79th Annual Eastern Snow Conference 2023

Easton, Pennsylvania, USA 6-8 June 2023

ISBN: 978-1-7138-8910-6

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright[©] (2023) by Eastern Snow Conference All rights reserved.

Printed with permission by Curran Associates, Inc. (2024)

For permission requests, please contact Eastern Snow Conference at the address below.

Eastern Snow Conference C/O Dr. Krystopher Chutko 117 Science Pl-Dept. Geography Saskatoon, Sk, Canada S7N 5C8

https://www.easternsnow.org/

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

CONTENTS

Dedication	iii
Table of Contents	v
Foreward	xi
Statement of Purpose	xiii
Executives for the 79th Eastern Snow Conference	xv
President's Page	xvii
Life Members	xix
Awards	xxi
Oral Session #1	
Eastern Snow Conference 2020-2022: The Virtual Years KRYSTOPHER CHUTKO	3
NASA SnowEx 2023 Tundra and Boreal Field Campaign in Alaska, U.S. CARRIE VUYOVICH, SVETLANA STUEFFER, HANS PETER MARSHALL, MICHAEL DURAND, KELLY ELDER, DRAGOS VAS, BATUHAN OSMANOGLU, CHRISTOPHER LARSEN, DANIEL HODKINSON, KELLY GLEASON, ANNE NOLIN, MEGAN MASON, ARTHUR GELVIN, AND ELIAS DEEB	4
Application of a Deep Learning Nested U-Net for Reflectivity Inpainting in Spaceborne Radar Blind- Zones	6
FRASER KING, CLAIRE PETTERSEN, AND CHRISTOPHER FLETCHER	
Modelling and Analysis of Cross-Polarized Radar Backscatter at C, X, and Ku Bands for SWE Retrieval Algorithm FIROZ BORAH, ZHENMING HUANG, LEUNG TSANG, AND EDWARD KIM	7
Spatiotemporal Prediction of Snow Accumulation with Recurrent Graph Convolutional Networks BENJAMIN ZALATAN AND MARYAM RAHNEMOONFAR	8
Influence of Snow Capture by Forest Canopy for a Seasonal Snowpack in the Adirondack Mountains, NY MADISON WOODLEY, HEATHER GUNN, AND SAMUEL TUTTLE	9

Poster Session #1

Retrieving Snow Density from Ground-Based Radar and Airborne Lidar Observations and Spatial13Prediction for Distributed Snow Water Equivalent in Sub-Alpine Mountain Environments13TATE MEEHAN, SHAD O'NEEL, HP MARSHALL, ELIAS DEEB, AHMAD HOJATIMALEKSHAH,24ZACHARY KESKINEN, AND BRENT WILDER13

Implementation and Field Validation of a Passive Radioisotope SWE Sensor in the Catskill Mountains, NY DAVID KELLEY	15
Bulk Snow Density Retrievals from Passive Microwave Remote Sensing and Automatic Weather Stations in a Tundra Environment JEFFREY WELCH AND RICHARD KELLY	16
Post Processing Techniques for better Surface Density Estimates for use in Wildlife Tracking Applications <i>JACK DECHOW, MICHAEL DURAND, LAURA PRUGH, JESSICA LUNDQUIST, BEN SULLENDER,</i> <i>CALLUM CUNNINGHAM, CASSIE LUMBRAZO, AND KATHERINE BREEN</i>	17
Passive Microwave Remote Sensing of Snowmelt and Freeze/Thaw in the Kuparuk Basin, Alaska, using Calibrated Enhanced-Resolution Brightness Temperature (CETB) from SSMI/S and SMAP VICKI JAGDEO, JOAN RAMAGE, MAHBOUBEH BOUESHAGH, AND MARY BRODZIK	18
Comparing Active and Passive Observations of Snowmelt Refreeze in the Sierra Nevada GEORGE DUFFY, SAM TUTTLE, CARRIE VUYOVICH, ELIAS DEEB, AND ANGELA RIENZO	19
Altimetric Ku-band Radar Observations of Snow on Sea Ice Simulated with SMRT JULIEN MELOCHE, MELODY SANDELLS, HENNING LÖWE, NICK RUTTER, GHISLAIN PICARD, RANDY SCHARIEN, JOHN YACKEL, AND ALEXANDRE LANGLOIS	20

