# **2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS 2023)**

Santa Cruz, California, USA 6-9 November 2023

**Pages 1-809** 



IEEE Catalog Number: CFP23053-POD **ISBN:** 

979-8-3503-1895-1

#### **Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved**

*Copyright and Reprint Permissions*: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

#### \*\*\* This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

| IEEE Catalog Number:    | CFP23053-POD      |
|-------------------------|-------------------|
| ISBN (Print-On-Demand): | 979-8-3503-1895-1 |
| ISBN (Online):          | 979-8-3503-1894-4 |
| ISSN:                   | 1523-8288         |

#### Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com



## 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) **FOCS 2023**

## **Table of Contents**

| Preface           | xx     |
|-------------------|--------|
| Organizers        |        |
| Program Committee | . xxii |

#### Session 1A

| Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz<br>Jonas Conneryd (Lund University; University of Copenhagen), Susanna F.<br>de Rezende (Lund University), Jakob Nordström (University of<br>Copenhagen; Lund University), Shuo Pang (University of Copenhagen;<br>Lund University), and Kilian Risse (EPFL) | . 1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Clique Is Hard on Average for Unary Sherali-Adams<br>Susanna F. De Rezende (Lund University, Sweden), Aaron Potechin<br>(University of Chicago, USA), and Kilian Risse (EPFL, Switzerland)                                                                                                                                                  | 12  |
| On Lifting Integrality Gaps to SSEH Hardness for Globally Constrained CSPs<br>Suprovat Ghoshal (Northwestern University & TTIC, USA) and Euiwoong<br>Lee (University of Michigan, USA)                                                                                                                                                      | 26  |
| On Small-Depth Frege Proofs for PHP<br>Johan Håstad (KTH Royal Institute of Technology, Sweden)                                                                                                                                                                                                                                             | 37  |

#### Session 1B

| Thin Trees for Laminar Families                                        | 50 |
|------------------------------------------------------------------------|----|
| One Tree to Rule Them All: Poly-Logarithmic Universal Steiner Tree     | 60 |
| Costas Busch (Augusta University, USA), Da Qi Chen (University of      |    |
| Virginia, USA), Arnold Filtser (Bar-Ilan University, Israel), Daniel   |    |
| Hathcock (Carnegie Mellon University, USA), D Ellis Hershkowitz (Brown |    |
| University, Rhode Island; ETH Zürich, Switzerland), and Rajmohan       |    |
| Rajaraman (Northeastern University, USA)                               |    |

| Optimal Fault-Tolerant Spanners in Euclidean and Doubling Metrics: Breaking the Ω (log n)         Lightness Barrier         Hung Le (University of Massachusetts at Amherst, USA), Shay Solomon | 7 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (Tel-Aviv University, Israel), and Cuong Than (University of<br>Massachusetts at Amherst, USA)                                                                                                  |   |
| Sub-quadratic \$(1+\eps)\$-approximate Euclidean Spanners, with Applications                                                                                                                    | 3 |
| Session 1C                                                                                                                                                                                      |   |
| Envy-Free Cake-Cutting for Four Agents                                                                                                                                                          | 3 |
| Convergence of Approximate and Packet Routing Equilibria to Nash Flows Over Time                                                                                                                | 3 |
| Simultaneous Auctions are Approximately Revenue-Optimal for Subadditive Bidders                                                                                                                 | 1 |
| Constant Approximation for Private Interdependent Valuations                                                                                                                                    | 3 |

## Session 2A

| Randomly Punctured Reed–Solomon Codes Achieve the List Decoding Capacity over<br>Polynomial-Size Alphabets                                                                                  | 164 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A Proof that Reed-Muller Codes Achieve Shannon Capacity on Symmetric Channels<br>Emmanuel Abbe (EPFL) and Colin Sandon (EPFL)                                                               | 177 |
| Gilbert and Varshamov Meet Johnson: List-Decoding Explicit Nearly-Optimal Binary Codes<br>Silas Richelson (University of California, USA) and Sourya Roy<br>(University of California, USA) | 194 |
| Optimal Testing of Generalized Reed-Muller Codes in Fewer Queries<br>Dor Minzer (Massachusetts Institute of Technology, USA) and Kai Zheng<br>(Massachusetts Institute of Technology, USA)  | 206 |

