2023 27th International **Conference Information** Visualisation (IV 2023)

Tampere, Finland 25-28 July 2023

IEEE Catalog Number:

CFP23199-POD ISBN: 979-8-3503-4162-1

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23199-POD

 ISBN (Print-On-Demand):
 979-8-3503-4162-1

 ISBN (Online):
 979-8-3503-4161-4

ISSN: 1550-6037

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 27th International Conference Information Visualisation (IV)

IV 2023

Table of Contents

Acknowledgements xvii
Organizing Committee xviii
Organizing & Liaison Committee Symposiumxix
Reviewers xxii
D-Art Gallery 2023 xxiv
1. Information Visualization
InfVis - Information Visualisation Theory & Practice
Visualization System to Analyze Browsing Trends of Internet Video Advertisements
ReciPic: A Tool for Generating Infographic from Recipe Procedure Text
Using Autoencoders to Visualize Big Environmental Audio
RespVis A D3 Extension for Responsive SVG Charts
Relational Structure Visualization in Composition
Extending the Heatmap Matrix: Pairwise Analysis of Multivariate Categorical Data

IV-App – Applications of Information Visualization

Fisheye Visualization and Multi-Path Trees for Presenting Clinical Practice Guidelines: Methods and Application to Covid-19	37
DataCrop: A Generic Tool for Crop Data Set Generation	43
3DSPOPP - 3D Scatter Plots of Octants with Projection Planes	48
Australian Animal Species Selection and Image Data Collection	55
Visualizing Maps of Visitors' Interest for Museum Exhibits with Single-Board Computers Shigeo Takahashi (University of Aizu, Japan), Yohei Nishidate (University of Aizu, Japan), Yukihide Kohira (University of Aizu, Japan), and Rentaro Yoshioka (University of Aizu, Japan)	. 64
Adding Visual Data and Interactions for Dynamic Data Physicalization with Augmented Reality	71
A Genetic Algorithm for Automatic Dashboard Generation: First Results	77
Extending the Egocentric Viewpoint in Situated Visualization Using Augmented Reality Nuno Cid Martins (Polytechnic Institute of Coimbra, Coimbra Institute of Engineering & IEETA, University of Aveiro), Bernardo Marques (IEETA, DETI, LASI, University of Aveiro), Paulo Dias (IEETA, DETI, LASI, University of Aveiro), and Beatriz Sousa Santos (IEETA, DETI, LASI, University of Aveiro)	83
Visualizing Tennis Matches as Nested Stories	90

Towards Contextual Glyph Design: Visualizing Hearing Screenings Barbara Nascimento Ramos (University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Portugal), Catarina Maçãs (University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Portugal), Nuno Lourenço (University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Portugal), and Evgheni Polisciuc (University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Portugal)	96
IVE – Information Visualization Evaluation	
An Accuracy Assessment for Active Data Physicalization Cleyton Luiz Ramos Barbosa (Federal University of Pará, Brazil), Thiago Augusto Soares de Sousa (Federal University of Pará, Brazil), Walbert Cunha Monteiro (Federal University of Pará, Brazil), Diego Hortêncio dos Santos (Federal University of Pará, Brazil), Tiago Davi Oliveira de Araújo (University of Aveiro, Portugal), and Bianchi Serique Meiguins (Federal University of Pará, Brazil)	103
Using Visualization Methods for Improving Web Navigation	109
Exploring the Design of Visualizations of Personal Online Data Based on Users' Mental Models Marija Dutz (Fraunhofer IGD, Germany), Nataša Starčević (TU Darmstadt, Germany), Steven Lamarr Reynolds (Fraunhofer IGD, Germany), and Jörn Kohlhammer (Fraunhofer IGD, TU Darmstadt, Germany)	119
Subject Experiments with a Learning Support System for Grover's Algorithm	125
A Review of Complexity Metrics for Data Visualization Ying Zhu (Georgia State University, USA)	131
Workload Evaluation to Create Data Visualization Using ChatGPT Walbert Cunha Monteiro (Federal University of Pará, Brazil), Diego Hortencio dos Santos (Federal University of Pará, Brazil), Thiago Augusto Soares de Sousa (Federal University of Pará, Brazil), Vinicius Favacho Queiroz (Federal University of Pará, Brazil), Tiago Davi Oliveira de Araujo (University of Aveiro, Portugal), and Bianchi Serique Meiguins (Federal University of Pará, Brazil)	136
HCI – Human-Computer Interaction for Information Visualization	
Latent Attention Resource Estimation of Peripheral Visual Stimuli Using Microsaccade Frequency Modelling	142
Modeling Human Recognition of Deformed Maps	148
The Design of Interactive Spatio-Temporal Information Visualization – A Conceptual Model Sara Rodrigues (Universidade de Lisboa, Portugal)	155

