2023 IEEE International Conference on Multimedia and Expo (ICME 2023)

Brisbane, Australia 10-14 July 2023

Pages 1-587

IEEE Catalog Number: ISBN:

CFP23ICM-POD 978-1-6654-6892-3

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23ICM-POD
ISBN (Print-On-Demand):	978-1-6654-6892-3
ISBN (Online):	978-1-6654-6891-6
ISSN:	1945-7871

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 curran@proceedings.com E-mail: Web: www.proceedings.com

2023 IEEE International Conference on Multimedia and Expo (ICME) ICME 2023

Table of Contents

Welcome Message from the General Chairs	lxxii
Organising Committee	lxxiv
Reviewers	
Meta Reviewers	ci

Advances in Language and Vision Research

Weakly Supervised Few-Shot and Zero-Shot Semantic Segmentation with Mean Instance Aware Prompt Learning Prashant Pandey (Indian Institute of Technology Delhi, India), Mustafa Chasmai (Indian Institute of Technology Delhi, India), Monish Natarajan (Indian Institute of Technology Kharagpur, India), and Brejesh Lall (Indian Institute of Technology Delhi, India)	ł
Ada-SwinBERT: Adaptive Token Selection for Efficient Video Captioning with Online Self-Distillation <i>Qianwen Cao (Beijing Institute of Technology, China), Heyan Huang</i> <i>(Beijing Institute of Technology, China), Minpeng Liao (Independent</i> <i>researcher, China), and Xianling Mao (Beijing Institute of Technology,</i> <i>China)</i>	7
A Retriever-Reader Framework with Visual Entity Linking for Knowledge-Based Visual Question Answering	3
2S-DFN: Dual-Semantic Decoding Fusion Networks for Fine-Grained Image Recognition	}
MuDPT: Multi-Modal Deep-Symphysis Prompt Tuning for Large Pre-Trained Vision-Language Models	5

Action-GPT: Leveraging Large-Scale Language Models for Improved and Generalized Action	
Generation	31
Sai Shashank Kalakonda (IIIT Hyderabad, INDIA), Shubh Maheshwari (IIIT	
Hyderabad, INDIA), and Ravi Kiran Sarvadevabhatla (IIIT Hyderabad,	
INDIA)	

Steganography & Watermarking

Protecting Intellectual Property of EEG-Based Model with Watermarking
Making Adversarial Attack Imperceptible in Frequency Domain: A Watermark-Based Framework 43
Hanxiu Zhang (East China Normal University, China), Guitao Cao (East China Normal University, China), Xinyue Zhang (East China Normal University, China), Jing Xiang (East China Normal University, China), and Chunwei Wu (East China Normal University, China)
Content-Adaptive Adversarial Embedding for Image Steganography using Deep Reinforcement Learning
Jie Luo (Sichuan University, China), Peisong He (Sichuan University, China), Jiayong Liu (Sichuan University, China), Hongxia Wang (Sichuan University, China), Chunwang Wu (School of Cyber Science and Engineering, China), Yijing Chen (Sichuan University, China), Wanjie Li (Sichuan University, China), and Jiangchuan Li (Sichuan University, China)
A Robust Generative Image Steganography Method Based on Guidance Features in Image Synthesis
(Beijing Univ Posts & Telecommun., China), and Ru Zhang (Beijing Univ Posts & Telecommun., China)
Adversarial Audio Watermarking: Embedding Watermark into Deep Feature
Deniable Diffusion Generative Steganography

Semantic Processing I

Sea Surface Object Detection Based on Background Dynamic Perception and Cross-Layer Semantic Interaction	
Addressing Predicate Overlap in Scene Graph Generation with Semantic Granularity Controller	
Towards Discriminative Semantic Relationship for Fine-Grained Crowd Counting	
 Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation Jun Xie (University of Electronic Science and Technology of China, China), Yixuan Zhou (University of Electronic Science and Technology of China, China), Xing Xu (University of Electronic Science and Technology of China, China), Guoqing Wang (University of Electronic Science and Technology of China, China), Fumin Shen (University of Electronic Science and Technology of China, China), and Yang Yang (University of Electronic Science and Technology of China, China) 	
 Deep Unsupervised Hashing with Selective Semantic Mining	
Boosting Interactive Image Segmentation by Exploiting Semantic Clues	

Media Retrieval I

Scene Text Involved "Text"-to-Image Retrieval Through Logically Hierarchical Matching 114 Xinyu Zhou (Wuhan University of Technology, China), Huen Chen (Wuhan University of Technology, China), Anna Zhu (Wuhan University of Technology, China), and Wei Pan (Wuhan University of Technology, China)

 Federating Hashing Networks Adaptively for Privacy-Preserving Retrieval
Deep Unsupervised Momentum Contrastive Hashing for Cross-Modal Retrieval
Uncertainty-Aware Cross-Modal Transfer Network for Sketch-Based 3D Shape Retrieval 132 Yiyang Cai (Tongji University, China), Jiaming Lu (Tongji University, China), Jiewen Wang (Tongji University, China), and Shuang Liang (Tongji University, China)
Scene Graph Based Fusion Network for Image-Text Retrieval
Detection I
Compact Intertemporal Coupling Network for Remote Sensing Change Detection
Boundary-Aware Shadow Detection via Mask Decoupling and Feature Correction
 Explore Faster Localization Learning For Scene Text Detection
Counterfactual Inference for Visual Relationship Detection in Videos

Body-Part Joint Detection and Association via Extended Object Representation	168
Huayi Zhou (Shanghai Jiao Tong University, China), Fei Jiang (East	
China Normal University, China), and Hongtao Lu (Shanghai Jiao Tong	
University, China)	

Be-or-Not Prompt Enhanced Hard Negatives Generating for Memes Category Detection 174 Jian Cui (Wuhan University of Technology, China), Lin Li (Wuhan University of Technology, China), and Xiaohui Tao (The University of Southern Queensland, Australia)

Health Application

 Automatic Retinal Nerve Fiber Trajectory Simulation and Quasi-Polar Transformation for Detecting Retinal Nerve Fiber Layer Defect in Fundus Images
GA-HQS: MRI Reconstruction via a Generically Accelerated Unfolding Approach
Early Diagnosis of Alzheimer's Disease Based on Multimodal Hypergraph Attention Network . 192 Yi Li (Guangdong University of Technology, China), BaoYao Yang (Guangdong University of Technology, China), Dan Pan (Guangdong Polytechnic Normal University, China), An Zeng (Guangdong University of Technology, China), Long Wu (Guangdong Provincial People's Hospital, China), and Yang Yang (Guangdong Provincial People's Hospital, China)
Score-Based Causal Feature Selection for Cancer Risk Prediction
Depression Diagnosis and Analysis via Multimodal Multi-Order Factor Fusion

A Dual-Path Supplemental Information Learning Architecture for Breast Cancer Ki-67 Status

Prediction in T2w MRI	
Wentian Cai (South China University of Technology; Guangdong	
Provincial People's Hospital, Guangdong Academy of Medical Sciences,	
China), Yulin Cheng (South China University of Technology, China),	
Ying Gao (South China University of Technology; Guangdong Provincial	
People's Hospital, Guangdong Academy of Medical Sciences, China),	
Weixiao Liu (The First Affiliated Hospital of Jinan University,	
China), Xinyan Xie (South China University of Technology, China),	
Xiongwen Luo (South China University of Technology, China), Weixian	
Yang (South China University of Technology; Guangdong Provincial	
People's Hospital, Guangdong Academy of Medical Sciences, China),	
Zaiyi Liu (Guangdong Provincial People's Hospital, Guangdong Academy	
of Medical Sciences, China), and Changhong Liang (Guangdong Provincial	
People's Hospital, Guangdong Academy of Medical Sciences, China)	

Expression & Face Computing

Expression-Guided Attention GAN for Fine-Grained Facial Expression Editing
RMES: Real-Time Micro-Expression Spotting using Phase From Riesz Pyramid
AU-aware graph convolutional network for Macroand Micro-expression spotting
Semi-Supervised Facial Expression Recognition by Exploring False Pseudo-Labels
CPNet: Exploiting CLIP-Based Attention Condenser and Probability Map Guidance for High-Fidelity Talking Face Generation

ANYRES: Generating High-Resolution Visible-Face Images from Low-Resolution Thermal-Face Images	246
David Anghelone (Université Côte d'Azur, France), Sarah Lannes (Thales, France), and Antitza Dantcheva (Université Côte d'Azur, France)	_
A Visually Interpretable Convolutional-Transformer Model for Assessing Depression from Facial Images	.252
Yutong Li (Lanzhou University, China), Zhenyu Liu (Lanzhou University, China), Gang Li (Third People's Hospital of Tianshui, China),	
Qiongqiong Chen (Northwest Minzu University, China), Zhijie Ding	
(Third People's Hospital of Tianshui, China), Xiping Hu (Lanzhou	
University, China), and Bin Hu (Lanzhou University, China)	
Learning Techniques II	

 FreConv: Frequency Branch-and-Integration Convolutional Networks Zhaowen Li (Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Xu Zhao (Chinese Academy of Sciences, China), Peigeng Ding (Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Peigeng Ding (Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Peigeng Ding (Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Zongxing Gao (Beijing Institute of Graphic Communication, China), Yuting Yang (Chinese Academy of Sciences, China), Ming Tang (Chinese Academy of Sciences, China), and Jinqiao Wang (Chinese Academy of Sciences; Peng Cheng Laboratory, China) 	258
Class-Aware Variational Auto-Encoder for Open Set Recognition	264
Repnas: Searching for Efficient Re-Parameterizing Blocks	270
Difference-Aware Iterative Reasoning Network for Key Relation Detection	276
Injecting-Diffusion: Inject Domain-Independent Contents into Diffusion Models for Unpaired Image-to-Image Translation	282

Semi-Supervised Top-k Feature Selection with a General Optimization Framework
Towards Boosting Black-box Attack via Sharpness-Aware294Yukun Zhang (University of Electronic Science and Technology of China, China), Shengming Yuan (University of Electronic Science and Technology of China, China), Jingkuan Song (University of Electronic Science and Technology of China, China), Yixuan Zhou (University of Electronic Science and Technology of China, China), Lin Zhang (University of Electronic Science and Technology of China, China), Lin Zhang Yulan He (The University of Warwick, UK)
Learning Group Residual Representation for Group Activity Prediction
 SAFE: Simultaneous Alignment of Features and Predictions for Dense Object Detectors
MSG-CAM:Multi-Scale Inputs Make a Better Visual Interpretation of CNN Networks

Trustworthy Federated Learning for Multimedia I

Personalization Disentanglement for Federated Learning Peng Yan (University of Technology Sydney, Australia) and Guodong Long (University of Technology Sydney, Australia)	318
Fairness-Aware Client Selection for Federated Learning Yuxin Shi (Nanyang Technological University (NTU); Alibaba-NTU Singapore Joint Research Institute, Singapore; Alibaba Group, China), Zelei Liu (Nanyang Technological University (NTU), Singapore), Zhuan Shi (University of Science and Technology of China, China), and Han Yu (Nanyang Technological University (NTU), Singapore)	324
Utility Manipulation - Diddline Structures (an Data Consumption Associate Decoder Forderset)	• • •

Utility-Maximizing Bidding Strategy for Data Consumers in Auction-Based Federated Learning...... 330