## Session 2B

| Separating MAX 2-AND, MAX DI-CUT and MAX CUT                                       | 234 |
|------------------------------------------------------------------------------------|-----|
| Triplet Reconstruction and all Other Phylogenetic CSPs are Approximation Resistant | 253 |
| Improved Hardness of Approximating k-Clique Under ETH                              | 285 |
| Efficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold       | 307 |

## Session 2C

| The Minimal Canonical form of a Tensor Network       32         Arturo Acuaviva (Universidad Complutense de Madrid, Spain), Visu Makam       32         (Radix Trading Europe B.V., The Netherlands), Harold Nieuwboer       (University of Amsterdam, The Netherlands), David Pérez-García         (Universidad Complutense de Madrid, Spain), Friedrich Sittner       (Universidad Complutense de Madrid, Spain), Friedrich Sittner         (Universidad Complutense de Madrid, Spain), Michael Walter (Ruhr       University Bochum, Germany), and Freek Witteveen (University of Copenhagen, Denmark) | 28 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Query-Optimal Estimation of Unitary Channels in Diamond Distance</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63 |
| <ul> <li>When Does Adaptivity Help for Quantum State Learning?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91 |
| <ul> <li>Exponential Quantum Speedup in Simulating Coupled Classical Oscillators</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 |

## Session 3A

| Attribute-Based Encryption for Circuits of Unbounded Depth fi   | rom Lattices 415 |
|-----------------------------------------------------------------|------------------|
| Yao-Ching Hsieh (Üniversity of Washington, USA), Huijia Lin     |                  |
| (University of Washington, USA), and Ji Luo (University of Wash | shington,        |
| USA)                                                            | -                |

| ABE for Circuits with Poly(\lambda)-Sized Keys from LWE                                                                                                                                                                                                                                                             | 5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Learning in Pessiland via Inductive Inference                                                                                                                                                                                                                                                                       | 7 |
| <ul> <li>Kolmogorov Comes to Cryptomania: On Interactive Kolmogorov Complexity and Key-Agreement</li> <li>458</li> <li>Marshall Ball (New York University, USA), Yanyi Liu (Cornell Tech,<br/>USA), Noam Mazor (Cornell Tech, USA), and Rafael Pass (Tel Aviv<br/>University, Israel; Cornell Tech, USA)</li> </ul> |   |

#### Session 3B

| A Randomized Algorithm for Single-Source Shortest Path on Undirected Real-Weighted Graphs 484<br>Ran Duan (Tsinghua University, China), Jiayi Mao (Tsinghua University,<br>China), Xinkai Shu (The University of Hong Kong, China), and Longhui<br>Yin (Tsinghua University, China) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Faster High Accuracy Multi-Commodity Flow from Single-Commodity Techniques493Jan van den Brand (Georgia Institute of Technology, USA) and Daniel J.Zhang (Georgia Institute of Technology, USA)                                                                                     |
| A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow                                                                                                                                                                                                                  |
| Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!                                                                                                                                                                                                       |
| Session 4A                                                                                                                                                                                                                                                                          |

| Advisor-Verifier-Prover Games and the Hardness of Information Theoretic Cryptography<br>Benny Applebaum (Tel Aviv University, Israel) and Oded Nir (Tel Aviv<br>University, Israel)                                                                       | 539 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| On Pseudolinear Codes for Correcting Adversarial Errors<br>Eric Ruzomberka (Princeton University, USA), Homa Nikbakht (Princeton<br>University, USA), Christopher G. Brinton (Purdue University, USA), and<br>H. Vincent Poor (Princeton University, USA) | 556 |
| A New Approach to Post-Quantum Non-Malleability<br>Xiao Liang (NTT Research, USA), Omkant Pandey (Stony Brook University,<br>USA), and Takashi Yamakawa (NTT, Japan)                                                                                      | 568 |