GTNV – Graph Theory & Network Visualization
Interactive Network Visualization of Educational Standards, Learning Resources and Learning Progressions
Optimization of Hierarchical Graph Layout with a Genetic Algorithm and Sprawl/Clutter Metrics
Visualizing Congestion at Mass-Gathering Events with Proximity-Based Networks
Hierarchical Data Visualization of Gender Difference: Application to Feeling of Temperature
C
KV – Knowledge Visualization and Visual Thinking
 KV – Knowledge Visualization and Visual Thinking Visual Variation: A Versatile Knowledge Visualization Method Based on Variation Theory 184 <i>Martin J. Eppler (University of St Gallen, Switzerland)</i>
Visual Variation: A Versatile Knowledge Visualization Method Based on Variation Theory 184
Visual Variation: A Versatile Knowledge Visualization Method Based on Variation Theory 184 Martin J. Eppler (University of St Gallen, Switzerland) Giving Shape to Words: Visual Knowledge Discovery for Textual Contents in Legal Scenarios . 188 Nicola Lettieri (National Institute for Public Policy Analysis (INAPP), Italy), Alfonso Guarino (Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Italy), Delfina Malandrino (Computer Science Department, University of Salerno, Italy), Rocco Zaccagnino (Computer Science Department, University of Salerno, Italy), and Salvatore Del Piano (Computer

Australia)

LA – 7th International Symposium Learning Analytics
Feasibility of Prediction of Student's Characteristics Using Texts of Essays Written During a Fully Online Course
Boulez: A Chatbot-Based Federated Learning System for Distance Learning
3. AI/ML, Visual Analytics & Visual Knowledge Discovery
VA – 13 International Symposium Visual Analytics and Data Science
Analyzing Spatio-Temporal Correlations with User-Oriented Guidance - An Interactive Visualization Approach for Demand-Oriented Limited Service Offers
Understanding the Forest: A Visualization Tool to Support Decision Tree Analysis
Artificial Intelligence in Visual Analytics
NLP for Enterprise Asset Management: An Emerging Paradigm

Lennart B. Sina (Darmstadt University of Applied Sciences, Germany), Cristian A. Secco (Darmstadt University of Applied Sciences, Germany), Midhad Blazevic (Darmstadt University of Applied Sciences, Germany), and Kawa Nazemi (Darmstadt University of Applied Sciences, Germany)

Visual Analytics for Forecasting Technological Trends from Text	!51
Recommendations in Visual Analytics - An Analytical Approach for Elaboration in Science2 Midhad Blazevic (Darmstadt University of Applied Sciences, Germany), Lennart B. Sina (Darmstadt University of Applied Sciences, Germany), Cristian A. Secco (Darmstadt University of Applied Sciences, Germany), and Kawa Nazemi (Darmstadt University of Applied Sciences, Germany)	<u>!</u> 59
A Data Discovery and Visualization Tool for Visual Analytics of Time Series in Digital Agriculture	268
AI&VKD – 3rd AI and Visual Knowledge Discovery	
Analysis of Breathing Rate in a Multi-Scenario Driving Acquisition	272
Information Plane Analysis Visualization in Deep Learning via Transfer Entropy	<u>'</u> 78
Accelerating Convolutional Neural Network Pruning via Spatial Aura Entropy	!86
Lossless Interpretable Glyphs for Visual Knowledge Discovery in High-Dimensional Data 2 Nicholas Lee Cutlip (Central Washington University, USA) and Boris Kovalerchuk (Central Washington University, USA)	<u>1</u> 92
Principal Components in General Line Coordinates for Visualization and Machine Learning 3 Boris Kovalerchuk (Central Washington University, USA) and Brent D. Fegley (Aptima, Inc., USA)	300
General Line Coordinates in 3D	308
No-Code Platform for Visual Knowledge Discovering in General Line Coordinates: DV 2.0 3 Lincoln Huber (Central Washington University, United States) and Boris Kovalerchuk (Central Washington University, United States)	316

