2023 IEEE PES GTD International Conference and Exposition (GTD 2023)

Istanbul, Turkey 22 – 25 May 2023

IEEE Catalog Number: CFP23N30-POD ISBN:

978-1-7281-7026-8

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23N30-POD

 ISBN (Print-On-Demand):
 978-1-7281-7026-8

 ISBN (Online):
 978-1-7281-7025-1

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE PES GTD International Conference and Exposition (GTD)

GTD 2023

Table of Contents

Conference History	
Message from the General Chair	xvi
Message from the Technical Chair	xvii
Memoriam	xviii
Committees	xix
Reviewers	xxi
Tutorials	xxiii
Supersession A	xxvii
Supersession B	xxix
Supersession C	xxxii
Supersession D	xxxv
Panel 1	
Panel 2	xl
Panel 3	xlii
Panel 4	xliv
Panel 5	xlvi
Panel 6	xlviii
Keynote A	
Keynote B	li
Keynote Panel / Supersession D	lii
Technical Supporters	liv
Supporters	1v
The Global Energy Transition and De-carbonization Energy Consumption Tokens for Blockchain-Based end-to-end Trading of Green E	nerov
Certificates Maximilian Eickhoff (Munich University of Applied Sciences, Germany), Armin Exner (Blockchain Consulting GmbH, Germany), and Axel Busboom (Munich University of Applied Sciences, Germany)	1
Investigating the Impacts of Resiliency of the Automation System on Distribution Resilience	
Mohammad Sadeghian-Jahromi (Sharif University of Technology, Iran),	
Mahmud Fotuhi-Firuzabad (Sharif University of Technology, Iran; Aalto	
University, Finland), Sajjad Fattaheian-Dehkordi (Sharif University of	
Technology, Iran; Aalto University, Finland), Matti Lehtonen (Aalto	
University, Finland), and Saeed Heidary (Sharif University of	
Technology, Iran)	

Short-Term Heat Demand Prediction Using Deep Learning for Decentralized Power-to-Heat
Solutions
Electricity Grid Enhancement in Puerto Rico by Establishing Renewable-Based Microgrids in
Vieques and Culebra Islands
LUMA Energy, LLC), Alexandre B. Nassif (LUMA Energy, LLC, Puerto Rico), Muhidin Lelic (LUMA Energy, LLC, Puerto Rico), Daniel Kushner
(LUMA Energy, LLC, Puerto Rico.), and Shay Bahramirad (LUMA Energy, LLC, Puerto Rico.)
Two-Stage Bi-Level Stochastic Model for Optimal Operation of a Green Hydrogen-Based VPP 22 Saman Baharvandi (Shahed University, Iran)
Implementing Grid Supportive Behavior in Induction Motor-Driven Loads Using Field Oriented Control
Zarka Mirza (Indian Institute of Technology (IIT) Roorkee, India) and Himanshu Jain (Indian Institute of Technology (IIT) Roorkee, India)
Distributed Storage & Generation Systems
Model Identification of Distributed Energy Resources Using Sparse Regression and Koopman Theory
Javad Khazaei (Lehigh University, USA) and Faegheh Moazeni (Lehigh University, USA)
A Coordinated Control Scheme to Integrate Flywheels Energy Storage Systems in AGC
Allocation of Battery Energy Storage Systems (BESS) to Mitigate FIDVR in the Con Edison Transmission Systems
Chang Chen (The University of Tennessee, USA), Yilu Liu (The
University of Tennessee, USA), Resk E Uosef (Con Edison Company of NY, USA), Matthew Koenig (Con Edison Company of NY, USA), and Constantine
Spanos (Con Edison Company of NY, USA) Battery Sizing and Location for Provision of Network Support Services
Njegos Jankovic (IMDEA Energy Institute, Spain), Marcelo Nogales Balderrama (Zalles Electrical Power Services, USA), Javier
Roldan-Perez (IMDEA Energy Institute, Spain), and Milan Prodanovic (IMDEA Energy Institute, Spain)
Evaluation of the Effects of Noise and Sampling Rate on Detection of High Impedance Fault with Machine Learning Methods on the Distribution System
Eren Baharozu (Istanbul Technical University, Turkiye), Suat Ilhan (Istanbul Technical University, Turkiye), and Gurkan Soykan (Bahcesehir University, Turkiye)
HVDC & Florible AC Transmission System
HVDC & Flexible AC Transmission System
A Study of a Damping Control Based Predictive Strategy on an Inter-Area Power System 60 Amro Sarayrah (The University of Jordan, Jordan), Mohammed A. Haj-ahmed (Al-Ahliyya Amman University, Jordan), and Eyad A. Feilat (The University of Jordan, Jordan)