| Towards Separating Computational and Statistical Differential Privacy |  |
|-----------------------------------------------------------------------|--|
| Badih Ghazi (Google Research), Rahul Ilango (MIT), Pritish Kamath     |  |
| (Google Research), Ravi Kumar (Google Research), and Pasin Manurangsi |  |
| (Google Research)                                                     |  |
|                                                                       |  |

## Session 4B

| Bridge Girth: A Unifying Notion in Network Design<br>Greg Bodwin (University of Michigan, USA), Gary Hoppenworth<br>(University of Michigan, USA), and Ohad Trabelsi (Toyota Technological<br>Institute at Chicago, USA) | 600 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Planar Disjoint Paths, Treewidth, and Kernels<br>Michał Włodarczyk (Ben-Gurion University of the Negev, Israel) and<br>Meirav Zehavi (Ben-Gurion University of the Negev, Israel)                                        | 649 |
| Flip-Width: Cops and Robber on Dense Graphs<br>Szymon Toruńczyk (University of Warsaw, Poland)                                                                                                                           | 663 |
| Folklore Sampling is Optimal for Exact Hopsets: Confirming the \$\sqrt{n}\$ Barrier<br>Greg Bodwin (University of Michigan) and Gary Hoppenworth (University<br>of Michigan)                                             | 701 |

## Session 5A

| Fourier Growth of Communication Protocols for XOR Functions<br>Uma Girish (Princeton University, USA), Makrand Sinha (University of<br>Illinois at Urbana-Champaign, USA), Avishay Tal (University of<br>California at Berkeley, USA), and Kewen Wu (University of California<br>at Berkeley, USA) | 721 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SAT Reduces to the Minimum Circuit Size Problem with a Random Oracle                                                                                                                                                                                                                               | 733 |
| Doubley-Efficient Interactive Proofs for Distribution Properties                                                                                                                                                                                                                                   | 743 |
| IOPs with Inverse Polynomial Soundness Error                                                                                                                                                                                                                                                       | 752 |

## Session 5B

| Lipschitz Continuous Algorithms for Graph Problems                                                           | .762 |
|--------------------------------------------------------------------------------------------------------------|------|
| Soh Kumabe (The University of Tokyo, Japan) and Yuichi Yoshida<br>(National Institute of Informatics, Japan) |      |
| (National Institute of Informatics, Japan)                                                                   |      |
| Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements                                 | 798  |
| Martin Grohe (RWTH Aachen University, Germany), Moritz Lichter (RWTH                                         |      |
| Aachen University, Germany), Daniel Neuen (University of Bremen,                                             |      |
| Germany), and Pascal Schweitzer (TU Darmstadt, Germany)                                                      |      |

| Strong Spatial Mixing for Colorings on Trees and its Algorithmic Applications                                              | 1 |
|----------------------------------------------------------------------------------------------------------------------------|---|
| Singular Value Approximation and Sparsifying Random Walks on Directed Graphs                                               | ì |
| Session 5C                                                                                                                 |   |
| Improved Streaming Algorithms for Maximum Directed Cut via Smoothed Snapshots                                              | , |
| Streaming Lower Bounds and Asymmetric Set-Disjointness                                                                     |   |
| Streaming Euclidean k-Median and k-Means with o(log n) Space                                                               | ; |
| <ul> <li>Hidden Permutations to the Rescue: Multi-Pass Streaming Lower Bounds for Approximate</li> <li>Matchings</li></ul> | ) |