Xiaoli Tang (Nanyang Technological University, Singapore) and Han Yu (Nanyang Technological University, Singapore)

 Federated Learning for Personalized Image Aesthetics Assessment	36
Decentralized Federated Learning Via Mutual Knowledge Distillation	42
Fedward: Flexible Federated Backdoor Defense Framework with Non-IID Data	48

Quality Assessment I

Contrastive Fusion Representation: Mitigating Adversarial Attacks on VQA Models
 Improving Point Cloud Quality Metrics with Noticeable Possibility Maps
 Exploring Opinion-Unaware Video Quality Assessment with Semantic Affinity Criterion
Just Noticeable Difference Estimation for Screen Content Images: A Content Uncertainty-Guided Approach
Intermediate-Task Learning with Pretrained Model for Synthesized Speech Mos Prediction 378 Hui Wang (Nankai University, China), Xiguang Zheng (Kuaishou Technology, China), and Yong Qin (Nankai University, China)
Cross-Modal-Aware Representation Learning with Syntactic Hypergraph Convolutional Network for VideoQA

Semantic Segmentation

SASFormer: Transformers for Sparsely Annotated Semantic Segmentation Hui Su (Zhejiang Lab, China), Yue Ye (Zhejiang Lab, China), Wei Hua (Zhejiang Lab, China), Lechao Cheng (Zhejiang Lab, China), and Mingli Song (Zhejiang University, China)	390
Holistic Weighted Distillation for Semantic Segmentation Wujie Sun (Zhejiang University, China), Defang Chen (Zhejiang University, China), Can Wang (Zhejiang University, China), Deshi Ye (Zhejiang University, China), Yan Feng (Zhejiang University, China), and Chun Chen (Zhejiang University, China)	396
Knowledge Distillation from 3D to Bird's-Eye-View for LiDAR Semantic Segmentation Feng Jiang (Fudan University, China), Heng Gao (Fudan University, China), Shoumeng Qiu (Fudan University, China), Haiqiang Zhang (Mogo Auto, China), Ru Wan (Mogo Auto, China), and Jian Pu (Fudan University, China)	402
A Pseudo-Dual Self-Rectification Framework for Semantic Segmentation Huazheng Hao (Ningbo University, China), Hui Xiao (Ningbo University, China), Li Dong (Ningbo University, China), Diqun Yan (Ningbo University, China), Dongtai Liang (Ningbo University, China), Jiayan Zhuang (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, China), and Chengbin Peng (Ningbo University; Key Laboratory of Mobile Network Application Technology of Zhejiang Province, China)	408
ICANet: A Lightweight Increasing Context Aided Network for Real-Time Image Semantic Segmentation Lei Chen (Inner Mongolia University, China), Huhe Dai (Inner Mongolia University, China), and Yuan Zheng (Inner Mongolia University, China)	414
Dual-Level Consistency Learning for Unsupervised Domain Adaptive Night-Time Semantic Segmentation <i>Feifei Ding (Hangzhou Dianzi University, China), Jianjun Li (Hangzhou Dianzi University, China), and Wanyong Tian (The Key laboratory of Data Link of China Electronics Technology Group Corporation, China)</i>	420

Zero-Shot Learning

Swap-Reconstruction Autoencoder for Compositional Zero-Shot Learning
Synthetic Feature Assessment for Zero-Shot Object Detection
 Audio-Visual Generalized Zero-Shot Learning Based on Variational Information Bottleneck 450 Yapeng Li (Wuhan University, China; Hubei Luojia Laboratory, China), Yong Luo (Wuhan University, China; Hubei Luojia Laboratory, China), and Bo Du (Wuhan University, China; Hubei Luojia Laboratory, China)
Fine-Grained Primitive Representation Learning for Compositional Zero-Shot Classification 456 Han Jiang (University of Science and Technology of China), Xiaoshan Yang (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Peng Cheng Laboratory), Chaofan Chen (University of Science and Technology of China), and Changsheng Xu (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Peng Cheng Laboratory)

Super Resolution & Inpainting I

Medical Image Super-Resolution via Diagnosis-Guided Attention Jingwei Wang (Anhui University, China), Peng Zhou (Anhui University, China), Xianjun Han (Anhui University, China), and Yanming Chen (Anhui University, China)	462
Denser is Better:cost Distribution Super-Resolution Network for More Accurate sub-Pixel Disparity Hong Zhang (Dalian university of technology), Shenglun Chen (Dalian university of technology), Zhihui Wang (Dalian university of technology), Haojie Li (Dalian university of technology), and Wanli Ouyang (The University of Sydney)	468
DSP-Net: Diverse Structure Prior Network for Image Inpainting Lin Sun (Hunan University, China), Chao Yang (Hunan University, China), and Bin Jiang (Hunan University, China)	474
Joint Feature Aggregation for Stereo Image Super-Resolution Zekun Ai (Xiamen University, China), Xiaotong Luo (Xiamen University, China), and Yanyun Qu (Xiamen University, China)	480
Joint Super-Resolution and Classification Based on Bidirectional Mapping and Multiple Constraints Zijian Yuan (Guangxi University, China), Kan Chang (Guangxi University, China), Zhiquan Liu (Guangxi University, China), Xinjie Wei (Guangxi University, China), and Boning Chen (The University of Melbourne, Australia)	486

Inpainting of Remote Sensing Sea Surface Temperature Image with Multi-scale Physical Constraints <i>Qichen Wei (Ocean University of China, China), Zijie Zuo (Ocean University of China, China), Jie Nie (Ocean University of China, China), Jiahao Du (Ocean University of China, China), Yaning Diao (Ocean University of China, China), Min Ye (Ocean University of China, China), and Xinyue Liang (Ocean University of China, China)</i>	492
Enhancement, Restoration, Deblurring	
Generalized Compressed Video Restoration by Multi-Scale Temporal Fusion and Hierarchical Quality Score Estimation Zhijie Huang (Peking University, China), Tianyi Sun (Peking University, China), Xiaopeng Guo (Peking University, China), Yanze Wang (Peking University, China), and Jun Sun (Peking University, China)	498
Edgeformer: Edge-Enhanced Transformer for High-Quality Image Deblurring Yuan Zou (University of Science and Technology of China, China) and Yinyao Ma (University of Science and Technology of China, China)	504
Generative Iris Prior Embedded Transformer for Iris Restoration Yubo Huang (Beijing University of Posts and Telecommunications, China), Jia Wang (Beijing University of Posts and Telecommunications, China), Peipei Li (Beijing University of Posts and Telecommunications, China), Liuyu Xiang (Beijing University of Posts and Telecommunications, China), Peigang Li (Beijing University of Posts and Telecommunications, China), and Zhaofeng He (Beijing University of Posts and Telecommunications, China)	510
Industrial Image Enhancement Method Based on Multi-exposure Image Sequence Fusion Yangliu Ding (Jiangsu University, China), Keyang Cheng (Jiangsu University, China), Yongzhao Zhan (Jiangsu University, China), and Liuyang Yan (Jiangsu University, China)	516
MBDFNet: Multi-Scale Bidirectional Dynamic Feature Fusion Network for Efficient Image Deblurring Zhongbao Yang (Nanjing University of Science and Technology) and Jinshan Pan (Nanjing University of Science and Technology)	522
Multiple Degraded Image Restoration via Degradation History Estimation Minhua Liu (Shenzhen University, China), Yuanman Li (Shenzhen University, China), Rongqin Liang (Shenzhen University, China), Jiaxiang You (Shenzhen University, China), and Xia Li (Shenzhen University, China)	528

Learning Techniques III

Adapt then Generalize: A Simple Two-Stage Framework for Semi-Supervised Domain Generalization
Han Xie (Fuzhou University, China), Zhifeng Shen (Fuzhou University, China), Shicai Yang (Hikvision Research Institute, China), Weijie Chen (Hikvision Research Institute, China), and Luojun Lin (Fuzhou University, China)
Rethinking Overfitting of Multiple Instance Learning for Whole Slide Image Classification 546 Hongjian Song (South China University of Technology, China), Jie Tang (South China University of Technology, China), Hongzhao Xiao (South China University of Technology, China), and Juncheng Hu (Guilin Medical University, China)
A Unified MRC Framework with Multi-query for Multi-modal Relation Triplets Extraction 552 <i>Qiang Chen (Soochow University, China), Dong Zhang (Soochow</i> <i>University, China), Shoushan Li (Soochow University, China), and</i> <i>Guodong Zhou (Soochow University, China)</i>
 Feature Bias Correction: A Feature Augmentation Method for Long-Tailed Recognition
Recombination Samples Training for Robust Natural Language Visual Reasoning
SG-NeRF: Semantic-Guided Point-Based Neural Radiance Fields
RTMC: A Rubost Trusted Multi-view Classification Framework
DF-CLIP: Towards Disentangled and Fine-Grained Image Editing from Text
Letter Embedding Guidance Diffusion Model for Scene Text Editing

Applications

Cluster-Driven GNN-Based Federated Recommendation with Biased Message Dropout
SQT: Debiased Visual Question Answering via Shuffling Question Types
Fast Personalized Human Activity Recognition on Heuristic Parameter Estimation
 Improving Automatic Singing Skill Evaluation with Timbral Features, Attention, and Singing Voice Separation
Learning High Frequency Surface Functions In Shells
Multi-template Tracker Driven by Cache Manager Algorithm, Towards Multi-distractor Scenarios
Material-Aware Self-Supervised Network for Dynamic 3D Garment Simulation
Multi-Speaker Direction of Arrival Estimation using Audio and Visual Modalities with Convolutional Neural Network
Multi-scale Hybrid Fusion Network for Mandarin Audio-Visual Speech Recognition

Trustworthy Federated Learning for Multimedia II

Cross-Training with Prototypical Distillation for Improving the Generalization of Federated Learning
A Content-based Viewport Prediction Framework for 360Video Using Personalized Federated Learning and Fusion Techniques
Learning Cautiously in Federated Learning with Noisy and Heterogeneous Clients
Multi-tier Client Selection for Mobile Federated Learning Networks
 SWATM: Contribution-Aware Adaptive Federated Learning Framework Based on Augmented Shapley Values
FedDBM: Federated Digital Biomarker for Detecting Parkinson's Disease Progress
Media Coding

Model-Driven Compression for Digital Human using Multi-granularity Representations 690 Ruoke Yan (Peking University, China), Qian Yin (Peking University, China), Xinfeng Zhang (University of Chinese Academy of Sciences, China), and Siwe Ma (Peking University, China)

Meta-ILF: In-Loop Filter with Customized Weights for VVC Intra Coding
 Variable-Rate Neural Image Compression with Joint Content-Channel Features and Accurate R-λ Model
Peer Upsampled Transform Domain Prediction for G-PCC
Optimizing DNN Based Quality Assessment Metric for Image Compression: A Novel Rate Control Method

Few-Shot Learning

Dual-Expert Distillation Network for Few-Shot Segmentation	20
 Rethinking Self-Supervision for Few-Shot Class-Incremental Learning	26
 Two-Level Graph Network for Few-Shot Class-Incremental Learning	'32

Learning Component-Level and Inter-Class Glyph Representation for Few-Shot Font Generation... 738