Oscillation Damping Using Reinforcement Learning Controlled HVDC Transmission
Parametric Analysis of Lightning Overvoltages in High-Voltage Gas Insulated Substation 72 Selma Grebović (University of Sarajevo, Bosnia and Herzegovina), Senad Smaka (University of Sarajevo, Bosnia and Herzegovina), Vahid Helać (University of Sarajevo, Bosnia and Herzegovina), and Nermin Oprašić (University of Sarajevo, Bosnia and Herzegovina)
An AGC Algorithm for Multi-Area Power Systems in Network Splitting Conditions
AMPL Based Optimization Tool for Reliability Assessment of Multi-Terminal HVDC Networks Using the Monte Carlo Method
Power Quality Issues Associated with Microgrid
Active Damping in LCL-Filter Based Three Phase Converter Using Lead-lag Network and Kalman
Filter
A PMU Placement Framework in an Active Distribution Network Based on Voltage Profile Estimation Accuracy
Fast Fault Current Injection of Renewable Energy Sources to Support Voltage During Dips 98 Roozbeh Torkzadeh (Eindhoven Technical University (TU/e), The Netherlands), Vladimir Ćuk (Eindhoven University of Technology (TU/e), The Netherlands), and Sjef Cobben (Eindhoven University of Technology (TU/e), The Netherlands)
AC Fault Current Limiting Using LC DC Circuit Breaker
Computationally Robust Line Outage Detection and Identification in Three-Phase Networks 109 Tuna Yildiz (Northeastern University, USA) and Ali Abur (Northeastern University, USA)
Excitation Current and Harmonic Analyses of a Three-Phase Five-Limb Transformer Under GIC According to Different Core Cross-Section Ratios

Power Generation & Renewables

Appropriate Evaluation of Primary Frequency Response and Its Applications
Analyzing the Computational Burden of Global-Linking Balance Equations in the Medium-Term Unit Commitment Problem
Distributed Generation Control Using an Innovative Communication Gateway and Ripple Signaling
Enhancing Machine Learning Based Solar Generation Forecasting with Time Data Utilization . 134 Lejla Pašić (Budapest University of Technology and Economics; ELKH-BME Information Systems Research Group, Hungary), Azra Pašić (Budapest University of Technology and Economics, Hungary), Alija Pašić (Budapest University of Technology and Economics, Hungary), István Vokony (Budapest University of Technology and Economics, Hungary), and József Bíró (Budapest University of Technology and Economics, Hungary)
Machine Learning Applied to the Operation of Fully Renewable Energy Systems
Maximum Power Point Tracking (MPPT) Enhancement of Variable-Speed wind Energy Conversion Using Sliding Mode Controller (SMC)
Advanced Monitoring, Diagnostic, and Control Techniques
Distribution System Topology Identification Using Graph Neural Networks
Assessment of Non-Intrusive Load Monitoring as a Blind Source Separation Problem