## Best Paper Talks

| Strong Bounds for 3-Progressions<br>Zander Kelley (University of Illinois Urbana-Champaign) and Raghu Meka<br>(University of California)                              | 933 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The Subspace Flatness Conjecture and Faster Integer Programming<br>Victor Reis (University of Washington, USA) and Thomas Rothvoss<br>(University of Washington, USA) | 974 |

## Session 6A

| Certified Hardness vs. Randomness for Log-Space<br>Edward Pyne (MIT, USA), Ran Raz (Princeton, USA), and Wei Zhan<br>(Princeton, USA)                                                                                                                                 | 989 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Derandomization vs Refutation: A Unified Framework for Characterizing Derandomization 10<br>Lijie Chen (University of California, Berkeley, USA), Roei Tell (The<br>University of Toronto, Canada), and Ryan Williams (Massachusetts<br>Institute of Technology, USA) | )08 |

| Top-Down Lower Bounds for Depth-Four Circuits1048Mika Göös (EPFL, Switzerland), Artur Riazanov (EPFL, Switzerland),1048Anastasia Sofronova (EPFL, Switzerland), and Dmitry Sokolov (EPFL,<br>Switzerland)1048                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toward Better Depth Lower Bounds: A KRW-Like Theorem for Strong Composition                                                                                                                                                                                              |
| Session 6B                                                                                                                                                                                                                                                               |
| Handling Correlated Rounding Error via Preclustering: A 1.73-Approximation for Correlation<br>Clustering                                                                                                                                                                 |
| Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation 1105<br>Vincent Cohen-Addad (Google Research, France), David Saulpic<br>(Institute of Science and Technology Austria, Austria), and Chris<br>Schwiegelshohn (Aarhus University, Denmark) |
| The Price of Explainability for Clustering1131Anupam Gupta (Carnegie Mellon University), Madhusudhan Reddy Pittu<br>(Carnegie Mellon University), Ola Svensson (EPFL), and Rachel Yuan<br>(Carnegie Mellon University)                                                   |

## Session 6C

| Agnostic proper learning of monotone functions: beyond the black-box correction barrier                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Near Optimal Memory-Regret Tradeoff for Online Learning 1171<br>Binghui Peng (Columbia University, USA) and Aviad Rubinstein (Stanford<br>University, USA) |  |
| Tight Time-Space Lower Bounds for Constant-Pass Learning                                                                                                   |  |
| Optimal PAC Bounds Without Uniform Convergence                                                                                                             |  |

## Session 7A

| <ul> <li>Weighted Pseudorandom Generators via Inverse Analysis of Random Walks and Shortcutting 1<br/>Lijie Chen (Miller Institute for Basic Research in Science, University<br/>of California, Berkeley, USA), William M. Hoza (University of Chicago,<br/>USA), Xin Lyu (University of California, Berkeley, USA), Avishay Tal<br/>(University of California, Berkeley, USA), and Hongxun Wu (University<br/>of California, Berkeley, USA)</li> </ul> | 224  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>Explicit Orthogonal and Unitary Designs</li></ul>                                                                                                                                                                                                                                                                                                                                                                                              | 1240 |
| Polynomial-Time Pseudodeterministic Construction of Primes                                                                                                                                                                                                                                                                                                                                                                                              | 1261 |
| Two Source Extractors for Asymptotically Optimal Entropy, and (Many) More                                                                                                                                                                                                                                                                                                                                                                               | 271  |

### Session 7B

| Traversing Combinatorial 0/1-Polytopes via Optimization<br>Arturo Merino (TU Berlin, Germany) and Torsten Mütze (University of<br>Warwick, United Kingdom) | 1282 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| The Vector Balancing Constant for Zonotopes                                                                                                                | 1292 |
| Rainie Bozzai (University of Washington, USA), Victor Reis (University                                                                                     |      |
| of Washington, USA), and Thomas Rothvoss (University of Washington,                                                                                        |      |
| USA)                                                                                                                                                       |      |
| A Deterministic Near-Linear Time Approximation Scheme for Geometric Transportation                                                                         | 1301 |
| Emily Fox (The University of Texas at Dallas) and Jiashuai Lu (The                                                                                         |      |
| University of Texas at Dallas)                                                                                                                             |      |

