2023 IEEE Visualization and Visual Analytics (VIS 2023)

Melbourne, Australia 21-27 October 2023

IEEE Catalog Number: CFP23081-POD **ISBN:**

979-8-3503-2558-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP23081-POD 979-8-3503-2558-4 979-8-3503-2557-7 2771-9537

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE Visualization and Visual Analytics (VIS) **VIS 2023**

Table of Contents

Message from the VIS 2023 General Chairs	xi
VIS 2023 Conference Committee	xiii
VIS 2023 Program Committee	xvi
VIS 2023 Reviewers	xx

Best Paper

Gridded Glyphmaps for Supporting Spatial COVID-19 Modelling	1
Aidan Slingsby (University of London), Richard Reeve (University of Glasgow), and Claire Harris (James Hutton Institute)	
Glasgow), and Claire Harris (James Hutton Institute)	

Perception / Evaluation

Topological Analysis and Approximate Identification of Leading Lines in Artworks Based on Discrete Morse Theory <i>Fuminori Shibasaki (Keio University, Japan) and Issei Fujishiro (Keio</i> <i>University, Japan)</i>	6
Effects of Data Distribution and Granularity on Color Semantics for Colormap Data Visualizations	1
Let's Get Vysical: Perceptual Accuracy in Visual & Tactile Encodings	6
 MinMaxLTTB: Leveraging MinMax-Preselection to Scale LTTB	1
Do You Trust What You See? Toward A Multidimensional Measure of Trust in Visualization 2 Saugat Pandey (Washington University in St. Louis), Oen G McKinley (Washington University in St. Louis), R. Jordan Crouser (Smith College), and Alvitta Ottley (Washington University in St. Louis)	6

reVISit: Supporting Scalable Evaluation of Interactive Visualizations
 Augmented Reality as a Visualization Technique for Scholarly Publications in Astronomy: An Empirical Evaluation
Comparing Morse Complexes using Optimal Transport: An Experimental Study41 Mingzhe Li (University of Utah, USA), Carson Storm (University of Utah, USA), Austin Yang Li (University of Utah, USA), Tom Needham (Florida State University, USA), and Bei Wang (University of Utah, USA)

Layout Algorithms

Projection Ensemble: Visualizing the Robust Structures of Multidimensional Projections	46
Myeongwon Jung (Sungkyunkwan University), Jiwon Choi (Sungkyunkwan	
University), and Jaemin Jo (Sungkyunkwan University)	

Scientific Visualization

Visualizing Query Traversals Over Bounding Volume Hierarchies using Treemaps Abhishek Madan (University of Toronto) and Carolina Nobre (University of Toronto)	51
Visual Analysis of Large Multi-field AMR Data on GPUs using Interactive Volume Lines Stefan Zellmann (University of Cologne), Serkan Demirci (Bilkent University), and Uğur Güdükbay (Bilkent University)	56
Fast Fiber Line Extraction for 2D Bivariate Scalar Fields Felix Raith (Leipzig University), Baldwin Nsonga (Leipzig University), Gerik Scheuermann (Leipzig University), and Christian Heine (Leipzig University)	51
GeneticFlow: Exploring Scholar Impact with Interactive Visualization Fengli Xiao (Beihang University, China) and Lei Shi (Beihang University, China)	56
Visualizing Similarity of Pathline Dynamics in 2D Flow Fields	71

 Evaluation of Cinematic Volume Rendering Open-Source and Commercial Solutions for the Exploration of Congenital Heart Data
 ExoplanetExplorer: Contextual Visualization of Exoplanet Systems
A Visualization System for Hexahedral Mesh Quality Study

Visualization for Humanities and Social Sciences

What Exactly is an Insight? A Literature Review Leilani Battle (University of Washington) and Alvitta Ottley (Washington University in St. Louis)	91
WhaleVis: Visualizing the History of Commercial Whaling	96
Ameya Patil (University of Washington, USA), Zoe Rand (University of	
Washington, USA), Trevor Branch (University of Washington, USA), and	
Leilani Battle (University of Washington, USA)	

CoVID-19 / Bioinformatics / Visual Analytics

The Role of Visualization in Genomics Data Analysis Workflows: The Interviews	01
Vis-SPLIT: Interactive Hierarchical Modeling for mRNA Expression Classification	06
 Enabling Multimodal User Interactions for Genomics Visualization Creation	11
Simulating the Geometric Growth of the Marine Sponge Crella Incrustans	16