A Comprehensive State Estimation Methodology for Multimachine Power Systems	61
Sustainable and Inclusive Demand-Side Resilience: A Semi-Dynamic Model for Outage Costs . 1 Ali Safamanesh (Shahid Beheshti University, Iran), Mohammad Sadegh Ghaziziadeh (Shahid Beheshti University, Iran), Mahdi Habibi (Shahid Beheshti University, Iran), and Vahid Vahidinasab (Nottingham Trent University, UK)	66
Optimal Dead Band Control of Load Tap Changers in Distribution Networks	71
Synchronized Multi-Partition Resilience System Based on IoT Platform for Interconnected Neural Power Grid- SynerGRID	76
Renewable Integration & Operation 1	
Estimating the Feasible Operating Region of Active Distribution Networks Using the Genetic Algorithm	82
Operation of Energy Storage System in Renewable-Integrated Electrical Energy Grids: Consideration of Line and Generation Contingencies Besides Exploring Demand-Side Management	88
Insights for the Next Solar Eclipse in Turkish Grid with Increased Solar Capacity	94
Dual-Objective Optimization Scheduling Model and Analysis for Regional Integrated Electricity-Hydrogen System	99
The Value of Ambiguity Quantification in Distributionally Robust Economic Dispatch Models for the Wind-Penetrated Power System	.05

Power System Protection

Improving the reliability of the traveling wave fault location Rustem Khuziashev (KSPEU, Russia) and Ildar Minaev (KSPEU, Russia)	. 210
Analysis of Fault Detection Algorithms used in Line Differential Protection (87L)	. 215
Improvement in Transformer Differential Protection Using Singular Value Decomposition Het Bhalja (Indian Institute of Technology Roorkee, India), Bhavesh R. Bhalja (Indian Institute of Technology Roorkee, India), and Pramod Agarwal (Indian Institute of Technology Roorkee, India)	. 221
Removal of DC Offset Components by Using Two Auxiliary Signals	. 226
Research on Relay Protection Equipment Maintenance Decision-Making Method Based on Ris	
Assessment Limin Wang (China Electric Power Research Institute, China), Peng Guo (China Electric Power Research Institute, China), Yiqun Kang (China Electric Power Research Institute, China), and Zhoutian Yan (China Electric Power Research Institute, China)	. 231
Electrical Vehicles and Charging	
Micro Substation with Power Voltage Transformers for EV Charging	. 236
Impacts of State-of-Charge Estimation Errors on Frequency Regulation from Electric	
Vehicles	. 241
Energy Management System of an Electric Vehicle Charging Station Using Q-Learning and Artificial Intelligence Tapiwa N. Matare (University of Cape Town, South Africa) and Komla A Folly (University of Cape Town, South Africa)	. 246
Study of Electric Vehicles for Grid Services – A Gender-Based Approach F. M. Aboshady (Brunel University London, UK; Tanta University, Egypt) and Ioana Pisica (Brunel University London, UK)	. 251
Cyber and Physical Security	
A Framework for Service Restoration of Cyber-Physical Power Systems	. 256
Identifying Concept Drift with Supervised Algorithms in Smart Grids Ayşe Sayin (Istanbul Technical University, Turkey), Mostafa Mohammadpourfard (Istanbul Technical University, Turkey), and Mehmet Tahir Sandikkaya (Istanbul Technical University, Turkey)	. 263