	Yongliang Su (Shandong University, China), Xu Chen (Shandong University, China), Lei Wu (Shandong University, China), and Xiangxu Meng (Shandong University, China)	
Ma	asked Cross-Image Encoding for Few-Shot Segmentation Wenbo Xu (University of Technology Sydney, Australia, Australia), Huaxi Huang (Commonwealth Scientific and Industrial Research Organisation, Australia), Ming Cheng (University of Technology Sydney, Australia, Australia), Litao Yu (University of Technology Sydney, Australia, Australia), Qiang Wu (University of Technology Sydney, Australia, Australia), and Jian Zhang (University of Technology Sydney, Australia, Australia)	744
Fra	ame-Level Embedding Learning for Few-Shot Bioacoustic Event Detection Xueyang Zhang (iFlytek Research, China), Shuxian Wang (University of Science and Technology of China, China), Jun Du (University of Science and Technology of China, China), Genwei Yan (China University of Mining and Technology, China), Jigang Tang (iFlytek Research, China), Tian Gao (iFlytek Research, China), Xin Fang (iFlytek Research, China), Jia Pan (iFlytek Research, China), and Jianqing Gao (iFlytek Research, China)	750

Action Recognition

 End-to-End Part-Level Action Parsing with Transformer
Leveraging Attribute Knowledge for Open-set Action Recognition
ConCAP: Contrastive Context-Aware Prompt for Resource-Hungry Action Recognition
Bullet-Screen-Emoj Attack with Temporal Difference Noise for Video Action Recognition 774 Yongkang Zhang (Capital Normal University, China), Jun Li (Capital Normal University, China), Zhiping Shi (Capital Normal University, China), Na Jiang (Capital Normal University, China), Qichuan Geng (Capital Normal University, China), and Yifei Pei (Capital Normal University, China)

Action Recognition?
DD-GCN: Directed Diffusion Graph Convolutional Network for Skeleton-Based Human Action Recognition

Knowledge Distillation I

Improving CTC-Based Handwritten Chinese Text Recognition with Cross-Modality Knowledge Distillation and Feature Aggregation Shilian Wu (University of Science and Technology of China, China), Yongrui Li (University of Science and Technology of China, China), and Zengfu Wang (University of Science and Technology of China, China)	. 792
Decoupled Mutual Distillation for Incremental Object Detection Gao-Dong Liu (Xiamen University, China), Wan-Lei Zhao (Xiamen University, China), and Jie Zhao (BodenAl, China)	798
Robust Cross-Modal Knowledge Distillation for Unconstrained Videos Wenke Xia (Renmin University of China; Baidu Research), Xingjian Li (Baidu Research; University of Macau), Andong Deng (Baidu Research; University of Central Florida), Haoyi Xiong (Baidu Research), Dejing Dou (BCG X), and Di Hu (Renmin University of China)	804
Accelerating Diffusion Sampling with Classifier-Based Feature Distillation Wujie Sun (Zhejiang University, China), Defang Chen (Zhejiang University, China), Can Wang (Zhejiang University, China), Deshi Ye (Zhejiang University, China), Yan Feng (Zhejiang University, China), and Chun Chen (Zhejiang University, China)	810
 Semantic Stage-Wise Learning for Knowledge Distillation	816

Discriminative Gradient Adjustment with Coupled Knowledge Distillation for Class	
Incremental Learning	22
Hao Zhang (Sun Yat-sen University, China), Yanxu Hu (Sun Yat-sen	
University, China), Jiawen Peng (Sun Yat-sen University, China), and	
Andy J Ma (Sun Yat-sen University, China; Guangdong Province Key	
Laboratory of Information Security Technology, China; Key Laboratory	
of Machine Intelligence and Advanced Computing, Ministry of Education,	
China)	

Semantic Processing II

SACANet: Scene-Aware Class Attention Network for Semantic Segmentation of Remote Sensing Images
Few-Shot Semantic Segmentation by Exploiting Dynamic and Regional Contexts
DiST-GAN: Distillation-Based Semantic Transfer for Text-Guided Face Generation
Self-Attention Prediction Correction with Channel Suppression for Weakly-SupervisedSemantic SegmentationGuoying Sun (Sun Yat-sen University; Xidian University, China) andMeng Yang (Sun Yat-sen University; Xidian University, China)
Semi-Supervised Semantic Segmentation With Region Relevance
Who, What and Where: Composite-Semantic Instance Search for Story Videos
Semantic Embedding Uncertainty Learning for Image and Text Matching

Multi-view Network Embedding with Structure and Semantic Contrastive Learning
A Self-Training Framework Based on Multi-scale Attention Fusion for Weakly Supervised Semantic Segmentation
3D & Depth II
Depth and DOF Cues Make a Better Defocus Blur Detector
 Explainable Unfolding Network for Joint Edge-Preserving Depth Map Super-Resolution
DFR: Depth from Rotation by Uncalibrated Image Rectification with Latitudinal Motion Assumption
Robust 3D Craniofacial Landmarks Localization by an End-to-End Regression Network
Twins-Mix: Self Mixing in Latent Space for Reasonable Data Augmentation of 3D Computer-Aided Design Generative Modeling
Rendering and Reconstruction Based 3D Portrait Stylization
GT-Net: Variational Autoencoder Networks Based on Graph Transformer for 3D Shape Learning 918
Zhenjiang Du (University of Electronic Science and Technology of China, China), Yi Lu (University of Electronic Science and Technology of China, China), Guan Wang (University of Electronic Science and Technology of China, China), Ning Xie (University of Electronic Science and Technology of China, China), and Yang Yang (University of Electronic Science and Technology of China, China)

M-GCN: Multi-scale Graph Convolutional Network for 3D Point Cloud Classification
A Lightweight Grouped Low-Rank Tensor Approximation Network for 3D Mesh Reconstruction from Videos
Multimedia-based Health Computing
 Hierarchical Attention Learning for Multimodal Classification
An End-to-End Food Portion Estimation Framework Based on Shape Reconstruction from Monocular Image
Unsupervised Domain Adaptation for Neuron Membrane Segmentation Based on Structural Features
 Latent Feature Regularization Based Adversarial Network for Brain Tumor Anomaly Detection 954 Nan Wang (East China Normal University, China), Chengwei Chen (East China Normal University, China), Shaohui Lin (East China Normal University, China), and Lizhuang Ma (East China Normal University, China)
Development of Deep Learning Algorithms for Automated Scoliosis and Abnormal Posture Screening using 2D Back Image
LACL: Lesion-Aware Contrastive Learning Framework for Medical Image Classification

Storage, Transmission & Communication

Collaborative Edge Caching: A Meta Reinforcement Learning Approach with Edge Sampling 972 Yinan Mao (Tsinghua University, China), Bowei He (City University of Hong Kong, China), Shiji Zhou (Tsinghua University, China), Chen Ma (City University of Hong Kong, China), and Zhi Wang (Tsinghua University, China)
 PACC: Perception Aware Congestion Control for Real-Time Communication
Label-Semantic-Enhanced Online Hashing for Efficient Cross-Modal Retrieval
QoE Maximization for Aerial Video Streaming with Multiple Cellular Connected UAVs
Multi-stream Adaptive Offloading of Joint Compressed Video Streams, Feature Streams, and Semantic Streams in Edge Computing Systems
L4S Congestion Control Algorithm for Interactive Low Latency Applications over 5G 1002 Jangwoo Son (Fraunhofer HHI, Germany), Yago Sanchez (Fraunhofer HHI, Germany), Christian Hampe (Deutsche Telekom, Germany), Dominik Schnieders (Deutsche Telekom, Germany), Thomas Schierl (Fraunhofer HHI, Germany), and Cornelius Hellge (Fraunhofer HHI, Germany)

Action Detection & Localization

Weakly-Supervised Temporal Action Localization with Adaptive Clustering and Refining
 Network
 Hao Ren (Fudan University, China), Wu Ran (Fudan University, China),
 Xingson Liu (Fudan University, China), Haoran Ren (Fudan University,
 China), Hong Lu (Fudan University, China), Rui Zhang (Fudan
 University, China), and Cheng Jin (Fudan University, China; Peng Cheng
 Laboratory, China)

Do we Really Need Temporal Convolutions in Action Segmentation?)14
ELAN: Enhancing Temporal Action Detection with Location Awareness	020
MRSN: Multi-relation Support Network for Video Action Detection)26
 Unleashing the Potential of Adjacent Snippets for Weakly-Supervised Temporal Action Localization)32
Compositional Learning in Transformer-Based Human-Object Interaction Detection)38

Contrastive Learning

Hierarchical and Contrastive Representation Learning for Knowledge-Aware Recommendation 1050

Bingchao Wu (Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Yangyuxuan Kang (Intel Labs China, China), Daoguang Zan (Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Bei Guan (Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Yongji Wang (State Key Laboratory of Computer Science, Institute of Software, China; Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)

Qingzhong Chen (Shanghai Jiao Tong University, China), Shilun Cai (Zhongshan Hospital of Fudan University, China), Crystal Cai (Shanghai Jiao Tong University, China), Zefang Yu (Shanghai Jiao Tong University, China), Dahong Qian (Shanghai Jiao Tong University, China), and Suncheng Xiang (Shanghai Jiao Tong University, China)

Establishing a Stronger Baseline for Lightweight Contrastive Models Wenye Lin (Tsinghua University, China), Yifeng Ding (Tsinghua University, China), Zhixiong Cao (Tsinghua University, China), and Hai-Tao Zheng (Tsinghua University, China; Peng Cheng Laboratory)	1062
Graph Information Interaction on Feature and Structure via Cross-Modal Contrastive Learning	1068
Jinyong Wen (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Yuhu Wang (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Chunxia Zhang (Beijing Institute of Technology, China), Shiming Xiang (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), and Chunhong Pan (Institute of Automation, Chinese Academy of Sciences, China)	
Discriminative and Contrastive Consistency for Semi-Supervised Domain Adaptive Image Classification Yidan Fan (Tianjin University, China), Wenhuan Lu (Tianjin University, China), and Yahong Han (Tianjin University; Peng Cheng Laboratory, China)	1074

Sound Processing

CoverHunter: Cover Song Identification with Refined Attention and Alignments
Exploring Pre-Trained Neural Audio Representations for Audio Topic Segmentation
A High-Quality Melody-Aware Peking Opera Synthesizer using Data Augmentation
LC-Beating: An Online System for Beat and Downbeat Tracking using Latency-Controlled Mechanism
Improving Domain Generalization for Sound Classification with Sparse Frequency-Regularized Transformer
MFAE: Masked Frame-Level Autoencoder with Hybrid-Supervision for Low-Resource Music Transcription

3D & Depth I

Self-Supervised Implicit 3D Reconstruction via RGB-D Scans
Object-Aware Calibrated Depth-Guided Transformer for RGB-D Co-Salient Object Detection . 1121 Yang Wu (Inspur Suzhou Intelligent Technology Co., Ltd; State Key Laboratory of High-End Server & Storage Technology (Inspur Group Company Limited; Nanjing University of Information Science and Technology, China), Lingyan Liang (Inspur Suzhou Intelligent Technology Co., Ltd; 2State Key Laboratory of High-End Server & Storage Technology (Inspur Group Company Limited), China), Yaqian Zhao (Inspur Suzhou Intelligent Technology Co., Ltd; 2State Key Laboratory of High-End Server & Storage Technology (Inspur Group Company Limited), China), and Kaihua Zhang (Inspur Suzhou Intelligent Technology Co., Ltd; State Key Laboratory of High-End Server & Storage Technology Co., Ltd; State Key Laboratory of High-End Server & Storage Technology (Inspur Group Company Limited; Nanjing University of Information Science and Technology, China)
A Two-Stage Hybrid CNN-Transformer Network for RGB Guided Indoor Depth Completion 1127 Yufan Deng (Beihang University, China), Xin Deng (Beihang University, China), and Mai Xu (Beihang University, China)
Feature Decoupling and Uncertainty Estimation for 3D Object Detection
Scene Graph Generation using Depth-Based Multimodal Network
Multi-view Token Clustering and Fusion for 3D Object Recognition and Retrieval
Transformer I