## Session 8A

| Computing Linear Sections of Varieties: Quantum Entanglement, Tensor Decompositions and<br>Beyond                                                                                                                 | 1316 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Parallel Repetition for the GHZ Game: Exponential Decay<br>Mark Braverman (Princeton University, USA), Subhash Khot (New York<br>University, USA), and Dor Minzer (Massachusetts Institute of<br>Technology, USA) | 1337 |
| Bounding the Quantum Value of Compiled Nonlocal Games: From CHSH to BQP Verification?<br>Anand Natarajan (MIT, USA) and Tina Zhang (MIT, USA)                                                                     | 1342 |
| stateQIP = Statepspace<br>Tony Metger (ETH Zurich, Switzerland) and Henry Yuen (Columbia<br>University, USA)                                                                                                      | 1349 |

## Session 8B

| Constant-Factor Approximation Algorithms for Convex Cover and Hidden Set in a Simple<br>Polygon |
|-------------------------------------------------------------------------------------------------|
| Improved Approximations for Vector Bin Packing via Iterative Randomized Rounding                |
| Parameterized Approximation Schemes for Clustering with General Norm Objectives                 |
| Memory-Query Tradeoffs for Randomized Convex Optimization                                       |
| Session 8C                                                                                      |
| Quartic Samples Suffice for Fourier Interpolation                                               |

| Science), Omri Weinstein (The Hebrew University and Columbia<br>University), and Ruizhe Zhang (Simons Institute) |    |
|------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Fast Numerical Multivariate Multipoint Evaluation</li></ul>                                             | .6 |
| Locally Uniform Hashing                                                                                          | 0  |
| Generalizations of Matrix Multiplication can Solve the Light Bulb Problem                                        | '1 |

#### Session 9A

| Tight Space Lower Bound for Pseudo-Deterministic Approximate Counting<br>Ofer Grossman (MIT, USA), Meghal Gupta (U.C. Berkeley, USA), and Mark<br>Sellke (Harvard University, USA)                                                                                            | 1496 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Extracting Randomness from Samplable Distributions, Revisited<br>Marshall Ball (NYU, USA), Eli Goldin (NYU, USA), Dana Dachman-Soled<br>(University of Maryland, USA), and Saachi Mutreja (Columbia<br>University, USA)                                                       | 1505 |
| Pseudorandom Hashing for Space-Bounded Computation with Applications in Streaming<br>Praneeth Kacham (Carnegie Mellon University), Rasmus Pagh (University<br>of Copenhagen), Mikkel Thorup (University of Copenhagen), and David P.<br>Woodruff (Carnegie Mellon University) | 1515 |
| Work-Efficient Parallel Derandomization I: Chernoff-Like Concentrations via Pairwise                                                                                                                                                                                          | 1 1  |
| Independence<br>Mohsen Ghaffari (MIT, USA), Christoph Grunau (ETH Zurich,<br>Switzerland), and Václav Rozhoň (ETH Zurich, Switzerland)                                                                                                                                        | 1551 |
| Session 9B                                                                                                                                                                                                                                                                    |      |
| Dynamic (1+epsilon)-Approximate Matching Size in Truly Sublinear Update Time<br>Sayan Bhattacharya (University of Warwick, United Kingdom), Peter Kiss<br>(University of Warwick, United Kingdom), and Thatchaphol Saranurak<br>(University of Michigan, USA)                 | 1563 |
| Super-Logarithmic Lower Bounds for Dynamic Graph Problems<br>Kasper Green Larsen (Aarhus University, Denmark) and Huacheng Yu<br>(Princeton University, USA)                                                                                                                  | 1589 |
| The Complexity of Dynamic Least-Squares Regression<br>Shunhua Jiang (Columbia University, USA), Binghui Peng (Columbia<br>University, USA), and Omri Weinstein (The Hebrew University and<br>Columbia University, Israel)                                                     | 1605 |
| Approximating Edit Distance in the Fully Dynamic Model<br>Tomasz Kociumaka (Max Planck Institute for Informatics, Saarland<br>Informatics Campus, Germany), Anish Mukherjee (University of Warwick,<br>UK), and Barna Saha (University of California, USA)                    | 1628 |
| Session 10A                                                                                                                                                                                                                                                                   |      |
| From Grassmannian to Simplicial High-Dimensional Expanders<br>Louis Golowich (University of California, USA)                                                                                                                                                                  | 1639 |
| HDX Condensers                                                                                                                                                                                                                                                                | 1649 |
| Itay Cohen (Tel Aviv University), Roy Roth (Tel Aviv University), and                                                                                                                                                                                                         |      |