Machine Learning Approaches in Anomaly Type Detection and Localization in Distribution	260
System	268
Minimizing the Risk of Attacks in Electric Power Systems via Effective Grid Reinforcement of Counter Threat Technologies	273
Lujia Zhan (The George Washington University, USA), Payman Dehghanian (The George Washington University, USA), and Saharnaz Mehrani (Florida Atlantic University, USA)	
A Novel Approach Detection for False Data Injection, and Man in the Middle Attacks in IoT	270
and IIoT	278
Advancements in Power Transmission & Distribution	
Voltage Regulation in Transmission Systems: the Experience of TERNA Francesco Del Pizzo (TERNA S.p.A., Italy), Cristiano Quaciari (TERNA S.p.A., Italy), Giorgio Maria Giannuzzi (TERNA S.p.A., Italy), Chiara Vergine (TERNA S.p.A., Italy), Cosimo Pisani (TERNA S.p.A., Italy), Alessandro Coretti (TERNA S.p.A., Italy), Tiziano D'Aversa (TERNA S.p.A., Italy), Angelo Raffaele Cassano (TERNA S.p.A., Italy), Vincenzo Galdi (University of Salerno, Italy), Vito Calderaro (University of Salerno, Italy), Lucio Ippolito (University of Salerno, Italy), and Giuseppe Graber (University of Salerno, Italy)	283
Parameter-Free Virtual Synchronization Technique for Terminals of Power Transmission Line 288	es
Dian Lu (ShanghaiTech University, China), Yu Liu (ShanghaiTech University; Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, China), Yuhao Xie (ShanghaiTech University, China), Rui Fan (University of Denver, USA), and Renke Huang (Shanghai jiao Tong University, China)	
Challenges of DLR Systems at the Implementation and Operation Level	293
Identification of Visible Isolation for Substations Maintenance Using Graph Theory Samuel Marín López (ISA INTERCHILE, Chile), Juan Sebastian Salazar Luna (Medellín, Colombia), and Alejandro Garcés-Ruiz (Universidad Teconológica de Pereira, Pereira-Colombia)	298
Distribution Grid Power Flexibility Aggregation at Multiple Interconnections Between the High and Extra High Voltage Grid Levels	303

Big Data Utilization & Analytics

Evolutionary-Based Neural Architecture Search for An Efficient CAES and PV Farm Joint Operation Strategy Using Deep Reinforcement Learning	310
An Improved Actor-Critic Reinforcement Learning with Neural Architecture Search for the Optimal Control Strategy of a Multi-Carrier Energy System	315
Separated Artificial Neural Network Based Distribution System State Estimation	320
Consumers' Willingness to Invest in Smart Home Technologies Using Machine Learning: A Survey-Based Analysis in Qatar	325
Assessment of Different Health Index Aggregation Techniques for Electric Utilities	330
Swasti R. Khuntia (TenneT, The Netherlands) and Bjoern Heling (TenneT, Germany)	
, e	
Germany)	335
Renewable Integration & Operation 2 Probabilistic Co-Optimization of Hybrid Battery/Super-Capacitor Systems Integrated into Microgrids	
Renewable Integration & Operation 2 Probabilistic Co-Optimization of Hybrid Battery/Super-Capacitor Systems Integrated into Microgrids	340

Regret Cost Analysis of the Generation Expansion Plans of Uruguay 2024-2033
T&D Monitoring, Control and Automation
The Influence of Fragility Curves in Resilience Assessments Considering Windstorms: A Sensitivity Analysis
A new Method for Determining the C-Divider Capacitances of a Capacitor Voltage Transformer with Frequency Measurements
Assessment of Directional Elements for Power Networks Connected to Inverted Based Renewable Resources: Problems and Mitigation Approach
Microgrids Integration & Operation
Optimal Energy Scheduling in Seaport Integrated Energy Systems
Probabilistic Integration of Demand Flexibilities in a Renewable Energy-Assisted Community Network
A Review of Data-Driven Smart Energy Management Systems for Distribution Networks 386 Ehtisham Asghar (Munster Technological University, Ireland), Martin Hill (Munster Technological University, Ireland), and Conor Lynch (Munster Technological University, Ireland)
Grid Connected and Islanded Operation of Microgrids Including SMES, SC, and Li/Ion Based PV Systems
Forecasting for Grid Operation
Comparing Short-Term Net Load Forecasting Methods for Solar Homes
Smart Meter Customer Data Synchronization Technique by KMean Clustering

Exploring The Effect Of Different Load Models On System Reconfiguration	414
Rawdha H. AlKuwaiti (Khalifa University, UAE), Hany E.Z. Farag (York	
University, Canada), Wael El-Sayed (Benha University, Egypt), Ahmed	
Al-Durra (Khalifa University, UAE), and Ehab F. El-Sadaany (Khalifa	
University, UAE)	
A d T 1	44.0
Author Index	419