Local Consensus Transformer for Correspondence Learning Gang Wang (Shanghai University of Finance and Economics, China) and Yufei Chen (Tongji University, China)	1151
Preserving Locality in Vision Transformers for Class Incremental Learning Bowen Zheng (Nanjing University, China), Da-Wei Zhou (Nanjing University, China), Han-Jia Ye (Nanjing University, China), and De-Chuan Zhan (Nanjing University, China)	1157

MTNet: Learning Modality-Aware Representation with Transformer for RGBT Tracking 1 Ruichao Hou (Nanjing University, China), Boyue Xu (Nanjing University, China), Tongwei Ren (Nanjing University, China), and Gangshan Wu (Nanjing University, China)	163
Adaptive Split-Fusion Transformer	169
Gsformer: Geometric-Spatial Transformer on Point Cloud Completion	175
SDGFormer: An Efficient Convolution Network Structurally Similar to Transformer	181

Security, Privacy & Forensics I

General GAN-Generated Image Detection by Data Augmentation in Fingerprint Domain 1 Huaming Wang (Jinan University, China), Jianwei Fei (Nanjing University of Information Science and Technology, China), Yunshu Dai (Nanjing University of Information Science and Technology, China), Lingyun Leng (Jinan University, China), and Zhihua Xia (Jinan University, China)	187
 Image Protection for Robust Cropping Localization and Recovery	193
Towards Diverse Liveness Feature Representation and Domain Expansion for Cross-Domain F Anti-Spoofing	ace 199

Joint Statistical and Causal Feature Modulated Face Anti-Spoofing
 Watermarks for Generative Adversarial Network Based on Steganographic Invisible Backdoor 1211 Yuwei Zeng (Fudan University, China), Jingxuan Tan (Fudan University, China), Zhengxin You (Fudan University, China), Zhenxing Qian (Fudan University, China), and Xinpeng Zhang (Fudan University, China)
Promoting Adversarial Transferability with Enhanced Loss Flatness
Face Poison: Obstructing DeepFakes by Disrupting Face Detection
ABTD-Net: Autonomous Baggage Threat Detection Networks for X-ray Images

An Explainable Multi-view Semantic Fusion Model for Multimodal Fake News Detection 12 <i>Thi Zeng (Huazhong Agricultural University, China; Key Laboratory of</i> <i>Smart Farming for Agricultural Animals, China; Hubei Engineering</i> <i>Technology Research Center of Agricultural Big Data, China;</i> <i>Engineering Research Center of Intelligent Technology for Agriculture,</i> <i>Ministry of Education, China), Mingmin Wu (Huazhong Agricultural</i> <i>University, China; Key Laboratory of Smart Farming for Agricultural</i> <i>Animals, China; Hubei Engineering Technology Research Center of</i> <i>Agricultural Big Data, China; Engineering Research Center of</i> <i>Intelligent Technology for Agriculture, Ministry of Education, China),</i> <i>Guodong Li (Xinjiang Technical Institute of Physics and Chemistry,</i> <i>Chinese Academy of Sciences, China), Xiang Li (Huazhong Agricultural</i> <i>University, China; Key Laboratory of Smart Farming for Agricultural</i> <i>Animals, China; Hubei Engineering Technology Research Center of</i> <i>Agricultural Big Data, China; Engineering Research Center of</i> <i>Intelligent Technology for Agriculture, Ministry of Education, China),</i> <i>Zhongqiang Huang (Huazhong Agricultural University, China; Key</i> <i>Laboratory of Smart Farming for Agricultural University, China; Key</i> <i>Laboratory of Smart Farming for Agricultural Animals, China; Hubei</i> <i>Engineering Technology Research Center of Agricultural Big Data,</i> <i>China; Engineering Research Center of Intelligent Technology for</i> <i>Agriculture, Ministry of Education, China), and Ying Sha (Huazhong</i> <i>Agricultural University, China; Key Laboratory of Smart Farming for</i> <i>Agricultural Animals, China; Hubei Engineering Technology Research</i> <i>Center of Agricultural Big Data, China; Engineering Technology Research</i>	35
mproving CoatNet for Spatial and JPEG Domain Steganalysis	41

Super Resolution & Inpainting II

Image Super-Resolution with Implicit Texture Pattern Modulation Shuai Hao (Dalian University of Technology, China), Jialin Yang (Dalian University of Technology, China), Xu Jia (Dalian University of Technology, China), You He (Naval Aviation University, China), and Huchuan Lu (Dalian University of Technology, China)	1247
Towards Efficient Large Mask Inpainting via Knowledge Transfer Feihong Qin (Nanjing University of Aeronautics and Astronautics, China) and Liyan Zhang (Nanjing University of Aeronautics and Astronautics, China)	1253
GRNN:Recurrent Neural Network Based on Ghost Features for Video Super-Resolution Yutong Guo (East China University of Science and Technology, China)	1259

 Structure First Detail Next: Image Inpainting with Pyramid Generator	265
Learning a Multilevel Cooperative View Reconstruction Network for Light Field Angular Super-Resolution	271
Deyang Liu (Jiangxi University of Finance and Economics), Yifan Mao (Anqing Normal Unviersity, China), Xiaofei Zhou (Hangzhou Dianzi University, China), Ping An (Shanghai University, China), and Yuming Fang (Jiangxi University of Finance and Economics, China)	
NLCUnet: Single-Image Super-Resolution Network with Hairline Details	277
Progressive Generative Adversarial Network for High-Resolution Image Inpainting	283

Quality Enhancement And Assessment For Low-Quality Multimedia Data Understanding

An Order-Complexity Model for Aesthetic Quality Assessment of Symbolic Homophony Music Scores	1289
 Collaborative Auto-Encoding for Blind Image Quality Assessment	1295

No Reference Image Quality Assessment via Quality Difference Learning	301
Low-Light Image Enhancement by Learning Contrastive Representations in Spatial and Frequency Domains	1307
Noise Adaptive Speech Intelligibility Enhancement Based on Improved StarGAN	313
 Image Template Matching via Dense and Consistent Contrastive Learning	319

UAV & Underwater Media Processing

Deep Reinforcement Learning with Semi-Expert Distillation for Autonomous UAV Cinematography Andreas Sochopoulos (Aristotle University of Thessaloniki, Greece), Ioannis Mademlis (Aristotle University of Thessaloniki, Greece), Evangelos Charalampakis (Aristotle University of Thessaloniki, Greece), Sotirios Papadopoulos (Aristotle University of Thessaloniki, Greece), and Ioannis Pitas (Aristotle University of Thessaloniki, Greece)	1325
Learning Disentangled Representation with Mutual Information Maximization for Real-Time UAV Tracking	1331
Transmission and Color-Guided Network for Underwater Image Enhancement Pan Mu (Zhejiang University of Technology, China), Jing Fang (Zhejiang University of Technology, China), Haotian Qian (Zhejiang University of Technology, China), and Cong Bai (Zhejiang University of Technology, China)	1337

Invertible Underwater Image Enhancement Network Fei Li (China Agricultural University, China), Zhenbo Li (China Agricultural University, China), Xinxin Zhang (China Agricultural University, China), Meng Ding (The State University of New York, USA), and Zikun Liu (Samsung Research China (SRC-B), China)	1343
Towards Discriminative Representations with Contrastive Instances for Real-Time UAV Tracking Dan Zeng (Southern University of Science and Technology, China), Mingliang Zou (Guilin University of Technology, China), Xucheng Wang (Guilin University of Technology, China), and Shuiwang Li (Guilin	1349
University of Technology, China) Underwater Image Enhancement with an Adaptive Self Supervised Network Rizwan Khan (Zhejiang Normal University (ZJNU); Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, ZJNU), Atif Mehmood (Zhejiang Normal University (ZJNU)), Saeed Akbar (Zhejiang Normal University (ZJNU)), and Zhonglong Zheng (Zhejiang Normal University (ZJNU); Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, ZJNU)	1355

Sentiment, Expression & Emotion

Privacy-Protected Facial Expression Recognition Augmented by High-Resolution Facial Images 1361
Cong Liang (University of Science and Technology of China, China), Shangfei Wang (University of Science and Technology of China, China), and Xiaoping Chen (University of Science and Technology of China, China)
Multimodal Sentiment Analysis with Preferential Fusion and Distance-Aware Contrastive Learning
Feipeng Ma (University of Science and Technology of China, China), Yueyi Zhang (University of Science and Technology of China, China), and Xiaoyan Sun (University of Science and Technology of China, China)
A Multi-view Co-learning Method for Multimodal Sentiment Analysis
Multimodal Aspect-Based Sentiment Classification with Knowledge-Injected Transformer 1379 Zenan Xu (Sun Yat-sen University, China), Qinliang Su (Sun Yat-sen University; Guangdong Key Laboratory of Big Data Analysis and Processing, China), and Junxi Xiao (Sun Yat-sen University, China)
STA-GCN:Spatial Temporal Adaptive Graph Convolutional Network for Gait Emotion Recognition 1385
Chuang Chen (Anhui University, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China) and Xiao Sun (Hefei University of Technology, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China)

Adaptive Graph Attention Network with Temporal Fusion for Micro-Expressions Recognition 1391

Yiming Zhang (University of Science and Technology of China, China), Hao Wang (University of Science and Technology of China, China), Yifan Xu (University of Science and Technology of China, China), Xinglong Mao (University of Science and Technology of China, China), Tong Xu (University of Science and Technology of China, China), Sirui Zhao (University of Science and Technology of China, China), and Enhong Chen (University of Science and Technology of China, China)

Transformer II

Deep Homography Estimation with Feature Correlation Transformer
ADATS: Adaptive RoI-Align Based Transformer for End-to-End Text Spotting
Trajectory Alignment Based Multi-scaled Temporal Attention for Efficient Video Transformer 1409 Zao Zhang (The University of Sydney, Australia), Dong Yuan (The University of Sydney, Australia), Yu Zhang (The University of Sydney, Australia), and Wei Bao (The University of Sydney, Australia)
Swin-ASNet: An Adaptive RGB-Selection Network with Swin Transformer for Retinal Vessel Segmentation
OAFormer: Occlusion Aware Transformer for Camouflaged Object Detection
Know Who You Are: Learning Target-Aware Transformer for Object Tracking

Model Simplification

A Novel Channel Pruning Approach Based on Local Attention and Global Ranking for CNN Model Compression
China), Peiguang Jing (Tianjin University, China), Jinghui Chu (Tianjin University, China), and Fugui Fan (Tianjin University, China)
Splittable Pattern-Specific Weight Pruning for Deep Neural Networks
Dynamic Dense-Sparse Representations for Real-Time Question Answering
DynaSlim: Dynamic Slimming for Vision Transformers
Post-Training Quantization for Vision Transformer in Transformed Domain
Residual Based Hierarchical Feature Compression for Multi-task Machine Vision