#### Session 10B

| Chasing Positive Bodies<br>Sayan Bhattacharya (University of Warwick, UK), Niv Buchbinder (Tel<br>Aviv University, UK), Roie Levin (Tel Aviv University, Israel), and<br>Thatchaphol Saranurak (University of Michigan, USA)                                                       | 1694 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Dynamic "Succincter"<br>Tianxiao Li (Tsinghua University, China), Jingxun Liang (Tsinghua<br>University, China), Huacheng Yu (Princeton University, USA), and<br>Renfei Zhou (Tsinghua University, China)                                                                          | 1715 |
| Dynamic Treewidth<br>Tuukka Korhonen (University of Bergen, Norway), Konrad Majewski<br>(University of Warsaw, Norway), Wojciech Nadara (University of Warsaw,<br>Norway), Michał Pilipczuk (University of Warsaw, Norway), and Marek<br>Sokołowski (University of Warsaw, Norway) | 1734 |
| Sensitivity and Dynamic Distance Oracles via Generic Matrices and Frobenius Form<br>Adam Karczmarz (University of Warsaw and IDEAS NCBR, Poland) and Piotr<br>Sankowski (University of Warsaw, IDEAS NCBR, and MIM Solutions,<br>Poland)                                           | 1745 |

#### Session 11A

| A Strong Composition Theorem for Junta Complexity and the Boosting of Property Testers                                                                                                                                                                                          | 7 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| New Lower Bounds for Adaptive Tolerant Junta Testing                                                                                                                                                                                                                            | 8 |
| Testing Graph Properties with the Container Method       178         Eric Blais (University of Waterloo, Canada) and Cameron Seth       (University of Waterloo, Canada)                                                                                                        | 7 |
| A d^{1/2+o(1)} Monotonicity Tester for Boolean Functions on \$d\$-Dimensional Hypergrids* 1790<br>Hadley Black (University of California, Los Angeles, USA), Deeparnab<br>Chakrabarty (Dartmouth College, USA), and C. Seshadhri (University of<br>California, Santa Cruz, USA) | 6 |

#### Session 11B

| Strongly History-Independent Storage Allocation: New Upper and Lower Bounds | 1822 |
|-----------------------------------------------------------------------------|------|
| William Kuszmaul (Harvard University, USA)                                  |      |

| Tight Cell-Probe Lower Bounds for Dynamic Succinct Dictionaries<br>Tianxiao Li (Tsinghua University, China), Jingxun Liang (Tsinghua<br>University, China), Huacheng Yu (Princeton University, USA), and<br>Renfei Zhou (Tsinghua University, China) | . 1842 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Online Ordinal Problems: Optimality of Comparison-Based Algorithms and Their Cardinal Complexity                                                                                                                                                     | . 1863 |
| Nikolai Gravin (Shanghai University of Finance and Economics), Enze<br>Sun (The University of Hong Kong), and Zhihao Gavin Tang (Shanghai<br>University of Finance and Economics)                                                                    |        |
| Collapsing the Hierarchy of Compressed Data Structures: Suffix Arrays in Optimal<br>Compressed Space                                                                                                                                                 | 1877   |
| Dominik Kempa (Stony Brook University, USA) and Tomasz Kociumaka (Max<br>Planck Institute for Informatics, Saarland Informatics Campus,                                                                                                              |        |
| Germany)                                                                                                                                                                                                                                             |        |