How "Applied" is Fifteen Years of VAST Conference? Lei Shi (Beihang University, China), Lei Xia (Beihang University, China), Zipeng Liu (Beihang University, China), Ye Sun (Beihang University, China), Huijie Guo (Beihang University, China), and Klaus Mueller (Stony Brook University, USA)	121
CLEVER: A Framework for Connecting Lived Experiences with Visualisation of Electronic Records	126
Design of an Ecological Visual Analytics Interface for Operators of Time-Constant Processes Elmira Zohrevandi (Linköping University), Emmanuel Brorsson (ABB Sweden), Andreas Darnell (Södra Cell), Magnus Bång (Linköping University), Jonas Lundberg (Linköping University), and Anders Ynnerman (Linköping University)	131

Applications / Design

Taken By Surprise? Evaluating how Bayesian Surprise & Suppression Influences Peoples' Takeaways in Map Visualizations <i>Akim Ndlovu (Worcester Polytechnic Institute), Hilson Shrestha</i> <i>(Worcester Polytechnic Institute), and Lane T. Harrison (Worcester Polytechnic Institute), Polytechnic Institute)</i>	. 136
Towards Autocomplete Strategies for Visualization Construction Wei Wei (University of Calgary, Télécom Paris), Samuel Huron (Télécom Paris, Institut Polytechnique de Paris), and Yvonne Jansen (Univ. Bordeaux, CNRS, Inria, LaBRI)	. 141
Indy Survey Tool: A Framework to Unearth Correlations in Survey Data Tarik Crnovrsanin (northeastern university), Sara Di Bartolomeo (Northeastern University), Connor Wilson (Northeastern University), and Cody Dunne (Northeastern University)	. 146
Data in the Wind: Evaluating Multiple-Encoding Design for Particle Motion Visualizations Yiren Ding (Worcester Polytechnic Institute) and Lane Harrison (Worcester Polytechnic Institute)	. 151
Show Me My Users: A Dashboard Visualizing User Interaction Logs Jinrui Wang (The University of Edinburgh), Mashael AlKadi (University of Edinburgh; Imam Abdulrahman bin Faisal University), and Benjamin Bach (University of Edinburgh)	. 156
What Is the Difference Between a Mountain and a Molehill? Quantifying Semantic Labeling of Visual Features in Line Charts Dennis Bromley (Tableau Research, USA) and Vidya Setlur (Tableau Research, USA)	. 161
Draco 2: An Extensible Platform to Model Visualization Design Junran Yang (University of Washington, USA), Péter Ferenc Gyarmati (University of Vienna, Austria), Zehua Zeng (University of Maryland, College Park, USA), and Dominik Moritz (Carnegie Mellon University, USA)	. 166

Information Visualization / Interaction

A Simple yet Useful Spiral Visualization of Large Graphs Garima Jindal (International Institute of Information Technology, India) and Kamalakar Karlapalem (International Institute of Information Technology, India)	171
ProtoGraph: A Non-Expert Toolkit for Creating Animated Graphs	176
Visual Validation Versus Visual Estimation: A Study on the Average Value in Scatterplots	181
Line Harp: Importance-Driven Sonification for Dense Line Charts	186
Compact Phase Histograms for Guided Exploration of Periodicity	191
 ZADU: A Python Library for Evaluating the Reliability of Dimensionality Reduction Embeddings	196
 TimePool: Visually Answer "Which and When" Questions on Univariate Time Series	201
"Two Heads are Better than One": Pair-Interviews for Visualization	206

Situated Analytics and Augmented Reality

Quantifying the Impact of XR Visual Guidance on User Performance using a Large-Scale	
Virtual Assembly Experiment	211
Leon Pietschmann (University of Cambridge; Harvard University).	
Paul-David Zuercher (University of Cambridge), Erik Bubík (University	
of Cambridge), Zhutian Chen (Harvard University), Hanspeter Pfister	
(Harvard University), and Thomas Bohné (University of Cambridge)	

Machine Learning / Language Models / Theory

Explain-and-Test: An Interactive Machine Learning Framework for Exploring Text Embeddings 2 Shivam Raval (Harvard University), Carolyn Ann Wang (Harvard University), Fernanda Viegas (Harvard University; Google Research), and Martin Wattenberg (Harvard University; Google Research)	216
Concept Lens: Visually Analyzing the Consistency of Semantic Manipulation in GANs	221
 HAiVA: Hybrid AI-Assisted Visual Analysis Framework to Study the Effects of Cloud Properties on Climate Patterns	226
DataTales: Investigating the Use of Large Language Models for Authoring Data-Driven Articles	231
Visualizing Linguistic Diversity of Text Datasets Synthesized by Large Language Models	236
WUDA: Visualizing and Transforming Rotations in Real-Time with Quaternions and Smart Devices Slobodan Milanko (Independent Researcher)	241
ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems	246
Combining Degree of Interest Functions and Progressive Visualization	251

Author Index 2	25	7
----------------	----	---