Extremely Pipelined FPGA-Based Accelerator of All Adder Neural Networks for On-Board Remote Sensing Scene Classification	258
Ning Zhang (Beijing Institute of Technology, China), Shuo Ni (Beijing	
Institute of Technology, China), Tingting Qiao (Beijing Institute of	
Technology, China), Wenchao Liu (Beijing Institute of Technology, China), and He Chen (Beijing Institute of Technology, China)	
China), what it Chen (Delphix instruce of iternology, China)	

Performance Modeling and Scalability Analysis of Stream Computing in ESSPER FPGA Clusters .. 262 Ryota Miyagi (The University of Tokyo, Japan), Ryota Yasudo (Kyoto University, Japan), Kentaro Sano (RIKEN, Japan), and Hideki Takase (The University of Tokyo, Japan)

Demo Night

Traffic Flow Optimization Using a Chaotic Boltzmann Machine Annealer on an FPGA	6
Kyokko: a Virtual Channel Capable Aurora 64B/66B Compatible Serial Communication 260 Controller 260 Akinobu Tomori (Kumamoto University, Japan) and Yasunori Osana 260 (Kumamoto University, Japan) 260	8
Offloading Image Recognition Processing for Care Robots to FPGA on Multi-Access Edge Computing	0
A State Vector Quantum Simulator Working on FPGAs with Extensible SATA Storage	2
 Stochastic Implementation of Simulated Quantum Annealing on PYNQ	4

Poster

An FPGA-Based Mix-Grained Sparse Training Accelerator
DSLUT: An Asymmetric LUT and its Automatic Design Flow Based on Practical Functions 278 Moucheng Yang (State Key Laboratory of ASIC and System, Fudan University, Shanghai, China), Kaixiang Zhu (State Key Laboratory of ASIC and System, Fudan University, Shanghai, China), Lingli Wang (State Key Laboratory of ASIC and System, Fudan University, Shanghai, China), and Xuegong Zhou (Institute of Big Data, Fudan University, Shanghai, China)
F-TFM: Accelerating Total Focusing Method for Ultrasonic Array Imaging on FPGA

University, China), and Guojie Luo (Peking University, China)

FPGA Resource-Aware Structured Pruning for Real-Time Neural Networks 282 Benjamin Ramhorst (Imperial College London, United Kingdom), Vladimir 282 Lončar (Massachusetts Institute of Technology, United States of America), and George A. Constantinides (Imperial College London, United Kingdom) United Kingdom) United Kingdom)
 UAV Swarm Planning Accelerator on FPGA with low Latency and Fixed-Point L-BFGS Quasi-Newton Solver
FPGA Framework Improvements for HPC Applications
Enormous-Scale Quantum State Vector Calculation with FPGA-Accelerated SATA Storages
Introducing the NAIL Accelerator Interface Layer for Low Latency FPGA Offload
Towards Asynchronously Triggered Spiking Neural Network on FPGA for Event-Based Vision 292 Zhenyu Wu (The University of Hong Kong, Hong Kong), Mo Song (The University of Hong Kong, Hong Kong), and Hayden Kwok-Hay So (The University of Hong Kong, Hong Kong)
 AMG: Automated Efficient Approximate Multiplier Generator for FPGAs via Bayesian Optimization
 E^2-ACE: An Energy-Efficient Reconfigurable Crypto-Accelerator with Agile End-to-End Toolchain

A Dynamic Partial Reconfigurable CGRA Framework for Multi-Kernel Applications Qilong Zhu (Fudan University, China), Yuhang Cao (Fudan University, China), Yunhui Qiu (Fudan University, China), Xuchen Gao (Fudan University, China), Wenbo Yin (Fudan University, China), and Lingli Wang (Fudan University, China)	298
DiffLo: A Graph-Based Method for Functional Discrepancy Localization in High-Level	300
OpenTitan Based Multi-Level Security in FPGA System-on-Chips Sujan Kumar Saha (University of Florida, Gainesville), Abigail N. Butka (University of Florida, Gainesville), Muhammed Kawser Ahmed (University of Florida, Gainesville), and Christophe Bobda (University of Florida, Gainesville)	302
Author Index	305