## Session 11C

| Canonical Decompositions of 3-Connected Graphs<br>Johannes Carmesin (University of Birmingham, UK) and Jan Kurkofka<br>(University of Birmingham, UK)                                                                                                                   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Proof of the Clustered Hadwiger Conjecture<br>Vida Dujmović (University of Ottawa, Canada), Louis Esperet<br>(Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), France), Pat Morin<br>(Carleton University, Canada), and David R. Wood (Monash University,<br>Australia) | 1921 |
| Slicing all Edges of an n-Cube Requires n^2/3 Hyperplanes<br>Ohad Klein (Hebrew University, Israel)                                                                                                                                                                     |      |
| Directed Acyclic Outerplanar Graphs Have Constant Stack Number<br>Paul Jungeblut (Karlsruhe Institute of Technology, Germany), Laura<br>Merker (Karlsruhe Institute of Technology, Germany), and Torsten<br>Ueckerdt (Karlsruhe Institute of Technology, Germany)       |      |

## Session 12A

| Sparsifying Sums of Norms                                                       | 1953 |
|---------------------------------------------------------------------------------|------|
| Towards Derandomising Markov Chain Monte Carlo                                  | .963 |
| Uniqueness and Rapid Mixing in the Bipartite Hardcore Model (extended abstract) | .991 |

#### Session 12B

| Interior-Point Methods on Manifolds: Theory and Applications  | 21 |
|---------------------------------------------------------------|----|
| ReSQueing Parallel and Private Stochastic Convex Optimization | 31 |
| The Bit Complexity of Efficient Continuous Optimization       | 59 |
| Sparse Submodular Function Minimization                       | 71 |

## Session 12C

| On Symmetric Factorizations of Hankel Matrices                 | 2081 |
|----------------------------------------------------------------|------|
| Krylov Methods are (nearly) Optimal for Low-Rank Approximation | 2093 |
| Matrix Completion in Almost-Verification Time                  | 2102 |
| Faster Matrix Multiplication via Asymmetric Hashing            | 2129 |

#### Session 13A

| Query Lower Bounds for log-Concave Sampling                          | 2139 |
|----------------------------------------------------------------------|------|
| Sínho Chewi (Institute of Advanced Study, USA), Jaume de Dios Pont   |      |
| (University of California, USA), Jerry Li (Microsoft Research, USA), |      |
| Chen Lu (Massachusetts Institute of Technology, USA), and Shyam      |      |
| Narayanan (Massachusetts Institute of Technology, USA)               |      |

| Algorithmic Decorrelation and Planted Clique in Dependent Random Graphs: The Case of Extra                                 |      |
|----------------------------------------------------------------------------------------------------------------------------|------|
| Triangles                                                                                                                  | 2149 |
| Guy Bresler (Massachusetts Institute of Technology, USA), Chenghao Guo                                                     |      |
| (Massachusetts Institute of Technology, USA), and Yury Polyanskiy                                                          |      |
| (Massachusetts Institute of Technology, USA)                                                                               |      |
| The Full Landscape of Robust Mean Testing: Sharp Separations Between Oblivious and                                         |      |
| Adaptive Contamination                                                                                                     | 2159 |
| Ĉlément Canonne (University of Sydney, Australia), Samuel B. Hopkins                                                       |      |
| (Massachusetts Institute of Technology, USA), Jerry Li (Microsoft                                                          |      |
| Research\ USA), Allen Liu (Massachusetts Institute of Technology,                                                          |      |
| USA), and Shyam Narayanan (Massachusetts Institute of Technology, USA)                                                     |      |
| Faster High-Accuracy log-Concave Sampling via Algorithmic Warm Starts<br>Jason M. Altschuler (UPenn) and Sinho Chewi (IAS) | 2169 |