Cross-Modality & Cross-Domain

Cross-Modality Fourier Feature for Medical Image Synthesis Mei Ma (NingXia University, China), Ling Lin (NingXia University, China), Heng Wang (Ningxia University, China; Collaborative Innovation Center for Ningxia Big Data and Artiffcial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, China), Zhendong Li (Ningxia University, China; Collaborative Innovation Center for Ningxia Big Data and Artiffcial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, China; Key Laboratory of the Internet of Water and Digital Water Governance of the Yellow River in Ningxia, Yinchuan, China), and Hao Liu (Ningxia University, China; Collaborative Innovation Center for Ningxia Big Data and Artiffcial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, China; Key Laboratory of the Internet of Water and Digital Water Governance of the Yellow River in Ningxia, Yinchuan, China; Key Laboratory of the Internet of Water and Digital Water in Ningxia Municipality and Ministry of	1475
Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning for Object Classification in 3D Point Clouds Ziwei Wang (CSIRO Data61), Reza Arablouei (CSIRO Data61), Jiajun Liu (CSIRO Data61), Paulo Borges (CSIRO Data61), Greg Bishop-Hurley (CSIRO Agriculture & Food), and Nicholas Heaney (Evolve Group)	1481
Temporal-Enhanced Cross-Modality Fusion Network for Video Sentence Grounding Zezhong Lv (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China) and Bing Su (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China)	. 1487
A Cross-direction Task Decoupling Network for Small Logo Detection Sujuan Hou (Shandong Normal University, China), Xingzhuo Li (Shandong Normal University, China), Weiqing Min (Institute of Computing Technology, Chinese Academy of Sciences, China), Jiacheng Li (Shandong Normal University, China), Jing Wang (Shandong Normal University, China), Yuanjie Zheng (Shandong Normal University, China), and Shuqiang Jiang (Institute of Computing Technology, Chinese Academy of Sciences, China)	. 1493
CHAN: Cross-Modal Hybrid Attention Network for Temporal Language Grounding in Videos Wen Wang (Zhejiang Lab, China), Ling Zhong (Zhejiang Lab, China), Guang Gao (Zhejiang Lab, China), Minhong Wan (Zhejiang Lab, China), and Jason Gu (Dalhousie University, Canada)	. 1499
Multimodal	
DMRL-Net: Differentiable Multi-view Representation Learning Network Zihan Fang (Fuzhou University, China), Shide Du (Fuzhou University, China), Yaqing Chen (Fuzhou University, China), and Shiping Wang (Fuzhou University, China)	1505

Atomic-Action-Based Contrastive Network for Weakly Supervised Temporal Language Grounding 1523

Hongzhou Wu (National University of Defense Technology, China), Yifan Lyu (University of Chinese Academy of Sciences, China), Xingyu Shen (National University of Defense Technology, China), Xuechen Zhao (National University of Defense Technology, China), Mengzhu Wang (National University of Defense Technology, China), Xiang Zhang (National University of Defense Technology, China), and Zhigang Luo (National University of Defense Technology, China)

Xiaoqian Liu (Beijing University of Posts and Telecommunications, China), Xiuyun Li (The Technology Innovation Center of Cultural Tourism Big Data of Hebei Province, China; Hebei Normal University for Nationalities, China), Yuan Cao (Beijing University of Posts and Telecommunications, China), Fan Zhang (Beijing University of Posts and Telecommunications, China), Xiongnan Jin (Knowledge Discovery and Data Mining Research Center, Zhejiang Lab, China), and Jinpeng Chen (Beijing University of Posts and Telecommunications, China)

Data & Labelling for Machine Learning II

Noisy-to-Clean Label Learning for Medical Image Segmentation Zihao Bu (Jiangsu University, China), Xiaoxiao Wang (Zhenjiang First People's Hospital, China), Chengjian Qiu (Jiangsu University, China), Zhixuan Wang (Zhenjiang First People's Hospital, China), Kai Han (Jiangsu University, China), Xiuhong Shan (Zhenjiang First People's Hospital, China), and Zhe Liu (Jiangsu University, China)	1553
Learning Discrimination from Contaminated Data: Multi-instance Learning for Unsupervised Anomaly Detection Wenhao Hu (Zhejiang University, China), Yingying Liu (Zhejiang University, China), Jiazhen Xu (Zhejiang University, China), Xuanyu Chen (Zhejiang University, China), and Gaoang Wang (Zhejiang University, China)	1559
Rethinking Video Error Concealment: A Benchmark Dataset Bin Zheng (Shenzhen University, China) and Miaohui Wang (Shenzhen University, China)	1565
Visual Place Recognition Datasets for Indoor Spaces Zemian Guo (Shenzhen University, China) and Yingying Zhu (Shenzhen University, China)	1571
 AutoKary2022: A Large-Scale Densely Annotated Dataset for Chromosome Instance Segmentation Dan You (Hangzhou City University, China), Pengcheng Xia (Hangzhou City University, China), Qiuzhu Chen (Hangzhou City University, China), Minghui Wu (Hangzhou City University, China), Suncheng Xiang (Shanghai Jiao Tong University, China), and Jun Wang (Hangzhou City University, China) 	1577

Visual Information Processing II

Designing Optics and Algorithm for Ultra-Thin, High-Speed Lensless Cameras Salman S. Khan (IIT Madras, India), Vivek Boominathan (Rice University, USA), Ashok Veeraraghavan (Rice University, USA), and Kaushik Mitra (IIT Madras, India)	1583
Dual-Domain Feature Learning and Memory-Enhanced Unfolding Network for Spectral Compressive Imaging Yangke Ying (Beijing University of Technology, China), Jin Wang (Beijing University of Technology, China), Yunhui Shi (Beijing University of Technology, China), and Baocai Yin (Beijing University of Technology, China)	1589
 Image Compressed Sensing using Multi-scale Characteristic Residual Learning Shumian Yang (Qilu University of Technology (Shandong Academy of Sciences), China), Xinxin Xiang (Qilu University of Technology (Shandong Academy of Sciences), China), Fenghua Tong (Qilu University of Technology (Shandong Academy of Sciences), China), Dawei Zhao (Qilu University of Technology (Shandong Academy of Sciences), China), and Xin Li (Qilu University of Technology (Shandong Academy of Sciences), China), and Sciences), China) 	1595

LKD-Net: Large Kernel Convolution Network for Single Image Dehazing	1
 Video Noise Removal using Progressive Decomposition with Conditional Invertibility	7
DocMAE: Document Image Rectification via Self-Supervised Representation Learning	3
Information-Density Masking Strategy for Masked Image Modeling	9
 Histogram-Guided Video Colorization Structure with Spatial-Temporal Connection	5
Mask-Guided Stamp Erasure for Real Document Image	1
Attention-Aware Anime Line Drawing Colorization	7
 Edge-Aware Neural Implicit Surface Reconstruction	3
Handwriting Curve Interpolation using Gradient Graph Laplacian Regularizer	9

Optimized Media Delivery

Comparison of HDR Quality Metrics in Per-Clip Lagrangian Multiplier Optimisation with AV1 . 1655 Vibhoothi Vibhoothi (Trinity College Dublin, Ireland), François Pitié (Trinity College Dublin, Ireland), Angeliki Katsenou (Trinity College Dublin, Ireland), Yeping Su (Google Inc, USA), Balu Adsumilli (Google Inc, USA), and Anil Kokaram (Trinity College Dublin, Ireland)
A Real-Time Blind Quality-of-Experience Assessment Metric for HTTP Adaptive Streaming 1661 Chunyi Li (Shanghai Jiao Tong University, China), May Lim (National University of Singapore, Singapore), Abdelhak Bentaleb (Concordia University, Canada), and Roger Zimmermann (National University of Singapore, Singapore)
Towards Guidelines for Subjective Haptic Quality Assessment: A Case Study on Quality Assessment of Compressed Haptic Signals
Just Noticeable Difference-Aware Per-Scene Bitrate-Laddering for Adaptive Video Streaming 1673 Vignesh V Menon (Alpen-Adria-Universität Klagenfurt, Austria), Jingwen Zhu (Nantes Universite, France), Prajit T Rajendran (Université Paris-Saclay, France), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt, Austria), Patrick Le Callet (Nantes Universite, France), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria)
Optimizing Video Streaming for Sustainability and Quality: The Role of Preset Selection in Per-Title Encoding
Anableps: Adapting Bitrate for Real-Time Communication using VBR-Encoded Video
Speech Processing

Adversarial Speaker Disentanglement using Unannotated External Data for Self-Supervised Representation-Based Voice Conversion Xintao Zhao (Tsinghua University, China), Shuai Wang (Tencent Inc, China), Yang Chao (Tencent Inc, China), Zhiyong Wu (Tsinghua University, China), and Helen Meng (The Chinese University of Hong Kong, China)	1691
A Disentangled Recurrent Variational Autoencoder for Speech Enhancement Hegen Yan (Ningbo University, China) and Zhihua Lu (Ningbo University, China)	1697

SnakeGAN: A Universal Vocoder Leveraging DDSP Prior Knowledge and Periodic Inductive Bias 1703

Sipan Li (Tsinghua University, China), Songxiang Liu (Tencent Inc, China), Luwen Zhang (Tsinghua University, China), Xiang Li (Tsinghua University, China), Yanyao Bian (Tencent Inc, China), Chao Weng (Tencent Inc, China), Zhiyong Wu (Tsinghua University, China), and Helen Meng (The Chinese University of Hong Kong, China)
Cra-Diffuse: Improved Cross-Domain Speech Enhancement Based on Diffusion Model with T-F Domain Pre-Denoising
A Joint Network Based on Interactive Attention for Speech Emotion Recognition
Speech Topic Classification Based on Pre-Trained and Graph Networks

Face Computing

Unsupervised 3D Face Reconstruction with Reprogramming Skip Connections	Chin'a), Huajun Zhou (Sun g Lai (Sun Yat-sen University, ory of Information Security chine Intelligence and Advanced
EvenFace: Deep Face Recognition with Uniform Distribution of Identities	Yingfan Tao (Tsinghua iversity, China), Guijin Wang
Large Pose Friendly Face Reenactment using Subtle Motions	res; University of Chinese ninese Academy of Sciences, ces; University of Chinese inese Academy of Sciences,

MSAbox: A Spatially Stable Face Detector	745
DR-Net: A Multi-view Face Synthesis Network Driven by Dual Representation	751
MA-NeRF: Motion-Assisted Neural Radiance Fields for Face Synthesis from Sparse Images 1757 Weichen Zhang (Tsinghua University, China), Xiang Zhou (Tsinghua University, China), Yukang Cao (The University of Hong Kong, China), WenSen Feng (Huawei Technologies, China), and Chun Yuan (Tsinghua University, China)	757

Robustness

Enhancing Robustness of Deep Networks Against Noisy Labels Based on a Two-Phase Formulation of Their Learning Behavior	763
Robust and Efficient Memory Network for Video Object Segmentation	'69
 Weight-Based Regularization for Improving Robustness in Image Classification	'75
Robust Structured Sparse Subspace Clustering with Neighborhood Preserving Projection 17 Wenyi Feng (East China University of Science and Technology; Qinghai University, P. R. China), Wei Guo (East China University of Science and Technology, P. R. China), Ting Xiao (East China University of Science and Technology, P. R. China), and Zhe Wang (East China University of Science and Technology, P. R. China)	'81
Improving Robustness of Learning-Based Adaptive Video Streaming in Wildly Fluctuating Networks	'87
Robust Person Re-identification with Wireless Signals	793