Oral Session #2

Examination of Microwave Backscatter of Freshwater Lake Ice using Polarimetric Decomposition CONNOR MCRAE-PHARO AND GRANT GUNN	23
Remote Sensing and Cloud Computing: Determining Lake Ice Phenology using Google Earth Engine and Sentinel-1 SAR Imagery BRENDAN WARK AND GRANT GUNN	24
Monitoring Lake Ice Thickness Changes using Interferometric SAR JAKE FERGUSON AND GRANT GUNN	25
Snow Depth Mapping on Canada's Sub-Arctic Lakes ALICIA POUW, ALEX MACLEAN, AND HOMA KHEYROLLAH POUR	26

Oral Session #3

's all about Timing: Exploring the Relationship between Snowmelt and Caribou (<i>Rangifer</i>	wmelt and Caribou (<i>Rangifer</i> 29
tarandus) Migration in the Northwest Territories of Canada	
MARIAH MATIAS, JOAN RAMAGE, AND MARY BRODZIK	

SWE Retrieval Algorithm Advances using X- and Ku-band Radar EDWARD KIM, FIROZ BORAH, LEUNG TSANG, AND DK KANG	31
Using ICESat-2 Altimetry to Derive Snow Depth over the Boreal Forests and Tundra of Alaska in Support of the SnowEx 2022/2023 Campaign ZACHARY FAIR, CARRIE VUYOVICH, AND TOM NEUMANN	32
Verification and Analysis of the NOASS/NWS Baltimore/Washington Weather Forecast Office Winter Storm Threat Experimental Product CONNOR BELAK AND BRIAN LASORSA	33
Characteristics of Extreme Daily Snowfall Events near Arctic Coastal Regions <i>ALEKSANDRA ELIAS CHEREQUE, PAUL KUSHNER, LAWRENCE MUDRYK, AND CHRIS DERKSEN</i>	34
Poster Session #2	
Daily Continental Scale Snow Water Equivalent Data for North America <i>BIDHYANANDA YADAV, MICHAEL DURAND, JACK DECHOW, SUJAY KUMAR, AND MELISSA</i> <i>WRZESIEN</i>	37
The Application of Disdrometers and Present Weather Detectors to Improve the Automated Measurement of Solid Precipitation CRAIG SMITH AND AMBER ROSS	38
Detecting Snow in Western New York and Eastern California using Sentinel-1a SAR and VIS/NIR Snow-Cover Maps DOROTHY HALL, NICOLO DIGIROLAMO, AND GEORGE RIGGS	39
Retrieval of Snowpack Density and Ice Grain Radius from Time-Domain Diffuse Optical Measurements <i>CONNOR HENLEY, JOSEPH HOLLMANN, COLIN MEYER, AND RAMESH RASKAR</i>	52
MODIS-VIIRS Snow Cover Extent Data Product Continuity GEORGE RIGGS AND DOROTHY HALL	53
Interpreting Cosmic Ray Neutron-Based Snow Water Equivalent Estimates from Heterogenous Snow Distributions HAEJO KIM, MADISON WOODLEY, ERIC SPROLES, JED EBERLY, AND SAM TUTTLE	62
Ku- and L-band SAR Observations of Terrestrial Seasonal Snow and Lake Ice in Ontario during Winter 2023 using the CryoSAR Airborne System RICHARD KELLY, AARON THOMPSON, PETER TOOSE, CHRIS DERKSEN, ALEX ROY, LAURA BROWN, ALEX LANGLOIS, AARON BERG, ARVIDS SILIS, WEI WANG, ZEINAB AKHAVAN, JEFF WELCH, LINA ZSCHENDERLEIN, AND ALEX GELINAS	63
SWE Impact Index: Toward Identifying Critical Regions with SWE Observational Needs EUNSANG CHO, CARRIE VUYOVICH, SUJAY KUMAR, ETHAN GUTMANN, BATUHAN OSMANOGLU, JAIME BARDAJI, PAUL GROGAN, AND KWO-SEN KUO	64