## Session 13B

| <sup>A</sup> Alejandro Cassis (Saarland University and Max Planck Institute for<br>Informatics, Saarland Informatics Campus, Germany), Tomasz Kociumaka<br>(Max Planck Institute for Informatics, Saarland Informatics Campus,<br>Germany), and Philip Wellnitz (Max Planck Institute for Informatics,<br>Saarland Informatics Campus, Germany) |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Faster Algorithms for Text-to-Pattern Hamming Distances       2 <i>Timothy M. Chan (UIUC, USA), Ce Jin (MIT, USA), Virginia Vassilevska</i> 2 <i>Williams (MIT, USA), and Yinzhan Xu (MIT, USA)</i>                                                                                                                                             | 188 |
| <ul> <li>All-Pairs Max-Flow is no Harder Than Single-Pair Max-Flow: Gomory-Hu Trees in</li> <li>Almost-Linear Time</li></ul>                                                                                                                                                                                                                    | 204 |
| Why we Couldn't Prove SETH Hardness of the Closest Vector Problem for even Norms!                                                                                                                                                                                                                                                               | 213 |

#### Session 13C

| Covering Planar Metrics (and Beyond): O(1) Trees Suffice<br>Hsien-Chih Chang (Dartmouth College, USA), Jonathan Conroy (Dartmouth<br>College, USA), Hung Le (UMass Amherst, USA), Lazar Milenkovic (Tel<br>Aviv University, Israel), Shay Solomon (Tel Aviv University, Israel),<br>and Cuong Than (UMass Amherst, USA) | 2231 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Planar and Minor-Free Metrics Embed into Metrics of Polylogarithmic Treewidth with                                                                                                                                                                                                                                      |      |
| Expected Multiplicative Distortion Arbitrarily Close to 1                                                                                                                                                                                                                                                               | 2262 |
| Vincent Cohen-Addad (Google Research, France), Hung Le (University of                                                                                                                                                                                                                                                   |      |
| Massachusetts Amherst, USA), Marcin Pilipczuk (University of Warsaw,                                                                                                                                                                                                                                                    |      |
| Poland; IT University of Copenhagen, Denmark), and Michał Pilipczuk                                                                                                                                                                                                                                                     |      |
| (University of Warsaw, Poland)                                                                                                                                                                                                                                                                                          |      |

Path-Reporting Distance Oracles with Logarithmic Stretch and Size O(n log log n) ...... 2278 Michael Elkin (Ben-Gurion University of the Negev, Israel) and Idan Shabat (Ben-Gurion University of the Negev, Israel)

## Session 14A

| Deterministic Fully Dynamic SSSP and More<br>Jan van den Brand (Georgia Institute of Technology, USA) and Adam<br>Karczmarz (University of Warsaw and IDEAS NCBR, Poland)                                | 2312 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Local Computation Algorithms for Maximum Matching: New Lower Bounds<br>Soheil Behnezhad (Northeastern University), Mohammad Roghani (Stanford<br>University), and Aviad Rubinstein (Stanford University) | 2322 |
| Secure Computation Meets Distributed Universal Optimality<br>Merav Parter (Weizmann Institute, Israel)                                                                                                   | 2336 |

## Session 14B

| Distribution of the Threshold for the Symmetric Perceptron                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Properly Learning Decision Trees with Queries is NP-Hard                                                                                                                                                                                             |
| <ul> <li>Beyond Moments: Robustly Learning Affine Transformations with Asymptotically Optimal Error</li> <li>2408</li> <li>He Jia (Georgia Tech, USA), Pravesh K. Kothari (CMU, USA), and Santosh</li> <li>S. Vempala (Georgia Tech, USA)</li> </ul> |
| Stability and Replicability in Learning                                                                                                                                                                                                              |

Author Index