Data & Labelling for Machine Learning I

GradSalMix: Gradient Saliency-Based Mix for Image Data Augmentation Tao Hong (Peking University, China), Ya Wang (Tencent Inc., China), Xingwu Sun (Tencent Inc.; University of Macau, China), Fengzong Lian (Tencent Inc., China), Zhanhui Kang (Tencent Inc., China), and Jinwen Ma (Peking University, China)	1799
Get a Head Start: Targeted Labeling at Source with Limited Annotation Overhead for Semi-Supervised Learning <i>Hui Zhu (Institute of Computing Technology, Chinese Academy of</i> <i>Sciences; University of Chinese Academy of Sciences), Yongchun Lu</i> <i>(Mashang Consumer Finance Co., Ltd.), Qin Ma (China Agricultural</i> <i>University), Xunyi Zhou (Mashang Consumer Finance Co., Ltd.), Fen Xia</i> <i>(Mashang Consumer Finance Co., Ltd.), Guoqing Zhao (Mashang Consumer</i> <i>Finance Co., Ltd.), Ning Jiang (Mashang Consumer Finance Co., Ltd.),</i> <i>and Xiaofang Zhao (Institute of Computing Technology, Chinese Academy</i> <i>of Sciences; Institute of Intelligent Computing Technology; University</i> <i>of Chinese Academy of Sciences)</i>	1805
Partial Multi-label Learning: Exploration of Binary Ground-Truth Labels Yan Hu (Guangdong University of Technology, China), Xiaozhao Fang (Guangdong University of Technology, China), Weijun Lv (Guangdong University of Technology, China), and Peipei Kang (Guangdong University of Technology, China)	1811
Customizing Synthetic Data for Data-Free Student Learning Shiya Luo (Zhejiang University, China), Defang Chen (Zhejiang University, China), and Can Wang (Zhejiang University, China)	1817
A Geometrical Characterization on Feature Density of Image Datasets Zhen Liang (National University of Defense Technology, China), Changyuan Zhao (Chinese Academy of Sciences, China), Wanwei Liu (National University of Defense Technology, China), Bai Xue (Chinese Academy of Sciences, China), and Wenjing Yang (National University of Defense Technology, China)	1823
Federated Domain Adaptation via Pseudo-Label Refinement Gang Li (Zhejiang University, China), Qifei Zhang (Zhejiang University, China), Peizheng Wang (Zhejiang University, China), Jie Zhang (Zhejiang University, China), and Chao Wu (Zhejiang University, China)	1829

Learning Techniques I

Learning Continuous Piecewise non-Linear Activation Functions for Deep Neural Networks .. 1835 Xinchen Gao (UESTC, China), Yawei Li (ETH Zurich, Switzerland), Wen Li (UESTC, China), Lixin Duan (UESTC, China), Luc Van Gool (ETH Zurich, Switzerland), Luca Benini (ETH Zurich, Switzerland), and Michele Magno (ETH Zurich, Switzerland) Discriminative Spatiotemporal Alignment for Self-Supervised Video Correspondence Learning 1841

Qiaoqiao Wei (Tsinghua University, China), Hui Zhang (Tsinghua University, China), and Jun-Hai Yong (Tsinghua University, China)	
Unsupervised Fashion Style Learning by Solving Fashion Jigsaw Puzzles Jia Chen (Wuhan Textile University; Engineering Research Center of Hubei Province for Clothing Information, China), Haidongqing Yuan (Wuhan Textile University), Fei Fang (Wuhan Textile University), Tao Peng (Wuhan Textile University), and Xinrong Hu (Wuhan Textile University)	. 1847
Anchor-Free Action Proposal Network with Uncertainty Estimation Selen Pehlivan (Aalto University, Finland) and Jorma Laaksonen (Aalto University, Finland)	. 1853
Scale-Aware Task Message Transferring for Multi-task Learning Shalayiding Sirejiding (Shanghai Jiao Tong University, China), Yuxiang Lu (Shanghai Jiao Tong University, China), Hongtao Lu (Shanghai Jiao Tong University, China), and Yue Ding (Shanghai Jiao Tong University, China)	. 1859
Improving the Homonhily of Heterophilic Graphs for Semi-Supervised Node Classification	1865

Improving the Homophily of Heterophilic Graphs for Semi-Supervised Node Classification ... 1865 Yuhu Wang (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Shiming Xiang (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), and Chunhong Pan (Institute of Automation, Chinese Academy of Sciences, China)

Transformer III

Sitpose: A Siamese Convolutional Transformer for Relative Camera Pose Estimation Kai Leng (Harbin Institute of Technology), Cong Yang (Soochow University), Wei Sui (Horizon Robotics), Jie Liu (Harbin Institute of Technology), and Zhijun Li (Harbin Institute of Technology; Soochow University)	1871
TextFormer: Component-Aware Text Segmentation with Transformer Xiaocong Wang (Fudan University, China), Chaoyue Wu (Fudan University, China), Haiyang Yu (Fudan University, China), Bin Li (Fudan University, China), and Xiangyang Xue (Fudan University, China)	1877
SCFormer: Integrating Hybrid Features in Vision Transformers Hui Lu (Utrecht University), Ronald Poppe (Utrecht University), and Albert Ali Salah (Bogazici University, Turkey)	1883
 Image Deraining Transformer with Sparsity and Frequency Guidance Tianyu Song (Dalian Polytechnic University, China), Pengpeng Li (Dalian Polytechnic University, China), Guiyue Jin (Dalian Polytechnic University, China), Jiyu Jin (Dalian Polytechnic University, China), Shumin Fan (Dalian Polytechnic University, China), and Xiang Chen (Nanjing University of Science and Technology, China) 	1889

ShiftFormer: Spatial-Temporal Shift Operation in Video Transformer Beiying Yang (University of Chinese Academy of Sciences; Chinese Academy of Sciences), Guibo Zhu (University Chinese Academy of Sciences; Chinese Academy of Sciences; Wuhan AI Research), Guojing Ge (Chinese Academy of Sciences), Jinzhao Luo (University of Chinese Academy of Sciences; Chinese Academy of Sciences), and Jinqiao Wang (University Chinese Academy of Sciences; Chinese Academy of Sciences; Wuhan AI Research; Peng Cheng Laboratory)	1895
ABMNet: Coupling Transformer with CNN Based on Adams-Bashforth-Moulton Method for In Small Target Detection <i>Tianxiang Chen (University of Science and Technology of China; Chinese</i> <i>Academy of Sciences, China), Qi Chu (University of Science and</i> <i>Technology of China; Chinese Academy of Sciences, China), Zhentao Tan</i> <i>(University of Science and Technology of China; Alibaba DAMO Academy;</i> <i>Chinese Academy of Sciences, China), Bin Liu (University of Science</i> <i>and Technology of China; Chinese Academy of Sciences, China), and</i> <i>Nenghai Yu (University of Science and Technology of China; Chinese</i> <i>Academy of Sciences, China)</i>	
 ART: An Efficient Transformer with Atrous Residual Learning for Medical Images Yue He (Northeastern University, China), Yufan Wang (Northeastern University, China), Linlong He (Northeastern University, China), Guangyao Pan (National University of Singapore (Suzhou) Research Institute, China), and He Ma (Northeastern University, China) 	1907
MedFCT: A Frequency Domain Joint CNN-Transformer Network for Semi-Supervised Medical Segmentation Shiao Xie (Zhejiang University, China), Huimin Huang (Zhejiang University, China), Ziwei Niu (Zhejiang University, China), Lanfen Lin (Zhejiang University, China), and Yen-Wei Chen (Ritsumeikan University, Japan)	
Cross-Cycle Transformer-Based Stitching Method for Low-Resolution Borehole Images Jia Chen (Wuhan Textile University; Engineering Research Center of Hubei Province for Clothing Information, China), Zhenpeng Fu (WuHan textile university), Fang Fei (Wuhan Textile University), Mingfu Xiong (WuHan Textile University), Xinrong Hu (Wuhan Textile University), and Tao Peng (Wuhan Textile University)	1919
Improving Vision Transformers with Nested Multi-head Attentions Jiquan Peng (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), Chaozhuo Li (Microsoft Research Asia, China), Yi Zhao (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), Yuting Lin (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), Xiaohan Fang (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), and Jibing Gong (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), and Jibing Gong (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), and Jibing Gong (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province), and Jibing Gong (Yanshan University, China; The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province)	1925

Knowledge Distillation II

KnowledgeIE: Unifying Online-Offline Distillation Based on Knowledge Inheritance and Evolution Yiqing Shen (Johns Hopkins University) and Jing Ke (Shanghai Jiao Tong University)	1931
Collaborative Spatial-Temporal Distillation for Efficient Video Deraining	937
Adaptive Multi-teacher Knowledge Distillation with Meta-Learning	943
Towards General and Fast Video Derain via Knowledge Distillation	1949

Media Retrieval II

Deep Metric Multi-view Hashing for Multimedia Retrieval Jian Zhu (Zhejiang Lab, China), Xiaohu Ruan (vivo AI lab, China), Yongli Cheng (Fuzhou University, China), Zhangmin Huang (Zhejiang Lab, China), Yu Cui (Zhejiang Lab, China), and Lingfang Zeng (Zhejiang Lab, China)	1955
 Mim: Lightweight Multi-Modal Interaction Model for Joint Video Moment Retrieval and Highlight Detection Jinyu Li (National Engineering Research Center of Digital Life), Fuwei Zhang (National Engineering Research Center of Digital Life), Shujin Lin (Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion; Sun Yat-sen University, China), Fan Zhou (National Engineering Research Center of Digital Life), and Ruomei Wang (National Engineering Research Center of Digital Life) 	1961
Image-Text Retrieval via Preserving Main Semantics of Vision Xu Zhang (University of Electronic Science and Technology of China, China), Xinzheng Niu (University of Electronic Science and Technology of China, China), Philippe Fournier-Viger (Shenzhen University, China), and Xudong Dai (University of Electronic Science and Technology of China, China)	1967
Progressive Event Alignment Network for Partial Relevant Video Retrieval Xun Jiang (University of Electronic Science and Technology of China, China), Zhiguo Chen (University of Electronic Science and Technology of China, China), Xing Xu (University of Electronic Science and Technology of China, China), Fumin Shen (University of Electronic Science and Technology of China, China), Zuo Cao (Meituan, China), and Xunliang Cai (Meituan, China)	1973

Immersive Video Technologies for the Metaverse

Understanding and Improving Perceptual Quality of Volumetric Video Streaming
Adaptive Geometry Reconstruction for Geometry-Based Point Cloud Compression
CAS-Net Cascade Attention-Based Sampling Neural Network for Point Cloud Simplification 1991 Chen Chen (Shandong University, China), Hui Yuan (Shandong University, China), Hao Liu (Yantai University, China), Junhui Hou (City University of Hong Kong, China), and Raouf Hamzaoui (De Montfort University, UK)
PCHM-Net: A New Point Cloud Compression Framework for Both Human Vision and Machine Vision
Lei Liu (Beihang University, China), Zhihao Hu (Beihang University, China), and Jing Zhang (Beihang University, China)
Large-Scale Spatio-Temporal Attention Based Entropy Model for Point Cloud Compression 2003 Rui Song (Peking University, China; Peng Cheng Laboratory, China), Chunyang Fu (Peking University, China), Shan Liu (Tencent America, United States of America), and Ge Li (Peking University, China)
Edge-FVV: Free Viewpoint Video Streaming by Learning at the Edge