Bias Correction of an Ensemble Mean Reanalysis-Based Permafrost Soil Temperature Product using	65
Snow Cover and Vegetation	
TYLER HERRINGTON, ANDRE ERLER, AND CHRISTOPHER FLETCHER	
Refining and Automating DAV Snow Melt Algorithms using Passive Microwave Calibrated	66
Enhanced-Resolution Brightness Temperature (CETB) Data in Alaska Watersheds	
MAHBOUBEH BOUESHAGH, JOAN RAMAGE, VICKI JAGDEO, AND MARY BRODZIK	
Comparing Passive Microwave Snowmelt Detection Methods using Ground-Based Snowmelt Observations	67
ANGELA RIENZO, SAMUEL TUTTLE, GEORGE DUFFY, ELIAS DEEB, AND CARRIE VUYOVICH	
Multidisciplinary Observatory for Arctic Climate Change and Extreme Events Monitoring	68

Oral Session #4

How Representative are Low Resolution Sea Ice Concentration Products of Conditions at Coastal Sites along the Central Western Antarctic Peninsula? ANDREW KLEIN, CARLY CASPER, JESSICA FITZSIMMONS, DARREN HENRICHS, CHARLES AMSLER, MARGARET ANSLER, KATRIN IKEN, AARON GALLOWAY, SABRINA HEISER, ALEX LOWN JULIE SCHRAM, AND ROSS WHIPPO	71
Validation of Snow Water Equivalent Products: Dialed in for Non-Mountainous Regions but Challenges Remain in Complex Terrain COLLEEN MORTIMER, LAWRENCE MUDRYK, EUNSANG CHO, CHRIS DERKSEN, AND CARRIE VUYOVICH	72
Assimilation of Airborne Gamma-Ray Observations Provides Utility for SWE Estimation in Forested Environments of the Northeastern United States EUNSANG CHO, YONGHWAN KWON, SUJAY KUMAR, AND CARRIE VUYOVICH	73
Improving our Understanding of ICESat-2 Ice Thickness Estimates in the Canadian Arctic Archipelago using <i>in situ</i> and Drone Measurements PETER TOOSE, JOSHUA KING, MIKE BRADY, COLLEEN MORTIMER, BENOIT MONTPETIT, CHRIS DERKSEN, STEPHEN HOWELL, AND ARVIDS SILIS	74
Ruminations of Machine Learning and Snow Mass BARTON FORMAN, GOUTAM KONAPALA, AND SUJAY KUMAR	75
Snow Water Equivalence and Stratigraphy Records from White Glacier, Axel Heiberg Island, Nunavut: 1959-2023	76

LAURA THOMSON AND MILES ECCLESTONE

(MOACC) DANIEL KRAMER

Oral Session #5

Using Lakes as Snow Pillows: Monitoring Snowfall from Lake Water Pressure in the Adirondack Mountains, NY SAMUEL TUTTLE, COLIN BEIER, JAMES MILLS, AND HAMISH PRITCHARD	79
Comparative Analysis of NOAA and NASA Snow Cover Extent Products DAVID ROBINSON, THOMAS ESTILOW, DOROTHY HALL, AND GEORGE RIGGS	80
Evolution of Global Snow Cover – Analysis of 23 Years of DLR's Global SnowPack and Latest Processor Developments SEBASTIAN RÖßLER AND ANDREAS DIETZ	94
Characteristics of the Vermont Snowpack <i>KATHERINE HALE, ANNA GRUNES, BEVERLEY WEMPLE, ARNE BOMBLIES, JAMES SHANLEY,</i> <i>AND ANDREW SCHROTH</i>	95
Canadian Snow Radar Satellite Mission Science Readiness Advancements BENOIT MONTPETIT, JOSHUA KING, CHRIS DERKSEN, RICHARD KELLY, PAUL SIQUEIRA, PETER TOOSE, AARON THOMPSON, ALEXANDRE ROY, ALEXANDRE LANGLOIS, JULIEN MELOCHE, VINCENT VIONNET, AND ANNA WENDLEDER	96
Sno-Foo Award	97