2023 Belarusian-Ural-Siberian Smart Energy Conference (BUSSEC 2023)

Ekaterinburg, Russia 25 – 29 September 2023

IEEE Catalog Number: CFP23X22-POD **ISBN:**

979-8-3503-5808-7

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23X22-POD
ISBN (Print-On-Demand):	979-8-3503-5808-7
ISBN (Online):	979-8-3503-5807-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Page	Authors	Title
1-6	Fedor Nepsha, Vyacheslav Voronin, Serge Kovalyov	Open Data Platform as a Source of ML-Driven Innovations in the Energy Sector
7-12	Mihail Senyuk, Ismoil Odinaev, Viktor Klassen, Javod Ahyoev	Accelerated Power System Equivalent Algorithm for Emergency Control Based on Phasor Measurement Units
13-17	Leonid Plotnikov, Dmitry Krasilnikov, Danil Davydov, Alexander Ryzhkov	Conversion of a Spark-Ignition Gasoline Engine to Syngas: Assessment of Technical and Economic Indicators Based on Numerical Modeling*
18-23	Denis A. Snegirev, Vladislav O. Samoylenko, Andrew V. Pazderin, Petr I. Bartolomey	The Selection of Machine Learning Model and Its Hyperparameters Using Bayesian Optimization for Short- Term Wind Power Forecasting
24-27	Dzmitry A. Sekatski, Aleksandra I. Khalyasmaa, Nadzeya A. Papkova	Comparative Analysis of Active Power Losses per Corona of 330 kV Overhead Lines
28-32	Ilia Bezdenezhnykh, Vladimir Smirnov, Viktor Denisenko	Advantages of Synchronous Reluctance Motors and Synchronous Motors with Permanent Magnets as Drive of Liquid Natural Gas Submerged Pumps for Process Loss Reduction
33-38	Yu.N. Bulatov, A.V. Kryukov, K.V. Suslov	Study of a Self-tuning Predictive Voltage and Frequency Controller on a Cyber-physical Model of a Distributed Generation Plant
39-42	Gennadiy Kulakov, Kiryl Artsiomenka	Structural-Parametric Optimization of Automatic Control System for Power Unit 300 MW
43-47	Victor Lytkin, Viktor Denisenko, Vladimir Nedzelsky	Feasibility of Producing Magnetic Wedges of Figured Shape for AC Electric Motors
48-53	Andrey M. Bramm, Marina V. Mazunina	Effects of the Firefly Optimization Algorithm Hyperparameters on the Optimal Placement Problem Results of Renewables-based Power Plants
54-59	Mihail Senyuk, Ismoil Odinaev, Olga Pichugova, Javod Ahyoev	Methodology for Forming a Training Sample for Power Systems Emergency Control Algorithm Based on Machine Learning
60-64	lgor Grekhnev, Maksim Shchelkanov, Pavel Matrenin	Comparative Analysis of Machine Learning Algorithms Using Weather Station Grid Shor-term Load Forecasting
65-70	Alena Sidorova, Kristina Haljasmaa	Assessment of the Hydroelectric Power Plant Cascade Economic Efficiency
71-74	Evgeniy Ponomarenko, Yaroslav Potachits	Determination of the Place of Destruction of Electrical Apparatus Under Dynamic Influence of Short-Circuit Currents

75-78	Natalia Zubova, Sergey Mitrofanov, Nikita Sergeev, Pavel Matrenin	Prediction the Power Generated Low-Power Wind Turbine Based on Multilayer Perceptron
79-83	Artem Tronin, Stanislav Eroshenko, Alexander Efimov	Application of Optimized Wavelet Transformation for Analysis of Digital Substation Electrical Equipment Operating Modes
84-87	Anastasia G. Rusina, Tuvshin Osgonbaatar, Alina I. Stepanova, Pavel V. Matrenin	Ensemble Machine Learning Model for Day Ahead Solar Power Forecasting for Mongolia Power System
88-93	Vyacheslav A. Voronin, Fedor S. Nepsha, Andrey S. Liven, Ilya S. Zaslavsky	Power Consumption Management at Coal Mining Enterprises: Demand Response and Tariff-Based Mechanisms
94-99	Alina I. Stepanova	The Methodology for Overhead Power Transmission Lines Technical State Assessment Based on Machine Learning
100-103	Albina Gavrilova, Pavel Bannykh, Andrey Pazderin	Voltage Stability Limit Calculation for Power Transfer Capability Between Two Area
104-108	Sergei Dekhtiar, Ekaterina Filippenko, Pavel Chusovitin, Andrey Pazderin	Intermittent Arc Fault Model for Distribution Network
109-114	Vyacheslav A. Voronin, Fedor S. Nepsha	Analysis of the Efficiency of Electric Vehicle Charging Control in Urban Distribution Grids
115-120	Alena Sidorova, Kristina Haljasmaa	Influence of Machine Learning Method Choice on the Accuracy of Power Load Forecast Models and HPP Cascade Mode
121-126	Alena Sidorova, Kristina Haljasmaa	Algorithm for Calculating the Water and Energy Mode of the Cascade of Hydroelectric Power Plants on the Basis of the Integrated Mathematical Model
127-131	Yulia I. Sysoeva, Stanislav N. Shelyug	Analysis of PWM Method for TFC (3L-NPC)
132-135	Evgeniy Shmakov	Reconstruction of Volumetric Force Density in Single-Sided Linear Induction Motors
136-141	Alexey M. Romanov , Ntmitrii Gyrichidi, Oleg V. Trofimov, Stanislav A. Eroshenko	MAD Robot: Concept and Prototype Description of the Robot for Multi-Spectral Power Equipment Diagnostics. Part I
142-149	Alexey M. Romanov , Ntmitrii Gyrichidi, Oleg V. Trofimov, Stanislav A. Eroshenko	MAD Robot: Concept and Prototype Description of the Robot for Multi-Spectral Power Equipment Diagnostics. Part II
150-155	Vladislav Popovtsev, Yurii Patrakov. Igor Sokolov	Improvement of Voltage Distribution Uniformity Factor for Glass Suspension Insulator String

156-159	Vladislav Popovtsev, Ekaterina Muraveva, Evgenia Rumyantseva, Yurii Patrakov	Research of Alternative Arc Extinguishing and Insulating Gas Media to SF6
160-164	Yaroslav V. Mironenko, Alexandra I. Khalyasmaa	Development of Automated Life Cycle Management System for Electrically Driven Compressor Units in the Oil and Gas Industry
165-168	Alexandra Khalyasmaa, Sergey Lider, Elena Zinovieva, Dmitry Harlashkin, Marina Mazunina, Maria Harlashkina	Localization of the Overhead Power Transmission Line Insulators Defects Using Computer Vision Algorithms