3D & Point Cloud

Weighted Point Cloud Normal Estimation	5
 HybridPoint: Point Cloud Registration Based on Hybrid Point Sampling and Matching	1

Learning Deep Photometric Stereo Network with Reflectance Priors
SST: Real-Time End-to-end Monocular 3D Reconstruction via Sparse Spatial-Temporal Guidance 2033
Chenyangguang Zhang (Tsinghua University), Zhiqiang Lou (Tsinghua University), Yan Di (Technical University of Munich), Federico Tombari (Technical University of Munich; Google), and Xiangyang Ji (Tsinghua University, China)
Implicit Neural Distance Optimization for Mesh Neural Subdivision
MRRA-GAN: Multi-resolution Relation-Aware GAN for Point Cloud Completion

Attention based Machine Learning

LSAS: Lightweight Sub-Attention Strategy for Alleviating Attention Bias Problem Shanshan Zhong (Sun Yat-Sen University, China), Wushao Wen (Sun Yat-Sen University, China), Jinghui Qin (Guangdong University of Technology, China), Qiangpu Chen (Sun Yat-sen University, China), and Zhongzhan Huang (Sun Yat-Sen University, China)	2051
LA-Layer: General Local Attention Layer for full Attention Networks Hui Lu (Utrecht University), Ronald Poppe (Utrecht University), and Albert Ali Salah (Bogazici University, Turkey)	2057
A Progressive Gated Attention Model for Fine-Grained Visual Classification Qiangxi Zhu (Guangxi Normal University, China) and Zhixin Li (Guangxi Normal University, China)	2063
Flow-Guided Attention Deformation for Person Image Generation Yubo Wu (Peking University, China), Yurui Ren (Bytedance Inc.), Yuanqi Chen (Peking University, China), and Ge Li (Peking University, China)	2069

 Explicit Attention Modeling for Pedestrian Attribute Recognition	075
 Hidden Follower Detection via Refined Gaze and Walking State Estimation	081

Generation

SketchScene: Scene Sketch to Image Generation with Diffusion Models	7
DanceU: Motion-and-Music-Based Automatic Effect Generation for Dance Videos	3
 FONT: Flow-guided One-shot Talking Head Generation with Natural Head Motions	Э
UFS-Net: Unsupervised Network For Fashion Style Editing and Generation	5
Graph Convolutional GRU for Music-Oriented Dance Choreography Generation	1

Cclap: Controllable Chinese Landscape Painting Generation Via Latent Diffusion Model2117 Zhongqi Wang (Beijing Institute of Technology, China), Jie Zhang (Chinese Academy of Sciences, China), Zhilong Ji (Tomorrow Advancing Life, China), Jinfeng Bai (Tomorrow Advancing Life, China), and Shiguang Shan (Chinese Academy of Sciences, China)

Understanding

Prototype Calibration for Long Tailed Recognition
ReadLM: Understanding Structured Document using Reading Order and Relationship of Adjacent Texts
Open-Vocabulary Multi-label Image Classification with Pretrained Vision-Language Model 2135 Son D.Dao (Monash University, Australia), Dat Huynh (Northeastern University, United States), He Zhao (CSIRO's Data61, Australia), Dinh Phung (Monash University, Australia), and Jianfei Cai (Monash University, Australia)
RASNet: A Reinforcement Assistant Network for Frame Selection in Video-Based Posture Recognition
Dynamic Spatial-Temporal Hypergraph Convolutional Network for Skeleton-Based Action Recognition
A Token-Wise Graph-Based Framework for Multimodal Named Entity Recognition

Visual Information Processing I

Efficient Video Matting on Human Video Clips for Real-Time Application	65
Render-and-Compare: Cross-View 6-DoF Localization from Noisy Prior	71
Video Snapshot Compressive Imaging via Optical Flow	77
Castensorf: Cascaded Tensorial Radiance Fields for Novel View Synthesis	83
Compact Real-Time Radiance Fields with Neural Codebook	89

Detection II

STNet: Spatial and Temporal Feature Fusion Network for Change Detection in Remote Sensing Images
Social Bot Detection Based on Window Strategy
A Semantics-Aware Normalizing Flow Model for Anomaly Detection

Online Action Detection with Learning Future Representations by Contrastive Learning 2213 Haitao Leng (Alibaba Group, China), Xiaoming Shi (Shanghai Artificial Intelligence Laboratory, China), Wei Zhou (Alibaba Group, China), Kuncai Zhang (Alibaba Group, China), Qiankun Shi (Alibaba Group, China), and Pengcheng Zhu (Alibaba Group, China)	3
 HOD: Human-Object Decoupling Network for HOI Detection	9
Fixing Domain Bias for Generalized Deepfake Detection	5
 Variational Information Bottleneck for Cross Domain Object Detection	1
Attention Based Network with DA-Loss for X-ray Contraband Automatic Detection	7
Cross-Level Attention Based Adaptive Feature Alignment Network for Arbitrary-Shaped Text Detection	3

Generation II

Multi-object Video Generation from Single Frame Layouts	2249
Yang Wu (Sun Yat-sen University), Zhibin Liu (Sun Yat-sen University),	
Hefeng Wu (Sun Yat-sen University), and Liang Lin (Sun Yat-sen	
University)	

Towards Confidence-Aware Commonsense Knowledge Integration for Scene Graph Generation ... 2255

Hongshuo Tian (Tianjin University; Hefei Comprehensive National Science Center, China), Ning Xu (Tianjin University, China), Yanhui Wang (Tianjin University, China), Chenggang Yan (Hangzhou Dianzi University, China), Bolun Zheng (Hangzhou Dianzi University, China), Xuanya Li (Baidu Inc., China), and An-An Liu (Tianjin University; Hefei Comprehensive National Science Center, China)

Image Layer Modeling for Complex Document Layout Generation
Knowledge Enhanced Model for Live Video Comment Generation
Segmentation II
Mutual Query Network for Multi-modal Product Image Segmentation
 ATENet: Adaptive Tiny-Object Enhanced Network for Polyp Segmentation
Adaptive-Masking Policy with Deep Reinforcement Learning for Self-Supervised Medical Image Segmentation
MSAANet : Multi-scale Axial Attention Network for Medical Image Segmentation

DeepFake & Adversarial Robustness

DFCP: Few-Shot DeepFake Detection via Contrastive Pretraining	3
Forensics Forest: Multi-scale Hierarchical Cascade Forest for Detecting GAN-Generated Faces 230 Jiucui Lu (Ocean University of China, China), Yuezun Li (Ocean 230 University of China, China), Jiaran Zhou (Ocean University of China, China), Bin Li (Shenzhen University, China), and Siwei Lyu (University at Buffalo, State University of New York, USA)	9
Transferable Waveform-Level Adversarial Attack Against Speech Anti-Spoofing Models 231 Bingyuan Huang (Sun Yat-Sen University, China), Sanshuai Cui (Sun Yat-Sen University, China), Xiangui Kang (Sun Yat-Sen University, China), and Enping Li (Bridgewater State University, USA)	5
Domain-Invariant Feature Learning for General Face Forgery Detection	.1
Image Copy-Move Forgery Detection via Deep Cross-Scale PatchMatch	.7

Segmentation I

PMDA: Domain Alignment with Prototype Matching for Cross-Domain Adaptive Segmentation 2339

Weiwei Li (University of Electronic Science and Technology of China, China), Yuanyuan Ren (Shihezi University, China), Junzhuo Liu (University of Electronic Science and Technology of China, China), Chenyang Wang (Chinese Academy of Sciences, China), and Yuchen Zheng (Shihezi University, China)

CTSSeg: Consistent Teacher-Student Model for Magnetic Resonance Image Segmentation 2 Chenbin Zhang (Peking University, China), Qingyuan He (Peking University Third Hospital, China), Kun Yan (Peking University, China), Meng Ma (Peking University, China), Defeng Liu (Peking University Third Hospital, China), and Ping Wang (Peking University, China)	2351
Adaptive Non-Local Affinity Graph for Unsupervised Image Segmentation	2357
Fine-Grained Domain Adaptive Crowd Counting via Point-Derived Segmentation	2363

Attention & Saliency

Scribble-Supervised RGB-T Salient Object Detection	69
CA-GAN: Object Placement via Coalescing Attention Based Generative Adversarial Network . 237 Yibin Wang (Zhejiang University of Technology, China), Yuchao Feng (Zhejiang University of Technology, China), Jie Wu (Zhejiang University of Technology, China), Honghui Xu (Zhejiang University of Technology, China), and Jianwei Zheng (Zhejiang University of Technology, China)	75
ABC: Attention with Bilinear Correlation for Infrared Small Target Detection	81
Guided Focal Stack Refinement Network for Light Field Salient Object Detection	87
Triplet Spatiotemporal Aggregation Network for Video Saliency Detection	93
GFNet: Gaze Focus Network using Attention for Gaze Estimation	99

Person Re-identification

Feature Mixing and Disentangling for Occluded Person Re-identification
Multi-scale Query-Adaptive Convolution for Generalizable Person Re-identification
Fine-Grained Learning for Visible-Infrared Person Re-identification
Camera Proxy Based Contrastive Learning with Hard Sampling for Unsupervised Person Re-identification
Inter-Intra Camera Identity Learning for Person Re-Identification with Training in Single Camera
Dynamically Adaptive Instance Normalization and Attention-Aware Incremental Meta-Learning for Generalizable Person Re-identification

Object Detection

CFANet: A Cross-Layer Feature Aggregation Network for Camouflaged Object Detection2 Qing Zhang (Shanghai Institute of Technology, China) and Weiqi Yan (Shanghai Institute of Technology, China)	2441
Multibox Sample Selection for Active Object Detection	2447

Run and Chase: Towards Accurate Source-Free Domain Adaptive Object Detection
Camouflaged Object Detection with Feature Grafting and Distractor Aware
Edge-Aware Mirror Network for Camouflaged Object Detection
'Skimming-Perusal' Detection: A Simple Object Detection Baseline in GigaPixel-Level Images. 247' Zhibin Zhang (Tianjin University of Technology, China), Wanli Xue (Tianjin University of Technology, China), Kaihua Zhang (Nanjing University of Information Science and Technology, China), and Shengyong Chen (Tianjin University of Technology, China)

Quality Assessment II

Attribute-Assisted Multimodal Network for Image Aesthetics Assessment
EEP-3DQA: Efficient and Effective Projection-Based 3D Model Quality Assessment
Exploring the Influence of View and Camera Path Selection for Dynamic Mesh Quality Assessment
 HandGCAT: Occlusion-Robust 3D Hand Mesh Reconstruction from Monocular Images

 BH-VQA: Blind High Frame Rate Video Quality Assessment
Coordinate Channel Attention and a High-Dimensional Fusion Network for Speech Depression Level Estimation
Multi-level Feature-Guided Stereoscopic Video Quality Assessment Based on Transformer and Convolutional Neural Network
DDH-QA: A Dynamic Digital Humans Quality Assessment Database