Visual Knowledge Discovery from Public Transit Performance Data	. 323
Responsible Artificial Intelligence and Bias Mitigation in Deep Learning Systems	329
4. Visualization	
A Maritime Situational Awareness Framework Using Dynamic 3D Reconstruction in Real-Tin	ne
334 Felix Sattler (German Aerospace Center (DLR), Germany), Sarah Barnes (German Aerospace Center (DLR), Germany), and Maurice Stephan (German Aerospace Center (DLR), Germany)	
ARWithDistance: Distance Awareness in Off-Screen Visualization Techniques for AR	
Applications Ana Paula Afonso (LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal), Maria Beatriz Carmo (LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal), Pedro Costa (LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal), and Tiago Pereira (LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal)	340
Visualization of Swiping Motion of Competitive Karuta Using 3D Bone Display	346
Constructing a Cross-Disciplinary Idea Convergence System Using AIGC: A Case Study of Engineering and Design Jia-Rong Li (National Yunlin University of Science and Technology, Taiwan), Hsin-Yi Huang (National Yunlin University of Science and Technology, Taiwan), Teng-Wen Chang (National Yunlin University of Science and Technology, Taiwan), Chi-Chi Shih (National Yunlin University of Science and Technology, Taiwan), and Hsiang-Ting Chien (National Yunlin University of Science and Technology, Taiwan)	. 352
Information Visualization and Artworks: From GPS to Point Cloud	. 358
Visualization of the Repetitive Practice of Dance Motion: Case Study with Multiple Genres	2.42
of Dance	. 362
Discussion on Preliminary Digital Assistance Mode in the Empathy Game Process of SPRINT	
Warm-up Teng-Wen Chang (National Yunlin University of Science and Technology, Taiwan(ROC)), Chi-Chi Shih (National Yunlin University of Science and Technology, Taiwan(ROC)), Hsiang-Ting Chien (National Yunlin University of Science and Technology, Taiwan(ROC)), Shih-Ting Tsai (National Yunlin University of Science and Technology, Taiwan(ROC)), Hsu-Feng Chang (National Yunlin University of Science and Technology, Taiwan(ROC)), and He-Chin Chen (National Yunlin University of Science and Technology, Taiwan(ROC))	. 368

A Review of Point Sets Parameterization Methods for Curve Fitting
5. AIMH – Visualization and Artificial Intelligence for Medicine, Healthcare, and Social Good
A REST API Based on Machine Learning to Predict Survival Using Categorical Features 378 Covadonga Díez-Sanmartín (Complutense University of Madrid) and Antonio Sarasa-Cabezuelo (Complutense University of Madrid)
SIDVis: Designing Visual Interactive System for Analyzing Suicide Ideation Detection
LifeTrack: Decades of EHR Data in a Single View
Data Visualisation on a Mobile App for Real-Time Mental Health Monitoring
BookMate: Leveraging Deep Learning to Empower Caregivers of People with ASD in Generation of Social Stories
Knowledge-Grounded Dialogue Generation for Medical Conversations: A Survey

6. BuiltIV

Visualisation in Built and Rural Environment

Representation of Urban Geometry Evolution Through Space-Time Cube	414
Development Framework for Web-Based VR Tours and Its Examples	420
Potential of Visualization to Explain Quantum Algorithms	426
Author Index	429