Media Storage & Coding

Improving Multi-generation Robustness of Learned Image Compression
Code Verification Hashing for Image Retrieval
Low-Complexity Deep Video Compression with a Distributed Coding Architecture
Perceptual Audio Object Coding using Adaptive Subband Grouping with CNN and Residual Block. 2543 Yulin Wu (Wuhan University, Ching), Ruimin Hu (Wuhan University

Yulin Wu (Wuhan University, China), Ruimin Hu (Wuhan University, China), and Xiaochen Wang (Wuhan University, China)

Learning Lossless Compression for High Bit-Depth Medical Imaging	549
Sparse Representation Based Deep Residual Geometry Compression Network for Large-Scale Point Clouds	
 An Efficient Real-Time Hardware Architecture for Deblocking Filter in AVS3	561
Microimage-Based Two-Step Search For Plenoptic 2.0 Video Coding	567
Low Complexity Transcoding from HEVC to VVC	573
Re-ID	
Visible-Xray Cross-Modality Package Re-Identification	.579
Aerial-Ground Person Re-ID	.585

Sridharan (Queensland University of Technology, Australia), and Clinton Fookes (Queensland University of Technology, Australia)

A Knowledge-Driven Cross-Period Network for Clothes Changing RE-ID	91
Meta Perturbed Re-Id Defense	97
Multimodal Processing I	
EFT: Expert Fusion Transformer for Voice-Face Association Learning	03
Social Context-Aware GCN for Video Character Search via Scene-Prior Enhancement	09
 MRCap: Multi-Modal and Multi-Level Relationship-Based Dense Video Captioning	15
 Auxiliary Fine-Grained Alignment Constraints for Vision-and-Language Navigation	21

Center (TAIIC), China)

Improving Audio-Visual Speech Recognition by Lip-Subword Correlation Based Visual Pre-Training and Cross-Modal Fusion Encoder	2627
Yusheng Dai (University of Science and Technology, China), Hang Chen (University of Science and Technology, China), Jun Du (University of	
Science and Technology, China), Xiaofei Ding (Alibaba Group, China), Ning Ding (Alibaba Group, China), Feijun Jiang (Alibaba Group, China), and Chin-Hui Lee (Georgia Institute of Technology, USA)	
Detection of Public Speaking Anxiety: A New Dataset and Algorithm Wei Song (Beijing University of Posts and Telecommunications, China), Bin Wu (Beijing University of Posts and Telecommunications, China), Chunping Zheng (Beijing University of Posts and Telecommunications, China), and Huayang Zhang (Beijing Normal University, China)	2633

Pose Estimation

EANet: Towards Lightweight Human Pose Estimation with Effective Aggregation Network2 Beitao Chen (University of Electronic Science and Technology of China, China), Xuanhan Wang (University of Electronic Science and Technology of China, China), Xiaojia Chen (University of Electronic Science and Technology of China, China), Yulan He (the University of Warwick, UK), and Jingkuan Song (University of Electronic Science and Technology of China, China)	2639
Effective Occlusion Suppression Network via Grouped Pose Estimation for Occluded Person Re-Identification	2645
Structural Equivariance Self-Supervised Learning for Facial Pose Estimation	2651

 ActionPrompt: Action-Guided 3D Human Pose Estimation With Text and Pose Prompting 2657 Hongwei Zheng (Shanghai Jiao Tong University, China), Han Li (Shanghai Jiao Tong University, China), Bowen Shi (Shanghai Jiao Tong University, China), Wenrui Dai (Shanghai Jiao Tong University, China), Botao Wang (Qualcomm AI Research, China), Yu Sun (Qualcomm AI Research, China), Min Guo (Qualcomm AI Research, China), and Hongkai Xiong (Shanghai Jiao Tong University, China)
Hierarchical Graph Neural Network for Human Pose Estimation
RF-Based Multi-view Pose Machine for Multi-person 3D Pose Estimation

Domain Adaptation & Style Transfer

Coarse Helps Fine: A Multi-Granularity Discriminative Adversarial Network for Fine-Grained Open-Set Domain Adaptation Jing Li (Tianjin University, China), Liu Yang (Tianjin University, China), Qilong Wang (Tianjin University, China), and Qinghua Hu (Tianjin University, China)	. 2675
Adversarially Robust Source-free Domain Adaptation with Relaxed Adversarial Training Yao Xiao (Sun Yat-sen University, China), Pengxu Wei (Sun Yat-sen University, China), Cong Liu (Sun Yat-sen University, China), and Liang Lin (Sun Yat-sen University, China)	2681
A Compact Transformer for Adaptive Style Transfer Yi Li (Dalian University of Technology, China), Xin Xie (Dalian University of Technology, China), Haiyan Fu (Dalian University of Technology, China), Xiangyang Luo (State Key Laboratory of Mathematical Engineering and Advanced Computing, China), and Yanqing Guo (Dalian University of Technology, China)	. 2687
Fine-Grained Alignment for Boundary Samples Under Open Set Domain Adaptation Jianglin Wei (Hunan University, China), Guangyi Xiao (Hunan University, China), Shun Peng (Hunan University, China), Hao Chen (Hunan University, China), Jingzhi Guo (University of Macau, China), and Zhiguo Gong (University of Macau, China)	2693

Information Selection-Based Domain Adaptation from Black-box Predictors	. 2699
 E^2: Entropy Discrimination and Energy Optimization for Source-free Universal Domain Adaptation Meng Shen (Sun Yat-sen University, China), Andy J. Ma (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), and Pong C. Yuen (Department of Computer Science, Hong Kong Baptist University, Hong Kong) 	. 2705

Anomaly Detection

Long-Short Temporal Co-Teaching for Weakly Supervised Video Anomaly Detection
Multi-level Memory-Augmented Appearance-Motion Correspondence Framework for Video Anomaly Detection
 Weakly Supervised Video Anomaly Detection Based on Cross-Batch Clustering Guidance 2723 Congqi Cao (Northwestern Polytechnical University, China), Xin Zhang (Northwestern Polytechnical University, China), Shizhou Zhang (Northwestern Polytechnical University, China), Peng Wang (Northwestern Polytechnical University, China), and Yanning Zhang (Northwestern Polytechnical University, China)
Pose-Motion Video Anomaly Detection via Memory-Augmented Reconstruction and Conditional Variational Prediction
Rethinking Graph Anomaly Detection: A Self-Supervised Group Discrimination Paradigm with Structure-Aware

A Masked Attention Network with Query Sparsity Measurement for Time Series Anomaly Detection
Jie Zhong (Xinjiang University, China), Enguang Zuo (Xinjiang University, China), Chen Chen (Xinjiang University, China), Cheng Chen (Xinjiang University, China), Junyi Yan (Xinjiang University, China), Tianle Li (Xinjiang University, China), and Xiaoyi Lv (Xinjiang University, China)
Post Processing
HPCNet: A Hybrid Progressive Coupled Network for Image Deraining
Iterative Refinement Network for Hyperspectral Image Denoising
CS-PCN: Context-Space Progressive Collaborative Network for Image Denoising
DDT: Dual-Branch Deformable Transformer for Image Denoising
Adaptively Hashing 3DLUTs for Lightweight Real-Time Image Enhancement
Frequency-Assisted Adaptive Sharpening Scheme Considering Bitrate and Quality Tradeoff . 2777 Yingxue Pang (Bytedance Inc., China), Shijie Zhao (Bytedance Inc., China), Haiqiang Wang (Bytedance Inc., China), Gen Zhan (Bytedance Inc., China), Junlin Li (Bytedance Inc., China), and Li Zhang (Bytedance Inc., China)

Prompt & Query based Computing

 P3O: Transferring Visual Representations for Reinforcement Learning via Prompting
Accurate and Complete Captions for Question-Controlled Text-Aware Image Captioning 2795 Yehuan Wang (Nanjing University, China), Jian Hu (Nanjing University of Science and Technology, China), and Lin Shang (Nanjing University, China)
Multi-Level Part-Aware Feature Disentangling for Text-Based Person Search
SPTNET: Span-Based Prompt Tuning for Video Grounding
ERPG: Enhancing Entity Representations with Prompt Guidance for Complex Named Entity Recognition

Security, Privacy & Forensics II

Downstream Task-Agnostic Transferable Attacks on Language-Image Pre-Training Models ... 2831 Yiqiang Lv (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Jingjing Chen (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Zhipeng Wei (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Kai Chen (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Zuxuan Wu (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), and Yu-Gang Jiang (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing)

Zhongqiang Huang (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Yuxue Hu (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Zhi Zeng (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Xiang Li (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), and Ying Sha (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China: Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China) Adaptive and Robust Fourier-Mellin-Based Image Watermarking for Social Networking

Adversarial Attacks on Generated Text Detectors Pengcheng Su (Sun Yat-Sen University, China), Rongxin Tu (Sun Yat-Sen University, China), Hongmei Liu (Sun Yat-Sen University, China), Yue Qing (Sun Yat-Sen University, China), and Xiangui Kang (Sun Yat-Sen University, China)	. 2849
Automated Software Vulnerability Detection via Curriculum Learning Qianjin Du (Tsinghua University, China), Wei Kong (National Key Laboratory of Science and Technology on Information System Security, China; Tsinghua University, China), Xiaohui Kuang (National Key Laboratory of Science and Technology on Information System Security, China), Xiang Li (National Key Laboratory of Science and Technology on Information System Security, China), and Gang Zhao (National Key Laboratory of Science and Technology on Information System Security, China)	. 2855
Correcting the Bias: Mitigating Multimodal Inconsistency Contrastive Learning for Multimodal Fake News Detection Zhi Zeng (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Mingmin Wu (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Guodong Li (Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China), Xiang Li (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), Zhongqiang Huang (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China), and Ying Sha (Huazhong Agricultural University, China; Key Laboratory of Smart Farming for Agricultural Animals, China; Hubei Engineering Technology Research Center of Agricultural Big Data, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, China)	. 2861

Meaningful Ciphertext Image Encryption Based on Histogram Shift and ND-ICM Hyperchaos 2867

Shiwei Jing (Hangzhou Dianzi University, China), Jianjun Li (Hangzhou Dianzi University, China), and Wanyong Tian (The Key laboratory of Data Link of China Electronics Technology Group Corporation, China)

Zero/Few-Shot Processing

 Hierarchical Class Level Attribute Guided Generative Meta Learning for Pest Image Zero-Shot Learning
Knowledge Prompt Makes Composed Pre-Trained Models Zero-Shot News Captioner
 Semantic-Visual Guided Transformer for Few-Shot Class-Incremental Learning
Dual Episodic Sampling and Momentum Consistency Regularization for Unsupervised Few-Shot Learning
 Cross-Domain Prototype Contrastive Loss for Few-Shot 2D Image-Based 3D Model Retrieval 2897 Yaqian Zhou (Tianjin University; Hefei Comprehensive National Science Center, China), Yu Liu (Tianjin University, China), Dan Song (Tianjin University, China), Jiayu Li (Tianjin University, China), Xuanya Li (Baidu Inc., China), and An-An Liu (Tianjin University; Hefei Comprehensive National Science Center, China)
Few-Shot Object Detection via Back Propagation and Dynamic Learning
 Multi-Level Correlation Network for Few-Shot Image Classification

Counting and Locating Anything: Class-Agnostic Few-Shot Object Counting and Localization . 2921 Yiwen Zhang (Sichuan University, China), Hailun Zhang (Sichuan University, China), and Qijun Zhao (Sichuan University, China)

Author Index